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SUMMARY

Recent advances in imaging flow cytometry (IFC) have revolutionized high-
throughput multiparameter analyses at single-cell resolution. Although enabling
the discovery of population heterogeneities and the detection of rare events, IFC
generates hyperdimensional datasets that demand innovative analytical ap-
proaches. Current methods work in a supervised manner, utilize only limited
information content, or require large annotated reference datasets. Dimension-
ality reduction algorithms, including uniformmanifold approximation and projec-
tion (UMAP), have been successfully applied to analyze the large number of pa-
rameters generated in various high-throughput techniques.
Here, we apply a workflow incorporating UMAP to analyze different IFC data-
sets. We demonstrate that it out-competes other popular dimensionality reduc-
tion methods in speed and accuracy. Moreover, it enables fast visualization, clus-
tering, and tagging of unannotated objects in large-scale experiments. We
anticipate that our workflow will be a robust method to address complex IFC da-
tasets, either alone or as an upstream addition to the deep learning approaches.

INTRODUCTION

Imaging flow cytometry (IFC) is a powerful technique that combines high-throughput and multi-parameter

capabilities of conventional flow cytometry with morphological and spatial information from imaging at sin-

gle-cell resolution. With the potential to reveal sample complexity and detect rare events, IFC has gained

an increasing number of applications in multiple areas of biology and biomedicine (Han et al., 2016; Vor-

onin et al., 2020). However, the capability of IFC to acquire multiple images for thousands of objects poses

significant difficulties for the analysis of such large and hyperdimensional datasets. These challenges are

particularly prominent when the goal of the experiment is to study a heterogeneous sample of unknown

complexity, for example, in environmental or cancer research.

The standard analytical process for IFC data utilizes only a subset of the collected parameters in the form of

predefined features of the imaged objects, for example, measures of the size, shape, texture, and locali-

zation (Blasi et al., 2016; Hennig et al., 2017). They are manually selected by the user and further applied

to discriminate between the populations of interest. Such an approach can be employed for a wide variety

of biological problems, but it can be subjective, time-consuming, and limited to simple applications (Blasi

et al., 2016; Hennig et al., 2017). In the case of addressing more advanced research problems, a discrimi-

nant feature can be a complex combination of several simpler features. Consequently, a significant user

experience is required to engineer such a feature. To some extent, the analysis can be automated, yet it

will still rely on the same set of predefined or engineered features, therefore utilizing limited information

content present in the acquired dataset and usually requiring prior knowledge about the sample compo-

sition. Recently, both commercial and open-source deep learning architectures have successfully been

applied for analyzing complex samples (Mochalova et al., 2021); however, their use is hindered by the

need for large annotated reference datasets and long network training times. Therefore, most current ap-

proaches work in supervised mode, rendering them ineffective when applied to complex unannotated

samples.

An improvement to the presented workflows can be found in unsupervised dimensionality reduction, which

is pivotal for visualizing and clustering unannotated high-dimensional data (Akhbardeh and Jacobs, 2012;
iScience 25, 105142, October 21, 2022 ª 2022 The Author(s).
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Figure 1. Comparison of the performances of unsupervised dimensionality-reduction methods on IFC image data

(A) Two-dimensional embeddings of IFC images of pollen from three plant species (Betula pendula, Corylus avellana and

Alnus glutinosa) from the fluorescence channel and brightfield channel.

(B) Reproducibility of large-scale structure embeddings.

Error bars are represented as +/� 1SD See also Figure S2.
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Saeys et al., 2016). Dimensionality reduction is aimed at transforming the data into relevant and reduced

dimensional space by discovering intrinsic data structure and limiting redundancy. It allows extracting

useful variables while discarding noise and correlated features (Huang et al., 2019; Sumithra and Subu,

2015). Multiple dimensionality-reduction techniques have been used to analyze biological data, including

PCA, t-SNE (van der Maaten and Hinton, 2008), isomap (Tenenbaum et al., 2000), LLE, MLLE, MDS, SE, ivis,

and UMAP (McInnes et al., 2018). UMAP is a manifold learning technique based on Riemannian geometry

and algebraic topology. It allows UMAP to preserve short run times as well as the local and global data

structures. Accordingly, it has been employed for analyzing single-cell sequencing, mass cytometry, and

spectral flow cytometry data and is the state-of-the-art method (Becht et al., 2018; Ferrer-Font et al.,

2020). The application of UMAP to the analysis of image data, including multispectral imagery, has not

yet been investigated.

