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Background: Although ferroptosis has been validated to play a crucial role in some types
of tumors, the influence of ferroptosis-related genes (FRGs) on the immune
microenvironment in low-grade glioma (LGG) remains unclear. In this research, we
screen the FRGs to assess the prognosis value and immune microenvironment in
LGG, to provide reliable diagnosis and treatment evidence for the clinic.

Methods: A total of 1,239 patients of LGG samples were selected for subsequent
analyses from The Cancer Genome Atlas, Chinese Glioma Genome Atlas, and the
Repository of Molecular Brain Neoplasia Data datasets. Univariate Cox regression
analysis was used to screen for prognostic FRGs. Consensus clustering was utilized
to determine ferroptosis subtypes of LGG patients. Next, the prognostic model was
constructed based on differentially expressed FRGs and validation in the validating
datasets. The immune microenvironment, biological pathway, and hypoxia score were
explored by single-sample gene set enrichment analysis. The potential response of
chemotherapy and immune checkpoint blockade therapy was also estimated. In
addition, the correlation between the risk score and autophagy-related genes was
examined by the Pearson correlation coefficient.

Results: A total of three ferroptosis subtypes were identified by consensus clustering for
prognostic FRGs which exhibited different outcomes, clinicopathological characteristics,
and immune microenvironment. Afterward, a prognostic model that performed great
predictive ability based on nine prognostic FRGs has been constructed and validated.
Moreover, the prognostic model had the potential to screen the sensitivity to
chemotherapy and immunotherapy in LGG patients. Finally, we also found that the
prognostic model has a great connection to autophagy and hypoxia.

Conclusion: We developed a ferroptosis-related prognostic model which strongly linked
to diagnosis, treatment, prognosis, and recurrence of LGG. This study also reveals the
connection between ferroptosis and tumor immune microenvironment.
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INTRODUCTION

Low-grade glioma (LGG) belongs to WHO grade II and III
gliomas (Louis et al., 2016). It approximately accounts for 15%
of the primary intracranial malignant tumors (Sanai et al.,
2011). LGG is most commonly seen in young adults aged
35–44 years (Ostrom et al., 2016). At present, the standard
therapeutic schedules including surgical resection, adjuvant
radiotherapy, and chemotherapy are mainly adopted, but the
outcomes are always unfavorable (Semmel et al., 2018).
Cancers with same origins, pathologic stages, and clinical
stages may have different molecular characterizations
(Friedman et al., 2015). Recent studies have identified that
molecular pathogenesis is closely related to LGG progression,
suggesting the promising prospect of targeted therapy (Bready
and Placantonakis, 2019). Consequently, exploring the
potential molecular mechanisms will benefit the outcomes
of patients with LGG.

Ferroptosis was initially described as a regulated cell death
unlike other forms of cell death, in 2012 (Dixon et al., 2012). It
is characterized by dysbalance in the regulation of intracellular
iron metabolism and membrane lipid peroxidation (Ursini and
Maiorino, 2020). The function of ferroptosis in several types of
cancer has been reported previously, including breast cancer
(Li H. et al., 2022), hepatocellular carcinoma (Chen et al.,
2022), gastric cancer (Zhang et al., 2021), head neck squamous
cell carcinoma (Lu et al., 2021), lung cancer (Li and Liu, 2022),
renal cell carcinoma (Du et al., 2021), ovarian cancer (Li H.-W.
et al., 2022), and pancreatic cancer (Liu et al., 2021). Mou et al.
(2022) has found that for LGG the SAT1 activation is closely
related to ferroptosis upon ROS induction. Based on the
sequencing technology, many ferroptosis-related gene (FRG)
risk signatures have been developed in LGG to predict
prognosis and treatment efficacy (Xu et al., 2021; Zhao
et al., 2021; Zheng et al., 2021). However, the influence of
FRGs on the tumor microenvironment (TME) in LGG has not
been elucidated yet.

In this study, through the screened FRGs from The Cancer
Genome Atlas (TCGA), Chinese Glioma Genome Atlas
(CGGA), and Repository of Molecular Brain Neoplasia Data
(Rembrandt) datasets, a total of 1,239 patients of LGG samples
were selected for subsequent analyses. Ferroptosis subtypes
with distinct prognosis, immune microenvironment, and
clinicopathological and biological processes were identified
by consensus clustering. Subsequently, we built the
ferroptosis-related prognostic model to quantify the
differences between individuals. Beyond that, we also
explored the connection between ferroptosis and hypoxia as
well as autophagy. Overall, our findings may contribute to the
clinical therapeutic strategies for LGG patients.

METHODS

Dataset Acquisition
The flow chart of this study is shown in Supplementary Figure
S1. The mRNA expression profiles with corresponding clinical
data of LGG samples were downloaded from TCGA (https://
portal.gdc.cancer.gov/repository), CGGA (http://www.cgga.org.
cn), and Rembrandt (http://gliovis.bioinfo.cnio.es) datasets.
Then, patients with incomplete survival data and
histopathological diagnosis were excluded. Ultimately, a total
of 1,239 patients of LGG samples were selected for the
subsequent analysis. TCGA dataset (n = 508) served as the
training set. The CGGA (n = 592) and the Rembrandt datasets
(n = 139) were chosen as the validation sets. The available clinical
information about the patients is summarized in Supplementary
Table S2.

Identification of Prognostic FRGs and
Functional Analysis
The FRGs were obtained from the FerrDb online database (http://
www.zhounan.org/ferrdb) (Zhou and Bao, 2020). After merging
with LGG transcripts of three cohorts, the univariate Cox
regression analysis was used to screen for prognostic FRGs
from TCGA, CGGA, and Rembrandt datasets (Supplementary
Tables S3–S5). Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) analyses of the intersecting
prognostic FRGs were performed using Metascape (https://
metascape.org/gp/index.html#/main/step1) (Zhou et al., 2019).

Classification of Molecular Subtypes by
Consistent Clustering
Based on the intersecting prognostic FRGs, the
‘ConsensusClusterPlus’ package in R was utilized for the
consistent clustering to determine ferroptosis subtypes of
LGG patients from TCGA, CGGA, and Rembrandt datasets.
The k-value (ranging from 2– 9) was used for determining the
best cluster number. The overall survival (OS) analysis among
different clusters was calculated using the Kaplan–Meier
method.