In this work, we present the application of UMAP to the analysis of various IFC datasets (including pollen,

red blood cells, and monocyte cell line (THP1), demonstrating its ability to facilitate visualization, classifi-

cation, and tagging of objects from large-scale experiments on complex populations, while working

directly on pixel-based image data. In contrast with the existing IFC data analysis methods, our approach

does not require training, nor does it use any numerical features. The only feature engineering step incor-

porated is the preprocessing of the images with PCA, and vectors of their pixel values are used as input for

UMAP. The proposedmethod can either be used alone (for less complex data) or followed by further steps,

covering numerical features or applying deep learning (for more demanding datasets). In addition, we pro-

vide a means for integrating UMAP with popular IFC analysis software IDEAS into a single pipeline.
RESULTS

Performance of dimensionality-reduction algorithms on various IFC image types

To determine how the dimensionality-reduction approaches handle different types of IFC data, we tested

the ability of UMAP and several other common algorithms, t-SNE, Isomap, LLE, MLLE, MDS, SE, PCA, and

ivis, to discriminate between 3 plant species, Betula pendula, Alnus glutinosa, and Corylus avellana, based

on brightfield and fluorescence images of their pollen. As input, we used 8-bit raw TIFF images exported

from the IDEAS software (see STAR Methods). The pixel value distribution of IFC images is largely different

from classical images, with the majority of pixels having values similar to the background signal (Figure S1).

UMAP and t-SNE outperformed the rest of the algorithms in the quality of low-dimensional data represen-

tation (Figure 1A). Both methods achieved the best results on the fluorescence images, producing clearly

separated clusters of objects. None of the methods properly recognized 3 distinct groups of objects in the

brightfield images (Figure 1A).

Next, to quantify the reproducibility of the embeddings, we measured the correlation of the object coor-

dinates in embeddings on random dataset subsamples of varying sizes with those from embeddings of the

full dataset, which included 9,000 images (Figures 1B and S2). With growing subsample sizes, the resulting

embeddings were closer to the representations of the full dataset.

Furthermore, we measured the correctness of the low dimensional representation of the IFC images by

clustering the points with hdbscan (McInnes and Healy, 2017) (an unsupervised density-based clustering

algorithm) and calculating cluster purity and normalized mutual information (NMI) metrics (Figures 2A

and S3) (see STAR Methods). Cluster purity evaluates whether a cluster contains objects representing

the same class. NMI quantifies the similarity between the two groupings, i.e., by comparing true versus

hdbscan predicted object labels NMI gives a measure of how much of the original grouping information

is captured. Among the tested algorithms, only UMAP and t-SNE obtained high values for both purity

and NMI in fluorescent and brightfield channel images. The embedding from the brightfield channel

showed higher cluster purity, whereas higher NMI was obtained when reducing the dimensions of the fluo-

rescence channel image dataset.
iScience 25, 105142, October 21, 2022 3
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Figure 2. Dimensionality-reduction method runtimes on IFC image data

(A) Cluster purity and NMI values. Brightfield (red), fluorescence (blue). See also Figure S3.

(B) Average run times for embedding brightfield and fluorescence images with respect to the subsample size. Brightfield

is depicted as a solid line, fluorescence is depicted as a dotted line.

(C) Comparison of embedding runtimes for brightfield (brighter shade) and fluorescence images (darker shade). Whiskers

represent 95th percentile.
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UMAP, together with PCA, was significantly faster than the other tested approaches. Importantly, its speeddid

not decrease significantly with the growing size of the data (Figure 2B). All methods ran faster on the fluores-

cence image dataset than on the brightfield dataset (Figure 2C). Differing run times and clustering results of

brightfield and fluorescence images suggested that the two types of image data had significantly different

structures. To better characterize these structures, we decomposed both datasets with PCA (Figure S4). We

noted that the number of principal components (PCs) needed to retain 95%of the variance present in the data-

set wasmuchhigher for thebrightfield than for the fluorescence images. Additionally, the relationbetween the

number of PCs and the percent of the explained variance differed between images acquired from the two

considered detection channels. Whereas many PCs were needed to capture even small amounts of variance

in the brightfield images, even up to 50% of the variance in the fluorescence images was captured by the first

PC. This demonstrated that brightfield pixel-based data contained a high level of noise coming from the back-

ground pixels, therefore posing a significant challenge for any dimensionality-reduction technique.

Analysis software usually offers several image export options. To determine how the choice of export pa-

rameters impacts the downstream dimensionality-reduction procedure, we exported from the IDEAS soft-

ware the fluorescence images of C. avellana pollen with various settings: (1) raw 8-bit, (2) padded 8-bit, (3)

raw 16-bit, and (4) padded 8-bit with manually enhanced contrast data. The manual modulation of contrast

was applied, as this is a common augmentation of the image that users perform during the exploratory data

analysis (Figure S5). Next, the generated datasets were analyzed with UMAP. The two-dimensional embed-

ding distinguished between various image export options (Figures 3A–3C). A change in the image depth

from 8 to 16 bits (Figure 3A) or the application of padding on the edges of the image (Figure 3B) changed

the local representation of points in the cluster. Themanual change in contrast (Figure 3C) resulted in a sep-

aration of the two 8-bit datasets; however, their local structure remained unchanged, which indicated that

the embedding properly recognized the proportional change in the signal strength across thewhole image.

Any difference introduced to the images through export options or image augmentation resulted in UMAP

recognizing such a population of objects as a separate cluster (Figure S6). Altogether, these results showed

the high sensitivity of UMAP to file parameters that cannot be visually inspected by the user and demon-

strated the importance of consistent data manipulation protocols to avoid false clustering outcomes.
Influence of the IFC experimental technical variability on UMAP dimensionality reduction

To test how much noise in IFC data associated with the equipment and the laboratory procedures impacts

the dimensionality-reduction results, we applied UMAP to a dataset consisting of 4 technical replicates

from a single sample of C. avellana pollen, analyzed by IFC over a month immediately after material acqui-

sition, after one week, two weeks and four weeks (Figure 4A). Here, we used brightfield images because, for

this channel, the LED light intensity changes dynamically during the experiment, which is more likely to

generate technical variability, as opposed to a user-defined setup of laser intensities in the fluorescent

channels. According to the expectations, UMAP recognized a single cluster of objects (Figure 4A). The dis-

tribution of points within the cluster in the absence of biological variation was driven mostly by the differ-

ences in the background signal and position of the object in the image (Figures 4B and 4C). This result

showed that technical noise associated with the equipment and laboratory procedures did not impact

the low-dimensional representation of the input data by UMAP.
Multispectral analysis of pixel-based data with UMAP

IFC acquires the image data from several channels, capturing light at different wavelengths. Thus, to take

full advantage of this technology, the data analysis approach should utilize the merged content of multi-

spectral data. To demonstrate how to use UMAP for analyzing multispectral imagery, we used brightfield

and fluorescence images of B. pendula, A. glutinosa, and C. avellana pollen.

We explored two methods to perform the analysis. In the first method, we blended the brightfield and fluo-

rescence images for each object and directly reduced the dimensions of composite images with UMAP
iScience 25, 105142, October 21, 2022 5
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(Figures 5A and S7). In the secondmethod, we utilized PCA to decompose the brightfield and fluorescence

images into PCs capturing 95% of the variability in the dataset (Figures 5B, 5D, and 5E). Next, the PC

matrices from both image types were passed to UMAP for 2-dimensional embedding.

The first method using a composite image could not separate clusters belonging to B. pendula and

A. glutinosa (Figure 5A), similar to brightfield images (Figure 1A). In contrast, the second approach employ-

ing PCA-preprocessing of imagery led to a clear separation of all of the true object groups, thus allowing

the efficient use of the multispectral dataset (Figure 5B).

Tovalidate the resultsgeneratedbasedsolelyon images, in thenext step,wealsoappliedUMAPtothenumerical

features (i.e., object area, length, width, average pixel intensity) automatically calculated by the IDEAS software

for the same pollen dataset (STAR Methods) (Figure 5C). We found that using PCA-transformed pixel data
6 iScience 25, 105142, October 21, 2022
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allowed for evenbetter clustering than thatobtainedwithnumerical data. Therewas less species overlap, and the

objects were properly separated basedon their fluorescence intensity. Quantitatively the PCApreprocessed da-

taset showedhighvaluesofclusterpurity, comparable tocomposite images, andhad thehighestNMI (Figure5F).