Evaluation of Immune Infiltration in the TME
The immune-stromal component of the TME for each sample
was calculated with the ESTIMATE algorithm (Yoshihara
et al., 2013), which is commonly represented as three kinds
of scores named ImmuneScore, StromalScore, and
ESTIMATEScore. Using the single-sample gene set
enrichment analysis (ssGSEA), the relative infiltration of 28
immune cells in TME and the activity levels of typical
biological pathways in individual samples were calculated.
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The anti-tumor immune response can be described as a
sequence of gradual procedures, including the release of cancer
cell antigens (Step 1), cancer antigen presentation (Step 2),
priming and activation (Step 3), trafficking of immune cells to
tumors (Step 4), infiltration of immune cells into tumors (Step
5), recognition of cancer cells by T cells (Step 6), and killing of
cancer cells (Step 7). In this research, we explored the
connection between ferroptosis subtypes and anti-tumor
immune response. The anti-tumor activity score of each
sample in TCGA was obtained from Tumor
Immunophenotype Profiling (TIP, http://biocc.hrbmu.edu.
cn/TIP/index.jsp) (Xu et al., 2018).

Mutational Signature Analyses
The tumor mutation burden (TMB) was defined as the total
number of somatic mutations per megabase in tumor tissue.
Much like the immunosuppressive microenvironment, TMB is
also critical in anti-tumor immunotherapy. Therefore, we
calculated the TMB of each sample in LGG based on TCGA
mutation data. The R package ‘maftools’ was used to process
and present the mutation data (Mayakonda et al., 2018).

Identification and Validation of the
Prognostic Model
According to the intersecting prognostic FRGs, we identified
the differentially expressed FRGs (DE-FRGs) with adjusted
p-value < 0.05 between cluster-1 and cluster-3 using the
‘limma’ package in R. We further applied the ‘glmnet’
package in R to perform the least absolute shrinkage and
selection operator (LASSO) regression analysis for
narrowing the range of genes those were upregulated in
DE-FRGs. Then, the risk score for each sample can be
calculated using the following formula.

riskScore � ∑
n

i�1
Coef(Xi)p Exp(Xi).

In the formula, Coef (Xi) represents the coefficient of each
FRG, and Exp (Xi) stands for the gene expression levels of those
FRGs. The patients were divided into low- and high-risk groups
according to the median risk score. The risk score of patients from
CGGA and Rembrandt datasets can also be calculated to validate
the efficacy of the prognostic model.

The Kaplan–Meier method was used to draw survival curves.
Meanwhile, the area under the curves (AUCs) of receiver operating
characteristic (ROC) curves was calculated to evaluate the predictive
ability of 1, 3, and 5 years of survival. To explore whether the
prognostic model could be used as an independent factor of OS in
LGG, univariate and multivariate Cox regression analyses were
performed. Next, combining all independent prognostic factors
from the previous step, the nomogram was built using the R
package ‘rms’. The calibration curve was used to evaluate the
accuracy of the nomogram.

Prediction of Chemotherapeutic and
Immune Checkpoint Blockade Therapy
Response
Temozolomide is the most commonly used chemotherapeutic in
LGG therapy. Therefore, the chemotherapeutic response of
temozolomide for each patient was predicted by the Genomics
of Drug Sensitivity in Cancer (https://www.cancerrxgene.org/).
The prediction of half-maximal inhibitory concentration (IC50)
values was conducted using the R package ‘pRRophetic’ (Geeleher
et al., 2014).

Tumor immune dysfunction and exclusion (TIDE, http://
tide.dfci.harvard.edu/) is a calculation method based on the
induction of T-cell dysfunction in tumors with high
infiltration of cytotoxic T lymphocytes (CTLs) and the
prevention of T-cell infiltration in tumors with low CTL
levels (Jiang et al., 2018). The subclass mapping method
(SubMap, https://www.genepattern.org/) is an unsupervised
algorithm that reveals common subtypes between
independent datasets (Hoshida et al., 2007). In this study,
the TIDE and SubMap algorithms were used to estimate the
immune checkpoint blockade (ICB) therapy response of LGG
patients.

Gene Set Enrichment Analysis
Gene set enrichment analysis (GSEA) was performed using
GSEA software (v4.0.0) to identify signaling pathways
regulated by the prognostic model. The hallmark gene set
collection is provided by the Molecular Signatures Database
(MSigDB) (http://www.broad.mit.edu/gsea, v7.4). Gene sets
with | NES | > 1 and nominal p-value < 0.05 were
considered significant.

Correlations of the Prognostic Model With
the Autophagy and Hypoxia Score
We retrieved the autophagy-related genes (ARGs) from the
Human Autophagy Database (http://www.autophagy.lu/
autophagy.html). The relationship between ARGs and the
risk score was estimated by the Pearson correlation coefficient.

The hypoxia-related gene set was retrieved from the
MSigDB. To obtain hypoxia scores, the enrichment fraction
of the hypoxia pathway in each sample was quantified by the
ssGSEA algorithm.

Statistical Analysis
R software (v3.6.0) and GraphPad Prism (v9.3.1) were used for
statistical analyses and visualization. The survival differences
of Kaplan–Meier analysis were assessed with the log-rank test
through the ‘survminer’ package in R. Differences among the
inter-group were compared using the Wilcox test. The value of
p < 0.05 was considered statistically significant.
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RESULTS

Identification of the Prognosis-Related
FRGs in LGG
In total, fifty-five intersecting prognostic FRGs were identified by
univariate Cox regression analysis in TCGA, CGGA, and
Rembrandt databases (Figure 1A, Supplementary Table S6).
After that, we performed a functional analysis using Metascape
Online. As shown in Figure 1B, the GO analysis results suggest
that the intersecting prognostic FRGs are enriched in response to
the regulation of autophagy, metal ion, and oxygen levels. The
KEGG pathway analysis revealed that the intersecting prognostic
FRGs were enriched in ferroptosis and autophagy signaling
pathways.