This observation showed that the proposed approach, including PCA-preprocessing of imagery followed

by dimensionality reduction with UMAP, can be successfully applied for unsupervised IFC data analysis. As
iScience 25, 105142, October 21, 2022 7
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Figure 5. Dimensionality reduction in multispectral IFC images

(A–C) UMAP 2D embeddings of multispectral images for (A) composite images from overlayed channel data (See also Figure S5), (B) PCA merged channel

data, using PCA components explaining 95% of the variance in images from each channel, and (C) IDEAS numerical features calculated for all channels used.

(D) Relation of the number of PCA components used and their association with the amount of explained variance in the images.

(E) The gallery represents examples of reconstructed images from the given number of PCA components.

(F) NMI and purity values calculated for tested data preprocessing workflows.
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a proof of concept, in the next steps, we demonstrated the performance of UMAP in different use cases that

employed multispectral datasets.

UMAP use case – Visualization of complex multispectral IFC dataset

IFC is often used to gather data on multiple object types within one experiment. An example of such an

experiment is a high-throughput screening of pollen samples, which is important for ecological studies

and allergology. Such samples pose a significant difficulty to standard image analysis, as they are typically

composed of an unknown number of pollen species. To demonstrate the ability of UMAP to visualize and

cluster complex populations, we applied UMAP to embed one of the largest and most complex reference

sets of IFC images consisting of over 35,000 objects from 35 different plant species imaged in three detec-

tion channels: brightfield, fluorescence and darkfield (Dunker et al., 2021). Again, PCA-transformed pixel

data were used for dimensionality reduction by UMAP.

UMAP produced a low-dimensional representation of objects in a short time, with multiple clearly visible

separate clusters (Figures 6A and S8). Although the total number of clusters did not match the number

of species, objects from a single species most often occupied a specific region in the embedding. Only

for a small fraction of species were the pollen images allocated by UMAP into separate clusters. In addition,

some clusters were heterogeneous and included objects representing different species. Notably, in such

cases, the objects from each species still occupied distinct areas of a cluster. We found that the species with

very low object counts could not be properly assigned to the clusters. This indicated that in some complex

datasets, a certain minimum number of objects in each class is required for correct clustering.

Because UMAP is a graph-based dimensionality-reduction method, the relations between points and clus-

ters can be studied in detail by generating a connectivity plot. The one obtained for the examined dataset

clearly showed the embedding areas where clusters were strongly locally connected (Figure 6B). We tested

if restricting the clustering to these areas would improve the clustering results. Using a full dataset, hdbscan

reached purity value of 0.73 and NMI of 0.54. When we restricted the clustering to points with strong local

connections, the purity and NMI values increased to 0.94 and 0.61, respectively. Therefore, these sites are

good starting points for sampling objects in an unsupervised manner to guide downstream analysis and

classification in open-source or commercial tools such as IDEAS software.

UMAP use case – Unsupervised screening of red blood cell morphology

IFC has multiple applications, which implies that the analyzed objects can have significantly different char-

acteristics, dependent on the sample type. For example, the images of cells have lower contrast than those

of pollen. Consequently, distinguishing blood cells from the background is much more challenging than in

the case of pollen. There is a growing interest in the objective analysis methods of large-scale datasets for

biomedical applications. A prominent example is the assessment of the quality of stored red blood cells

(RBCs) for transfusions, which is done by counting the six RBCs subclasses: Smooth disc, crenated disc,

crenated discoid, crenated spheroid, crenated sphere, and smooth sphere. A change in discs toward

spheres is associated with RBC degradation. To determine whether UMAP can provide meaningful repre-

sentations of such objects, we used a dataset of human RBC imagery classified both by experts and an auto-

mated deep learning approach (Doan et al., 2020). UMAP properly distinguished between the main

morphological classes: disc/discoid versus spheroid/sphere objects (Figure 7). In addition, UMAP placed

cells imaged in a side view at equal distances between the twomajor clusters. A further distinction between

the RBC classes was, however, impossible. A subgroup of objects annotated as crenated and smooth discs

were put in a separate cluster (group of objects in the bottom left of the embedding). Through observation

of the images from this cluster one can conclude that the pictures represent a view from the top of the

RBCs, whereas the rest of the crenated and smooth discs were imaged from the bottom. Hdbscan clusters

corresponded well with main RBC classes. The few objects which lowered the purity of the calculated clus-

ters were located in the embedding near objects of different RBC class (as defined by UMAP), most likely
iScience 25, 105142, October 21, 2022 9
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because of the varied object illumination by the LED in brightfield channel, therefore rendering the distri-

bution of background pixel values more similar to those from objects belonging to a different class.

UMAP use case – Multidimensional outlier detection

IFC, a high-throughput technique, creates a need for filtering the input data of outlying objects, i.e., those

that deviate significantly from the other objects and, thus, can hinder result interpretation. However,

because the image data are hyperdimensional, identifying outliers should also consider that an object

can be an outlier with respect to non-human readable features. To demonstrate how UMAP can be em-

ployed to identify outliers in IFC data, we applied it to the THP1 cell images captured in 5 detection chan-

nels (Figures 8A–8J). UMAP users can decide whether, on graph building, the combination of local point

sets is performed through the union of graph edges (default behavior, see STAR Methods) or their inter-

section. A change toward intersection decreases the graph connectivity. To identify outliers, we gradually

forced UMAP to perform intersection (Figures 8A–8F). As a result, the loosely connected objects were

pushed from the clusters. Next, we analyzed the identified outliers in the IDEAS software. The inspection

of the image gallery revealed that the outlying objects included highly irregular cells and doublets (Fig-

ure 8G). As expected, an object outlying in value for one feature appeared normal when analyzed with

respect to another feature (Figures 8H and 8I). Having already found the outliers, we were able to guide

the IDEAS Feature Finder wizard to identify key image features and distinguish them from normal objects

(Figure 8J).

UMAP use case – Visualization of complex multispectral IFC dataset

To demonstrate the ability of UMAP to represent complex populations, we used a dataset consisting of

brightfield, fluorescence and darkfield images of bee pollen (Figure 9A). We preprocessed the multispec-

tral data with PCA as described above, used UMAP for dimensionality reduction and clustered the points
10 iScience 25, 105142, October 21, 2022
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with the hdbscan. Furthermore, to validate the correctness of the UMAP embedding, we performed the

analysis of this dataset in IDEAS software and overlayed the results with UMAP clusters (Figures 9B–9E,

STAR Methods section). Hdbscan distinguished 4 clusters of points. The manual analysis of the dataset

in the IDEAS software identified 3 subpopulations based on the area of the objects and the proportion
iScience 25, 105142, October 21, 2022 11
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Figure 8. Application of UMAP for outlier detection

(A–F) UMAP embeddings (A–C) and corresponding connectivity plots (D–F) of the images of THP1 cells show changes in the data representation as a

response to UMAP working in union or intersection mode.

(G) Gallery of identified outlying objects.

(H and I) Scatterplots of the top features discriminating between round and irregular cells, with UMAP-identified outliers marked in red.

(J) Scatterplot of the two top features discriminating between UMAP-identified outliers and the rest of the objects.
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of their length and width (aspect ratio). The first subpopulation was characterized by high area and high

aspect ratio, the second one consisted of objects with low area and low aspect ratio, whereas the third

included pollen with low area and high aspect ratio. Furthermore, we delineated that the first population

(high area and high aspect ratio) was composed of two types of pollen: spiky edge and smooth edge ones.

Cluster 1 corresponded to the pollen characterized in IDEAS by low area and high aspect ratio, clusters 3

and 4 consisted of pollen with high area and high aspect ratio, whereas cluster 2 contained objects with low

area and low aspect ratio, with a fraction of pollen from the other subpopulations. Notably, UMAP correctly

placed spiky edge and smooth edge pollen types into separate clusters (3 and 4 respectively). Quantita-

tively, in each cluster >90% of objects were from single pollen type (as classified by the manual expert anal-

ysis done in IDEAS).
DISCUSSION

With the increasing challenges posed by the rapidly growing number of studies of complex populations at

single-cell level, there is a demand for further advances in IFC data analysis methods. To address the trade-

off between automation and analytical power, several data analysis approaches are available. The basic

pipelines utilize low information content and are often time consuming. The advanced deep learning

methods take advantage of the high dimensionality of data, but require user-defined data labels. Here,

we propose an alternative solution that has the advantages of both approaches, yet lacks the challenges

associated with them. Our work demonstrates that dimensionality reduction by UMAP is a robust approach

to analyzing complex IFC datasets in an unsupervised manner, bringing immediate informative represen-

tations, even in the case of the complex datasets. The applications of dimensionality reduction techniques

in the analyses of multispectral imagery have been extensively examined in the context of satellite images,

geoscience, and agriculture (Ding et al., 2021; Liu et al., 2021; Xi et al., 2021). Thesemethods have also been

used for biological data, including single-cell imaging, however in most cases they involve the extraction of

a vector of features from each image (Bandyopadhyay et al., 2014; Carpenter et al., 2006; Mitra et al., 2022;

Peralta and Saeys, 2020; Velliangiria et al., 2019). In contrast, we used vectors of the pixel values as the input

for UMAP. Of course, feature-based algorithms provide insight into biologically relevant characteristics,

thus allowing us to directly address a scientific question of interest. We tested the UMAP performances

on two input types: numerical features generated by the IDEAS software and pixel-based image data.