Consensus Clustering Determined
Ferroptosis-Related Clusters of LGG
In this study, we explored the expression levels of fifty-five
intersecting prognostic FRGs to construct consensus clusters.
The ‘ConsensusClusterPlus’ package of R was exploited to
confirm the ideal cluster numbers by calculating the average
cluster consistency and intercluster coefficient variation of each
class number. Ultimately, the consensus matrixes (Figure 2A)
and cumulative distribution function (CDF) curves (Figure 2B)
showed that k = 3 was the stable clustering number of FRGs. The
LGG patients in TCGA dataset were divided into three groups
named cluster-1 (n = 99), cluster-2 (n = 221), and cluster-3 (n =
188). Compared with cluster-2 and cluster-3, the Kaplan–Meier
survival plot showed that patients in cluster-1 had the worst
prognosis (Figure 2C). In addition, we also got three ferroptosis
subtypes in CGGA and Rembrandt databases (Supplementary
Figures S2A,B, S3A,B). Similar to TCGA dataset, the survival
analysis also showed significant differences among different
subtypes in the validating datasets (Supplementary Figures
S2C, S3C). Meanwhile, the heatmap showed clinical and
molecular features and different expression levels of fifty-five
intersecting prognosis FRGs among different clusters in three

datasets (Supplementary Figures 2D, S2D, S3D). Next, we
further analyzed the distribution of various clinical features in
different subgroups of three datasets (Figure 2E). In TCGA
dataset, patients in cluster-1 have a higher proportion of age
>40, WHO III, isocitrate dehydrogenase (IDH) wild type, O6-
methylguanine-DNA methyltransferase promoter (MGMTp)
unmethylated, and 1p19q non-codeletion which corresponds
to the poor prognosis, whereas the cluster-3 patients are lower
in these aforementioned features. Similar to TCGA dataset, the
clinical traits also present marked differences among different
clusters in the CGGA and Rembrandt datasets (Supplementary
Figures S2E, S3E).

The Immune Microenvironment and
Mutational Status in the Subtypes of
Ferroptosis
First, we analyzed the immune scores of the three ferroptosis
subtypes and found that the ImmuneScore, StromalScore, and
ESTIMATEScore were higher in cluster-1 than those of the other
two subtypes (Figure 2F). Subsequently, a correlation between
the immune cell composition and ferroptosis subtypes was
explored. As shown in Figure 2G, cluster-1 has a higher score
of immune cells, followed by cluster-2 and cluster-3. We further
analyzed the enrichment of typical biological processes in
different clusters. The result revealed that cluster-1 was
remarkably enriched in most oncogenic pathways
(Figure 2H). The aforementioned results were also validated
in two validation datasets (Supplementary Figures S2F–H,
S3F–H).

T cell plays a vital role in anti-tumor immunotherapy. We
analyzed the correlations between the ferroptosis subtypes and
the activities of the anti-tumor immune response (Figure 2I). The
anti-tumor activity score of the release of cancer cell antigens
(Step 1) and a large proportion of immune cell recruiting (Step 4)
were significantly higher in cluster-1. The steps of priming and
activation (Step 3), recognition of cancer cells by T cells (Step 6),
and killing of cancer cells (Step 7) were higher in cluster-3.

FIGURE 1 | Identification and functional enrichment analyses of the intersecting FRGs in TCGA, CGGA, and Rembrandt datasets. (A) Venn diagram to identify the
intersecting FRGs from TCGA, CGGA, and Rembrandt datasets. (B) GO and KEGG analyses of the intersecting FRGs.
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FIGURE 2 | Differential clinicopathological features and immune landscape of LGG among different clusters in TCGA dataset. (A) Consensus clustering matrix for
k = 3. (B) Cumulative distribution function curves for k = 2–9. (C) Kaplan–Meier curve of overall survival among three clusters. (D) Heatmap and clinicopathological
features of the three clusters. (E) Proportion of clinical characteristics in three clusters. (F–I) Distribution of ImmuneScore (F), 28 immune cells (G), typical biological
pathways (H), and activity score of the anti-tumor immune response (I) across the three ferroptosis subtypes. The horizontal line of the box plot represents the
median values (*p < 0.05, **p < 0.01, ***p < 0.001; ns, non-significant).
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However, cluster-2 has a higher score in the fraction of immune
cell recruiting (Step 4) and infiltration of immune cells into
tumors (Step 5). In addition, there is no significant difference
in cancer antigen presentation (Step 2) among the three
subgroups.

Although high TMB is closely associated with a poor
prognosis of glioma, it is also associated with better
responses to immunotherapy (Bouffet et al., 2016; Touat
et al., 2020; Yin et al., 2020). In this research, we calculated
TMB scores for each sample with mutations in TCGA database
to compare the differences between various clusters. The TMB
level of cluster-1 is higher than that of others. However, there is
no significant difference between cluster-2 and cluster-3
(Figure 3A). Meanwhile, we found that there is a significant
correlation between TMB and prognosis in LGG patients
(Figure 3B). Furthermore, among these three ferroptosis
subtypes, cluster-2 had the highest mutation rate (96.63%),
followed by cluster-3 (95.92%) and cluster-1 (83.52%).
Previous studies have reported that IDH1 and IDH2
mutations were closely related to the prognosis of glioma
patients (Yan et al., 2009). In this study, we noticed that the
IDH mutation in cluster-3 (86% IDH1 and 9% IDH2) is higher
than that in cluster-1 (22% IDH1) and cluster-2 (93% IDH1),
indicating the vital role of IDH mutation in LGG patients
(Figures 3C–E).

Construction and Validation of the
Prognostic Model Based on FRGs
There were 49 DE-FRGs obtained from cluster-1 and cluster-3,
including 41 upregulated, and 8 downregulated (Figure 4A).

Taking advantage of the upregulated DE-FRGs, we
constructed a new ferroptosis-related prognostic model
according to the LASSO regression with the optimal lambda
value (Figures 4B,C). The calculated coefficient of the nine
FRGs is shown in Supplementary Table S7. According to the
median cut-off value, the model categorized the patients into
low- and high-risk groups. The Kaplan–Meier survival curve in
TCGA databases indicated that patients in the high-risk group
were associated with worse outcomes (Figure 4D). The
distribution plot of the risk score and survival status
showed that the risk score was strongly positively correlated
with the death of LGG patients (Figure 4G). The AUC values
of the prognostic model for FRGs were 0.907 (1-year), 0.902
(2-year), and 0.835 (5-year), which exhibited a remarkable
predictive performance (Figure 5J).

We validated the applicability of the prognostic model in
the CGGA and Rembrandt datasets. Similarly, patients in the
low-risk group had better prognosis (Figures 4E,F,H,I). The
AUC values for 1-year, 2-year, and 5-year survival in the
CGGA dataset were 0.688, 0.731, and 0.726, respectively
(Figure 4K). The AUC values in the Rembrandt dataset
were 0.706, 0.793, and 0.762, respectively (Figure 4L). All
the results prove that our prognostic model reveals favorable
specificity and sensitivity.