Whereas UMAP produced meaningful embeddings in both cases, it achieved superior results when run

on images, although in such events extracting information content was hindered to some extent by the

prevalent background pixels. Despite this, as outlined here, pixel-based approach is an attractive solution

in many use cases, especially when the biological background is well understood and the analysis is aimed

at determining the composition of the sample. There are no reports comparing different dimensionality

reduction algorithms for the purpose of IFC imagery processing step. We benchmarked several widely

used methods. UMAP was the fastest among them and provided the most accurate data representations,

which outcompeted the very popular t-SNE. Notably, the growing size of the embedded datasets did not

increase the computational time of UMAP even when working with >40,000 hyperparameter objects. In

addition to the ability to resolve major subpopulations, UMAP also preserved the continuity of the

morphology changes, making the plots easy to interpret.

We found that the UMAP performance can be further improved if the input is preprocessed by PCA. By

combining UMAP with an upstream PCA image decomposition, we created a workflow in which IFC

data from multiple fluorescence channels could be analyzed jointly. PCA preprocessing of the images

has been successfully applied previously, showing that it is a general trend that majority of the variation

present in the images can be omitted yielding high-speed gains without sacrificing the accuracy (Benito

and Peña, 2005; Khaing et al., 2020; Ng, 2017; Zhao et al., 2022). Our approach resolved major subpopu-

lations with effectiveness comparable to the classification based on deep learning or expert judgment,

without reference to prior knowledge. This ability makes UMAP a promising alternative to lengthy proced-

ures and can be particularly useful in high-throughput screenings and biomedical applications.
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Figure 9. Visualization of complex multispectral IFC dataset

(A) UMAP embedding (A) of the bee pollen dataset. Colors correspond to the hdbscan detected clusters.

(B–E) (B) IDEAS software detected groups of objects, (C) IDEAS software analysis of the High area & Aspect ratio objects

group, (D and E) UMAP embedding of the bee pollen dataset with colors corresponding to the groups of objects

identified in the IDEAS software.
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Dimensionality reduction methods are typically utilized for the purpose of using the reduced embeddings

as inputs for the deep learning algorithms. Our workflow can be applied as a standalone solution for less

complex datasets, without the necessity for additional analyses that rely on more advanced architectures.

However, deep learning will be increasingly utilized in IFC, which can be anticipated based on the success-

ful attempts reported thus far (Dunker et al., 2021; Luo et al., 2021; Otesteanu et al., 2021; Rodrigues et al.,

2021). As presented here, UMAP provides a highly valuable guidance to initiate the analysis when no refer-

ence is available and enables a very fast tagging of specific cells. Creating an unsupervised UMAP embed-

ding can be readily combined with deep learning as an upstream procedure, to facilitate the tedious

manual object annotation or selection of reference populations.
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Overall, this work establishes the feasibility of UMAP with a prior PCA image decomposition toward the

rapid analysis of IFC datasets. It complements the existing IFC data analysis methods and can contribute

to further development of this revolutionary technology.
Limitations of the study

This study focused primarily on the images of objects, where strong morphological differences could be

readily observed. Therefore, it remains to be explored how will UMAP behave when more subtle changes

are present in the analyzed objects, i.e. differences in granularity or in the proportions between the nucleus

and the cytoplasm.

We also note, that in case of complex samples, like the explored dataset of 35 pollen species, postprocess-

ing of the UMAP embedding with unsupervised clustering and additional manual curation by the field

expert are indispensable.