In addition, we performed subgroup analyses according to
age, gender, grade, IDH_status, 1p19q_status, and
MGMTp_status in CGGA and TCGA datasets. Patients in
the high-risk group were predicted with a worse prognosis in
all subgroups (Figures 5A–L, and Supplementary Figures
S4A–L). It is prompted that the prognostics model is better
clinically applicable.

FIGURE 3 | Correlations between the ferroptosis subtypes and somatic variants in TCGA dataset. (A) Differences in TMB levels among different ferroptosis
subtypes. (B)Correlation between TMB and prognosis in LGG patients. (C-E) Distribution of the top ten variants of mutated genes among different ferroptosis subtypes.
The horizontal line of the box plot represented the median values (*p < 0.05, **p < 0.01, ***p < 0.001; ns, non-significant).
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FIGURE 4 | Construction and validation of the prognostic model. (A) Volcano plot of DEGs between cluster-1 and cluster-3; red indicates downregulated genes,
and green indicates upregulated genes. (B) LASSO coefficient profiles of the 41 upregulated DE-FRGs in TCGA dataset. (C) Cross-validation for tuning the parameter
selection in the LASSO analysis. (D–F) Kaplan–Meier curves for survival in the TCGA, CGGA, and Rembrandt datasets. (G–I) Distribution plots of the risk score and
survival status in the TCGA, CGGA, and Rembrandt datasets. (J–L) ROC curve analyses for predicting 1-, 3-, and 5-year OS in the TCGA, CGGA, and Rembrandt
datasets.
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Construction and Validation of a Prognostic
Nomogram
To evaluate whether the risk scores can be applied as an
independent prognostic biomarker, univariate and multivariate
Cox regression analyses were performed in TCGA, CGGA, and
Rembrandt datasets (Figures 6A–C). The results suggest that the
risk score was always an independent prognostic factor in both
univariate and multivariate Cox regression analyses. Meanwhile,
we constructed a nomogram with the independent prognostic
parameters for the OS in TCGA and CGGA datasets (Figures 6D,
Supplementary Figure S5A). Meanwhile, the calibration plot
showed that the predicted power was similar to the actual
observations (Figures 6E, Supplementary Figure S5B).

The Immune Microenvironment and
Mutational Status in Distinct Risk Groups
We further evaluated the difference in immune scores,
immune cell composition, and typical biological processes
between the two risk groups in TCGA dataset. As the
results reflected, the immune scores and the majority of the
immune cell composition were higher in the high-risk group

(Figures 7A,B). Meanwhile, it is not surprising that most
oncogenic pathways were enriched in the high-risk group
compared with the low-risk group (Figure 7C). The same
results were confirmed in the CGGA and the Rembrandt
datasets (Supplementary Figures S6A–F).

We next analyzed the differences in somatic mutation among
the two risk groups in TCGA dataset. As shown in Figure 7D,
there was a significant difference in TMB levels between the high-
and low-risk groups. The risk score was positively correlated to
the level of the TMB (Figure 7E). Moreover, patients in the high-
risk group have a higher mutation rate than those in the low-risk
group (Figures 7F,G).

Sensitivity to Chemotherapies and ICB
Therapy in Distinct Risk Groups
To further study and characterize drug responses of
temozolomide in LGG patients, we assessed differences in
drug sensitivity between the high- and low-risk groups by
analyzing the IC50 of temozolomide. We found that in TCGA,
CGGA, and Rembrandt datasets, patients in the high-risk
group were more sensitive to temozolomide (Figures 8A–C).

FIGURE 5 | Kaplan–Meier survival curves for the low- and high-risk groups stratified by clinicopathological variables in TCGA dataset. (A,B) Age. (C,D) Gender.
(E,F) WHO grade. (G,H) IDH_status. (I,J) 1p19q_status. (K,L) MGMTp_status.
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Immune checkpoint blockades that target CTLA-4 and PD-1/
PD-L1 have shown some promise against glioma (Saha et al.,
2017; Zhao et al., 2019), but only a fraction of patients respond to
treatment. According to the TIDE and SubMap algorithms, the
expression profiles of TCGA, CGGA, and Rembrandt datasets
were compared with a published dataset containing 47 melanoma
patients who responded to immunotherapy. We found that
treatment with PD-1 showed better results in the high-risk
group (Bonferroni correction p < 0.05) (Figures 8D–F).

Functional Analysis of the Prognostic Model
We further verified the different functional phenotypes involved
in the high- and low-risk groups via GSEA. The finding disclosed
that several pathways, such as angiogenesis,
epithelial–mesenchymal transition, hypoxia, and glycolysis,
were significantly activated in the high-risk group (Figure 9A).
These findings were further validated in the CGGA and
Rembrandt datasets (Figures 9B,C).

Identification of the Hypoxia Correlation
With the Ferroptosis-Related Prognostic
Model
Our previous study found that the intersecting FRGs were
correlated to biological processes of oxygen metabolism
through GO and KEGG analyses. First, the Pearson
correlation coefficient was taken advantage of evaluating the
connection between ARGs and the risk score of the prognostic
model. Among the 210 ARGs, a total of 175 (83.3%) ARGs
were significantly correlated with risk scores, of which 126
were positively correlated, and 49 were negatively correlated
(Supplementary Table S8). The top 10 ARGs positively
correlated (CASP8, CASP4, WIPI1, CASP3, CFLAR, DIRAS3,
P4HB, SH3GLB1, CASP1, and HSPA5) with the risk score and
the top 10 negative relationships (BID, GRID1, MAPK8,
PEA15, SAR1A, EEF2, ST13, SIRT1, TSC1, and BAG1) with
the risk score are shown in Figures 10A, B.

FIGURE 6 | Development of a nomogram by integrating the risk score and clinicopathological characters in the TCGA cohort. (A–C) Univariate analysis and
multivariate analysis containing risk score and clinical factors in TCGA (A), CGGA (B), and Rembrandt (C) datasets. (D)Nomogram constructed to predict OS rates at 1,
3, and 5 years. (E) Calibration curves predicted 1-, 3-, and 5-year survival.
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Afterward, the hypoxia enrichment score of each patient
was calculated. As shown in Figure 11A, patients in the high-
risk group had a higher hypoxia score. The risk score was
positively correlated to the hypoxia score (Figure 11B).
Afterward, the patients were divided into two groups by the
median of hypoxia scores. The Kaplan-Meier survival curves
performed an unfavorable prognosis of the high hypoxia score
patients (Figure 11C). Figure 11D shows that a low-risk score
combined with a low hypoxia score group performed better
outcomes compared with the other groups.