It also remains to be studied how IFC data from small objects, where resolution of the camera is too small to

capture morphology (i.e., imaging of micronuclei formation, mitochondria counting or spot counting of

viral particles) or where signal to noise ratio is small (i.e., imaging of extracellular vesicles) behave when pro-

cessed with UMAP.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Pollen grains of common hazel

(Corylus avellana) - part of datasets

1, 2, and 3

Dr. Łukasz Grewling, Laboratory of Aerobiology, Department

of Systematic and Environmental Botany, Faculty of Biology,

Adam Mickiewicz University, Pozna�n, Poland

N/A

Pollen grains of silver birch

(Betula pendula) -

part of dataset 1

Dr. Łukasz Grewling, Laboratory of Aerobiology, Department

of Systematic and Environmental Botany, Faculty of Biology,

Adam Mickiewicz University, Pozna�n, Poland

N/A

Pollen grains of common alder

(Alnus glutinosa) -

part of dataset 1

Dr. Łukasz Grewling, Laboratory of Aerobiology, Department

of Systematic and Environmental Botany, Faculty of Biology,

Adam Mickiewicz University, Pozna�n, Poland

N/A

Deposited data

Betula pendula, Corylus avellana,

Alnus glutinosa pollen

This study ifc_umap/example_data at

main $ istolarek/ifc_umap $

GitHub

Pollen grains of 35 plant species -

part of dataset 4

Dunker et al., 2021, personal communication https://doi.org/10.1111/

nph.16882

Images of red blood cells -

part of dataset 5

Doan et al. (2020) https://doi.org/10.1073/

pnas.2001227117

Images of THP1 cells - part of dataset 6 Luminex - personal communication. Dr. Michał Konieczny (Luminex). N/A

Images of bee pollen grains -

part of dataset 7

Luminex - personal communication. Dr. Owen Hughes (Luminex),

with permission granted by Dr. Ann Power, Mrs. Natascha Steinberg,

Dr. Richard Jones and Professor John Love (College of Life and

Environmental Sciences, University of Exeter, UK).

N/A

Software and algorithms

Python version 3.7 Python Software Foundation https://www.python.org

R version 4.1.2 The R Project for Statistical Computing https://www.r-project.org/

IDEAS version 6.2 Luminex https://www.luminexcorp.com/

imagestreamx-mk-ii/#software

INSPIRE� version 4.1 Luminex https://www.luminexcorp.com/

imagestreamx-mk-ii/#software
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Dr. Paulina Jackowiak (paulinaj@ibch.poznan.pl).
Materials availability

This study did not generate new unique reagents.

Data and code availability

This article analyzes existing data, kindly shared by scientists mentioned below. Raw data generated in this

study have been deposited in a github repository: https://github.com/istolarek/ifc_umap.

The first dataset consisted of images and image features of the collected pollen from three plant species

(Figures 1, 2, and 5). The data were produced as part of this work.
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The second dataset contained images from single pollen species, i.e., C. avellana imaged in the fluores-

cence channel and exported as TIFF files from unchanged 8-bit raw images and the same images with aug-

mentations: modified number of bits per image, enhanced contrast, added padding at the image edges

(Figure 3). The data were produced as part of this work.

The third dataset contained raw images and their extracted features for C. avellana pollen from a single

biological replicate imaged in a series of technical replicates (Figure 4). The data were produced as part

of this work.

The fourth dataset included TIFF images of annotated pollen from 35 plant species (Figure 6). The data

were kindly shared by Dr. Susanne Dunker and Dr. Thomas Hornick (Helmholtz-Centre for Environmental

Research, Leipzig, Germany & German Centre for Integrative Biodiversity Research, Halle-Jena-Leipzig,

Germany).

The fifth dataset contained annotated TIFF images of RBCs imaged in the brightfield channel (Figure 7).

The data were downloaded from the public repository shared in ref. (Doan et al., 2020).

The sixth dataset consisted of multi-channel IFC imagery of THP1 cells (Figure 8). The raw IFC data were

kindly shared by Dr. Michał Konieczny (Luminex).

Lastly, the seventh dataset consisted of images and image features calculated in IDEAS software of unan-

notated bee pollen (Figure 9). The raw IFC data were kindly shared by Dr. Owen Hughes (Luminex), with

permission granted by Dr. Ann Power, Mrs. Natascha Steinberg, Dr. Richard Jones and Professor John

Love (College of Life and Environmental Sciences, University of Exeter, UK).

The code used to produce the analyses presented in this manuscript with example IFC data is available

through a github repository: https://github.com/istolarek/ifc_umap.

Any additional information required to reanalyze the data reported in this paper is available from the lead

contact on request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Pollen grains of three species, i.e., common hazel (Corylus avellana), silver birch (Betula pendula) and com-

mon alder (Alnus glutinosa), were collected from natural populations growing in Pozna�n (Western Poland).