DISCUSSION

LGGs are a fatal, invading, and heterogeneous group of tumors
and usually results in progressive neurological disability and
adverse clinical outcomes (Hayhurst, 2017). Different from
necrosis, apoptosis, autophagy, and pyroptosis, ferroptosis is a
new type of regulated cell death (Dixon et al., 2015), which is
closely related to glioma tumorigenesis, progression, and
tumor microenvironment (Xu et al., 2021). Therefore, the
effective prognostic biomarkers relying on the FRGs will
benefit the clinical treatment of patients with LGG.

FIGURE 7 | Immune microenvironment, biological process characteristics, and prediction of chemotherapeutic response among distinct risk groups. (A–D)
Distribution of ImmuneScore (A), 28 immune cells (B), typical biological pathways (C), and TMB levels (D) between the high- and low-risk groups in TCGA dataset. (E)
Correlation between TMB and risk score in LGG patients. (F,G)Mutation rates of top 10 mutated genes in low- and high-risk groups. The horizontal line of the box plot
represents the median values (*p < 0.05, **p < 0.01, ***p < 0.001; ns, non-significant).
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The present study commits to detecting the correlation
between the ferroptosis subtypes and the ferroptosis-related
prognostic model and the immune microenvironment.
Ulteriorly, we identified potential biomarkers for prognosis
prediction and target therapy. According to the prognostic
FRGs, the LGG patients were initially sorted into three
ferroptosis states, which exhibited different outcomes,
clinicopathological features, immune landscape, and
biological processes. Later on, we constructed an FRG-based
prognostic model associated with LGG patients. Our results
revealed that the prognostic model performed a predictive
performance with satisfactory sensitivity and specificity.
Meanwhile, the prognosis of LGG was affected by the
model which was an independent factor. We also studied
the immune microenvironment, chemotherapies, and ICB
therapy between different risk groups. All the
aforementioned results in the validating datasets were
verified. Furthermore, the relationship between the
prognostic model and autophagy as well as hypoxia was
explored.

The immune microenvironment has a great effect on tumor
proliferation and molecular heterogeneity (Barthel et al.,
2021). In this study, the immune microenvironment of each
cluster in TCGA dataset was first evaluated. We found that the
immune score and immune cell infiltration in cluster-1 were
higher than those in the others. However, the result of cancer
immunity cycles showed that the anti-tumor activities of

priming and activation (Step 3), recognition of cancer cells
by T cells (Step 6), and killing of cancer cells (Step 7) in cluster-
1 are lower. Meanwhile, the biological processes including
stromal activation (EMT, Pan−F−TBRS) and immune
activation (CD8 T effector, antigen processing machinery,
and immune checkpoint) pathways in cluster-1 were higher
than those in the other two clusters. Considering that glioma is
characterized by a ‘cold’ tumor (Jackson et al., 2019), we
deduce that the reason for the patients’ poor outcomes in
cluster-1 probably derived from the deficiency of ‘effective
T cells’ which affect the immunosuppression
microenvironment. We also discovered that cluster-1 with a
higher TMB level suggested that patients may gain a positive
efficacy from immunotherapy. Although patients in cluster-1
have the highest TMB level, the mutation rate is lower than
that in other clusters. Research findings show that IDH
mutation has a significant correlation to the prognosis of
glioma (Hartmann et al., 2010; Turkalp et al., 2014; Eckel-
Passow et al., 2015). In this study, patients in cluster-3 have the
highest IDH mutation rate among the three clusters,
corresponding to better outcomes. Interestingly, as a potent
tumor suppressor, CIC mutation merely occurred in the top 10
mutated genes of cluster-2 (6%) and cluster-3 (46%) (Wong
and Yip, 2020). Similarly, PTEN mutation, which results in the
loss of tumor-suppressive function in LGG (Endersby and
Baker, 2008), exclusively appeared in the top 10 mutated genes
of cluster-1.

FIGURE 8 | Chemotherapeutics and ICB therapy responses in high- and low-risk groups with LGG. Drug sensitivity of temozolomide in TCGA (A), CGGA (B), and
Rembrandt (C) datasets. ICB therapy responses to anti-PD1 and anti-CTLA4 treatments of LGG in TCGA (D), CGGA (E), and Rembrandt (F) datasets. The horizontal
line of the box plot represents the median values (*p < 0.05, **p < 0.01, ***p < 0.001; ns, non-significant).
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For the convenience of the calculation of the TME landscapes
in individuals, we evaluated the immune microenvironment
among the different risk groups. Similar to the aforementioned
results, anti-tumor immune responses are both activated and
suppressed in the high-risk group. GSEA revealed that the
regulation of “angiogenesis,” “epithelial–mesenchymal
transition,” “hypoxia,” and “glycolysis” was enriched in the
high-risk group. It indicates that the high-risk group was
bound up with the process of tumor proliferation.

Chemotherapy and ICB therapy are crucial adjunctive
therapies for glioma. Temozolomide is the first-line drug for
glioma treatment. As expected, the patients in the high-risk group
are more sensitive to temozolomide therapy than those in the
low-risk group. In addition, patients in the high-risk group have a
better response to anti-PD-1 therapy. The result is consistent with
our findings.

Autophagy is a conserved, self-degradation pathway that is
critical for survival, differentiation, development, and

homeostasis (Levine and Kroemer, 2008; Onorati et al., 2018).
Although ferroptosis is distinct from other types of regulated cell
death, activation of autophagy is necessary for the induction of
ferroptosis under given conditions (Kang and Tang, 2017; Liu
et al., 2020). In this study, according to GO and KEGG analyses,
we first verified that the prognostic model has a significant
correlation with most ARGs. Studies have proved that hypoxia
can promote cell proliferation in tumors and the progression of
tumor conversion to the malignant phenotype (Sun et al., 2021).
Meanwhile, hypoxia can also protect macrophages from
ferroptosis (Fuhrmann et al., 2020). We subsequently explored
the relationship between the prognostic model and the hypoxia
score. The results revealed that the prediction ability significantly
improved with a combination of the risk score and hypoxia score.
The aforementioned results contribute a new insight into the
multitargeted therapy in LGG.