Pollen grains were collected in 50 mL tubes by gently shaking the catkins (male inflorescences) in the full

flowering phase. Until the IFC analysis (datasets 1–3, see chapter below), pollen grains were stored at

room temperature. Pollen grains of B. pendula are small (�22 mm), triporate, round to oval in shape with

thick intines below pores. The general characteristics of hazel pollen grains are similar to birch except

that the hazel pollen grains are larger (�28 mm) and have a more triangular shape (in polar view). Pollen

grains of A. glutinosa (22–25 mm) often have 4–5 pores with distinct thick arches (arci) running between

the pores (Bucher et al., 2004).
METHOD DETAILS

Equipment

All presented datasets were produced on ImageStream�X Mark II (Luminex, Seattle, WA, USA) (Bucher

et al., 2004; Doan et al., 2020).
Dimensionality-reduction algorithms

We used a total of nine linear and nonlinear algorithms: UMAP - UniformManifold Approximation and Pro-

jection, t-SNE - t-distributed stochastic neighbor embedding, Isomap – Isometric Mapping, LLE - Locally

Linear Embedding, MLLE – modified Locally Linear Embedding, MDS – Multidimensional Scaling, SE –

Spectral Embedding, PCA – Principal Component Analysis, ivis – ivis a machine learning library for reducing

dimensionality of very large datasets using Siamese Neural Networks.
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Imaging flow cytometry – Pollen data acquisition

IFC was performed on a two-camera ImageStream�X Mark II with INSPIRE v4.1 acquisition software (Lumi-

nex). Pollen autofluorescence was excited by a 488 nm laser at 7 mW, and emission was captured in the

range of 505–560 nm (Ch02). All images were captured with the 403 objective, and a cell classifier

(threshold) was applied to the brightfield channel (Ch04) to exclude small particles.
Imaging flow cytometry – THP1 data processing in IDEAS

IFC dataset was kindly shared by Dr. Michał Konieczny (Luminex).

IFC data analysis was performed using IDEAS v6.2 image analysis software (Luminex). The brightfield (Ch01)

RMS gradient and area of an object were used to interrogate single-cell events in focus. Single-cell events

were gated through Centroid_X and the area of an object to remove clipped images, leaving 4,210

focused, nonclipped single-cell objects. The object area and aspect ratio in brightfield (Ch01) were used

to group cells into objects characterized by high area and aspect ratio (1,325 objects), low area and high

aspect ratio (2,572 objects), and low area and low aspect ratio (107 objects). The Feature Finder Wizard

was applied to engineer features discriminating between sample objects representing images of spiky-

edge and smooth-edge pollen types. The Feature Finder calculated aspect ratio intensity (Ch06) and bright

detail intensity (Ch01) as the top discriminative features with discriminative RD scores of 2.5 and 2.35,

respectively.
Image preprocessing

Except where explicitly noted, all pixel-based images were exported from the IDEAS software as 8-bit raw

TIFF images. Each image was processed in Python 3.5 with the opencv2 library to convert it into grayscale,

and to standardize each image size, it was reshaped to 64 3 64 pixel dimensions with a ‘‘resize’’ function.
Runtime

For all algorithms, the timing was determined in Python using the ‘‘%time’’ (wall clock) time measurements.
Reproducibility of large-scale structure

Each algorithm was run on a full dataset (9,000 objects). Then, subsamples of sizes 200, 500, 1,000, 3,000,

5,000, and 7,000 were uniformly drawn three times, generating 21 data subsamples of varying sizes. We

then ran each algorithm on each data subsample, saving the embeddings. For each subsample and algo-

rithm, we obtained two vectors of embedded coordinates (x,y). For each subsample, we also obtained such

a pair of embedded coordinates (x0,y0). From this, we computed (|cor(x,x0)| + |cor(y,y0)|)/2, where |.| denotes

the absolute value and cor the computation of the Pearson correlation coefficient. This quantity thus mea-

sures the average correlation of coordinates between the full embedding and subsamples from various

sizes, maximized across axial symmetries across the x-axis and/or y-axis.
Unsupervised clustering

Hdbscan algorithm (package dbscan, ver. 1.1-10) was used to cluster the points from reduced embeddings.

Next, the cluster purity and normalized mutual information (package aricode, ver. 1.0.0) were calculated

where feasible.
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