However, some limitations in this study should be
considered. First, as a validating dataset, it had a lack of

FIGURE 9 | GSEA comparisons of the low- and high-risk groups. (A–C) Common functional gene sets enriched in the high-risk group compared to the low-risk
group in TCGA (A), CGGA (B), and Rembrandt (C) datasets.
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corresponding clinicopathological data in the Rembrandt
database. Second, this study is based on bioinformatics
analysis, and the experimental verification is needed in the
future. Last, the transformation of the basic scientific advances
into efficient therapeutics should be explored, which will be a
formidable challenge.

CONCLUSION

According to the prognostic FRGs from the three datasets, we
clustered LGG patients into three subgroups which exhibited
different outcomes, clinicopathological features, immune
landscape, and biological processes. Subsequently, a novel

FIGURE 10 |Correlations between the ferroptosis-related prognostic model and ARGs in TCGA dataset. (A) Top ten ARGs positively correlated with the risk score.
(B) Top ten ARGs negatively correlated with the risk score.
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clinically applicable ferroptosis-related prognostic model was
constructed to benefit individualized prediction of diagnosis,
treatment, prognosis, and recurrence. Moreover, our study has
provided several novel insights into the connection between
ferroptosis and the immunosuppressive microenvironment in
LGG, which may be beneficial in individualized treatment
strategies.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

XY, JYD, and SH conceived and designed the study and drafted
the manuscript. HJ, JWD, and JZ provided analytical technical
support. XY, ZL, and HZ participated in the production of
charts and pictures. All authors have read and approved the

final manuscript. All authors contributed to the article and
approved the submitted version.

FUNDING

This work was funded by the National Natural Science
Foundation of China (No. 61575058).

ACKNOWLEDGMENTS

We all authors sincerely acknowledge the contributions from
TCGA, CGGA, and Rembrandt databases for offering convenient
access to datasets. In addition, we thank Dr. Siwen Wang for the
help in statistics and encouragement.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2022.880864/
full#supplementary-material

FIGURE 11 | Hypoxia score analysis. (A) Hypoxia scores between high- and low-risk groups. (B) Correlation between the hypoxia score and risk score in LGG
patients. (C) Kaplan-Meier survival curves of OC patients with high or low hypoxia score. (D) Kaplan-Meier survival curves of four subgroups based on the risk score and
hypoxia score.

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 88086414

Yan et al. Characterization of FRGs in LGG

https://www.frontiersin.org/articles/10.3389/fgene.2022.880864/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.880864/full#supplementary-material
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


REFERENCES

Barthel, L., Hadamitzky, M., Dammann, P., Schedlowski, M., Sure, U., Thakur, B.
K., et al. (2021). Glioma: Molecular Signature and Crossroads with Tumor
Microenvironment. Cancer Metastasis Rev. 41, 53–75. doi:10.1007/s10555-021-
09997-9

Bouffet, E., Larouche, V., Campbell, B. B., Merico, D., de Borja, R., Aronson, M.,
et al. (2016). Immune Checkpoint Inhibition for Hypermutant Glioblastoma
Multiforme Resulting from Germline Biallelic Mismatch Repair Deficiency.
J. Clin. Oncol. 34, 2206–2211. doi:10.1200/jco.2016.66.6552

Bready, D., and Placantonakis, D. G. (2019). Molecular Pathogenesis of Low-Grade
Glioma. Neurosurg. Clin. North America 30, 17–25. doi:10.1016/j.nec.2018.
08.011

Chen, Y., Li, L., Lan, J., Cui, Y., Rao, X., Zhao, J., et al. (2022). CRISPR Screens
Uncover Protective Effect of PSTK as a Regulator of Chemotherapy-Induced
Ferroptosis in Hepatocellular Carcinoma. Mol. Cancer 21, 11. doi:10.1186/
s12943-021-01466-9

Dixon, S. J., Lemberg, K. M., Lamprecht, M. R., Skouta, R., Zaitsev, E. M., Gleason,
C. E., et al. (2012). Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell
Death. Cell 149, 1060–1072. doi:10.1016/j.cell.2012.03.042

Dixon, S. J., Winter, G. E., Musavi, L. S., Lee, E. D., Snijder, B., Rebsamen, M., et al.
(2015). Human Haploid Cell Genetics Reveals Roles for Lipid Metabolism
Genes in Nonapoptotic Cell Death. ACS Chem. Biol. 10, 1604–1609. doi:10.
1021/acschembio.5b00245

Du, Y., Zhao, H.-C., Zhu, H.-C., Jin, Y., and Wang, L. (2021). Ferroptosis Is
Involved in the Anti-Tumor Effect of Lycorine in Renal Cell Carcinoma Cells.
Oncol. Lett. 22, 781. doi:10.3892/ol.2021.13042

Eckel-Passow, J. E., Lachance, D. H., Molinaro, A. M., Walsh, K. M., Decker, P. A.,
Sicotte, H., et al. (2015). Glioma Groups Based on 1p/19q, IDH, and TERT
Promoter Mutations in Tumors. N. Engl. J. Med. 372, 2499–2508. doi:10.1056/
NEJMoa1407279

Endersby, R., and Baker, S. J. (2008). PTEN Signaling in Brain:
Neuropathology and Tumorigenesis. Oncogene 27, 5416–5430. doi:10.
1038/onc.2008.239

Friedman, A. A., Letai, A., Fisher, D. E., and Flaherty, K. T. (2015). Precision
Medicine for Cancer with Next-Generation Functional Diagnostics. Nat. Rev.
Cancer 15, 747–756. doi:10.1038/nrc4015

Fuhrmann, D. C., Mondorf, A., Beifuß, J., Jung, M., and Brüne, B. (2020). Hypoxia
Inhibits Ferritinophagy, Increases Mitochondrial Ferritin, and Protects from
Ferroptosis. Redox Biol. 36, 101670. doi:10.1016/j.redox.2020.101670

Geeleher, P., Cox, N., and Huang, R. S. (2014). pRRophetic: An R Package for
Prediction of Clinical Chemotherapeutic Response from Tumor Gene
Expression Levels. PloS one 9, e107468. doi:10.1371/journal.pone.0107468

Hartmann, C., Hentschel, B., Wick, W., Capper, D., Felsberg, J., Simon, M., et al.
(2010). Patients with IDH1Wild Type Anaplastic Astrocytomas Exhibit Worse
Prognosis Than IDH1-Mutated Glioblastomas, and IDH1 Mutation Status
Accounts for the Unfavorable Prognostic Effect of Higher Age: Implications for
Classification of Gliomas.Acta Neuropathol. 120, 707–718. doi:10.1007/s00401-
010-0781-z

Hayhurst, C. (2017). Contemporary Management of Low-Ggrade Glioma: A
Paradigm Shift in Neuro-Oncology. Pract. Neurol. 17, 183–190. doi:10.1136/
practneurol-2017-001604

Hoshida, Y., Brunet, J.-P., Tamayo, P., Golub, T. R., and Mesirov, J. P. (2007).
Subclass Mapping: Identifying Common Subtypes in Independent Disease Data
Sets. PloS one 2, e1195. doi:10.1371/journal.pone.0001195

Jackson, C. M., Choi, J., and Lim, M. (2019). Mechanisms of Immunotherapy
Resistance: Lessons from Glioblastoma. Nat. Immunol. 20, 1100–1109. doi:10.
1038/s41590-019-0433-y

Jiang, P., Gu, S., Pan, D., Fu, J., Sahu, A., Hu, X., et al. (2018). Signatures of T Cell
Dysfunction and Exclusion Predict Cancer Immunotherapy Response. Nat.
Med. 24, 1550–1558. doi:10.1038/s41591-018-0136-1

Kang, R., and Tang, D. (2017). Autophagy and Ferroptosis-What Is the
Connection? Curr. Pathobiol Rep. 5, 153–159. doi:10.1007/s40139-017-0139-5

Levine, B., and Kroemer, G. (2008). Autophagy in the Pathogenesis of Disease. Cell
132, 27–42. doi:10.1016/j.cell.2007.12.018

Li, H.-W., Liu, M.-B., Jiang, X., Song, T., Feng, S.-X., Wu, J.-Y., et al. (2022).
GALNT14 Regulates Ferroptosis and Apoptosis of Ovarian Cancer through

the EGFR/mTOR Pathway. Future Oncol. 18, 149–161. doi:10.2217/fon-
2021-0883

Li, H., and Liu, L. (2022). Zinc Moderates Circular RNA CircFOXP1 Expression in
Order to Regulate Ferroptosis during Lung Adenocarcinoma. Chemico-
Biological Interactions 352, 109760. doi:10.1016/j.cbi.2021.109760

Li, H., Yang, P., Wang, J., Zhang, J., Ma, Q., Jiang, Y., et al. (2022). HLF Regulates
Ferroptosis, Development and Chemoresistance of Triple-Negative Breast
Cancer by Activating Tumor Cell-Macrophage Crosstalk. J. Hematol. Oncol.
15, 2. doi:10.1186/s13045-021-01223-x

Liu, J., Kuang, F., Kroemer, G., Klionsky, D. J., Kang, R., and Tang, D. (2020).
Autophagy-Dependent Ferroptosis: Machinery and Regulation. Cel Chem. Biol.
27, 420–435. doi:10.1016/j.chembiol.2020.02.005

Liu, S., Wu, W., Chen, Q., Zheng, Z., Jiang, X., Xue, Y., et al. (2021). TXNRD1: A
Key Regulator Involved in the Ferroptosis of CML Cells Induced by Cysteine
Depletion In Vitro. Oxidative Med. Cell. longevity 2021, 7674565. doi:10.1155/
2021/7674565

Louis, D. N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D.,
Cavenee, W. K., et al. (2016). The 2016 World Health Organization
Classification of Tumors of the Central Nervous System: A Summary. Acta
Neuropathol. 131, 803–820. doi:10.1007/s00401-016-1545-1

Lu, T., Zhang, Z., Pan, X., Zhang, J., Wang, X., Wang, M., et al. (2021). Caveolin-1
Promotes Cancer Progression via Inhibiting Ferroptosis in Head and Neck
Squamous Cell Carcinoma. J. Oral Pathol. Med. 51, 52–62. doi:10.1111/jop.
13267

Mayakonda, A., Lin, D.-C., Assenov, Y., Plass, C., and Koeffler, H. P. (2018).
Maftools: Efficient and Comprehensive Analysis of Somatic Variants in Cancer.
Genome Res. 28, 1747–1756. doi:10.1101/gr.239244.118

Mou, Y., Zhang, L., Liu, Z., and Song, X. (2022). Abundant Expression of
Ferroptosis-Related SAT1 Is Related to Unfavorable Outcome and Immune
Cell Infiltration in Low-Grade Glioma. BMC cancer 22, 215. doi:10.1186/
s12885-022-09313-w

Onorati, A. V., Dyczynski, M., Ojha, R., and Amaravadi, R. K. (2018). Targeting
Autophagy in Cancer. Cancer 124, 3307–3318. doi:10.1002/cncr.31335

Ostrom, Q. T., Gittleman, H., Xu, J., Kromer, C., Wolinsky, Y., Kruchko, C., et al.
(2016). CBTRUS Statistical Report: Primary Brain and Other Central Nervous
System Tumors Diagnosed in the United States in 2009-2013. Neuro-oncology
18, v1–v75. doi:10.1093/neuonc/now207

Saha, D., Martuza, R. L., and Rabkin, S. D. (2017). Macrophage Polarization
Contributes to Glioblastoma Eradication by Combination Immunovirotherapy
and Immune Checkpoint Blockade. Cancer cell 32, 253–267. doi:10.1016/j.ccell.
2017.07.006

Sanai, N., Chang, S., and Berger, M. S. (2011). Low-Grade Gliomas in Adults.
J Neurosurg. 115, 948–965. doi:10.3171/2011.7.Jns101238

Semmel, D., Ware, C., Kim, J. Y., and Peters, K. B. (2018). Evidence-Based
Treatment for Low-Grade Glioma. Semin. Oncol. Nurs. 34, 465–471. doi:10.
1016/j.soncn.2018.10.008

Sun, X., Zhou, Z., Zhang, Y., Wang, J., Zhao, X., Jin, L., et al. (2021). Identification
and Validation of a Hypoxia-Related Prognostic and Immune
Microenvironment Signature in Bladder Cancer. Cancer Cel Int 21, 251.
doi:10.1186/s12935-021-01954-4

Touat, M., Li, Y. Y., Boynton, A. N., Spurr, L. F., Iorgulescu, J. B., Bohrson, C. L.,
et al. (2020). Mechanisms and Therapeutic Implications of Hypermutation in
Gliomas. Nature 580, 517–523. doi:10.1038/s41586-020-2209-9

Turkalp, Z., Karamchandani, J., and Das, S. (2014). IDHMutation in Glioma: New
Insights and Promises for the Future. JAMA Neurol. 71, 1319–1325. doi:10.
1001/jamaneurol.2014.1205

Ursini, F., and Maiorino, M. (2020). Lipid Peroxidation and Ferroptosis: The Role
of GSH and GPx4. Free Radic. Biol. Med. 152, 175–185. doi:10.1016/j.
freeradbiomed.2020.02.027

Wong, D., and Yip, S. (2020). Making Heads or Tails - The Emergence of Capicua
(CIC) as an Important Multifunctional Tumour Suppressor. J. Pathol. 250,
532–540. doi:10.1002/path.5400

Xu, L., Deng, C., Pang, B., Zhang, X., Liu, W., Liao, G., et al. (2018). TIP: A Web
Server for Resolving Tumor Immunophenotype Profiling. Cancer Res. 78,
6575–6580. doi:10.1158/0008-5472.Can-18-0689

Xu, S., Wang, Z., Ye, J., Mei, S., and Zhang, J. (2021). Identification of Iron
Metabolism-Related Genes as Prognostic Indicators for Lower-Grade Glioma.
Front. Oncol. 11, 729103. doi:10.3389/fonc.2021.729103

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 88086415

Yan et al. Characterization of FRGs in LGG

https://doi.org/10.1007/s10555-021-09997-9
https://doi.org/10.1007/s10555-021-09997-9
https://doi.org/10.1200/jco.2016.66.6552
https://doi.org/10.1016/j.nec.2018.08.011
https://doi.org/10.1016/j.nec.2018.08.011
https://doi.org/10.1186/s12943-021-01466-9
https://doi.org/10.1186/s12943-021-01466-9
https://doi.org/10.1016/j.cell.2012.03.042
https://doi.org/10.1021/acschembio.5b00245
https://doi.org/10.1021/acschembio.5b00245
https://doi.org/10.3892/ol.2021.13042
https://doi.org/10.1056/NEJMoa1407279
https://doi.org/10.1056/NEJMoa1407279
https://doi.org/10.1038/onc.2008.239
https://doi.org/10.1038/onc.2008.239
https://doi.org/10.1038/nrc4015
https://doi.org/10.1016/j.redox.2020.101670
https://doi.org/10.1371/journal.pone.0107468
https://doi.org/10.1007/s00401-010-0781-z
https://doi.org/10.1007/s00401-010-0781-z
https://doi.org/10.1136/practneurol-2017-001604
https://doi.org/10.1136/practneurol-2017-001604
https://doi.org/10.1371/journal.pone.0001195
https://doi.org/10.1038/s41590-019-0433-y
https://doi.org/10.1038/s41590-019-0433-y
https://doi.org/10.1038/s41591-018-0136-1
https://doi.org/10.1007/s40139-017-0139-5
https://doi.org/10.1016/j.cell.2007.12.018
https://doi.org/10.2217/fon-2021-0883
https://doi.org/10.2217/fon-2021-0883
https://doi.org/10.1016/j.cbi.2021.109760
https://doi.org/10.1186/s13045-021-01223-x
https://doi.org/10.1016/j.chembiol.2020.02.005
https://doi.org/10.1155/2021/7674565
https://doi.org/10.1155/2021/7674565
https://doi.org/10.1007/s00401-016-1545-1
https://doi.org/10.1111/jop.13267
https://doi.org/10.1111/jop.13267
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1186/s12885-022-09313-w
https://doi.org/10.1186/s12885-022-09313-w
https://doi.org/10.1002/cncr.31335
https://doi.org/10.1093/neuonc/now207
https://doi.org/10.1016/j.ccell.2017.07.006
https://doi.org/10.1016/j.ccell.2017.07.006
https://doi.org/10.3171/2011.7.Jns101238
https://doi.org/10.1016/j.soncn.2018.10.008
https://doi.org/10.1016/j.soncn.2018.10.008
https://doi.org/10.1186/s12935-021-01954-4
https://doi.org/10.1038/s41586-020-2209-9
https://doi.org/10.1001/jamaneurol.2014.1205
https://doi.org/10.1001/jamaneurol.2014.1205
https://doi.org/10.1016/j.freeradbiomed.2020.02.027
https://doi.org/10.1016/j.freeradbiomed.2020.02.027
https://doi.org/10.1002/path.5400
https://doi.org/10.1158/0008-5472.Can-18-0689
https://doi.org/10.3389/fonc.2021.729103
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Yan, H., Parsons, D. W., Jin, G., McLendon, R., Rasheed, B. A., Yuan, W., et al.
(2009). IDH1 and IDH2 Mutations in Gliomas. N. Engl. J. Med. 360, 765–773.
doi:10.1056/NEJMoa0808710

Yin, W., Jiang, X., Tan, J., Xin, Z., Zhou, Q., Zhan, C., et al. (2020). Development
and Validation of a Tumor Mutation Burden-Related Immune Prognostic
Model for Lower-Grade Glioma. Front. Oncol. 10, 1409. doi:10.3389/fonc.2020.
01409

Yoshihara, K., Shahmoradgoli, M., Martínez, E., Vegesna, R., Kim, H., Torres-
Garcia, W., et al. (2013). Inferring Tumour Purity and Stromal and Immune
Cell Admixture from Expression Data. Nat. Commun. 4, 2612. doi:10.1038/
ncomms3612

Zhang, H., Wang, M., He, Y., Deng, T., Liu, R., Wang, W., et al. (2021).
Chemotoxicity-Induced Exosomal lncFERO Regulates Ferroptosis and
Stemness in Gastric Cancer Stem Cells. Cell Death Dis 12, 1116. doi:10.
1038/s41419-021-04406-z

Zhao, J., Chen, A. X., Gartrell, R. D., Silverman, A. M., Aparicio, L., Chu, T., et al.
(2019). Immune and Genomic Correlates of Response to Anti-PD-1
Immunotherapy in Glioblastoma. Nat. Med. 25, 462–469. doi:10.1038/
s41591-019-0349-y

Zhao, J., Liu, Z., Zheng, X., Gao, H., and Li, L. (2021). PrognosticModel andNomogram
Construction Based on a Novel Ferroptosis-Related Gene Signature in Lower-Grade
Glioma. Front. Genet. 12, 753680. doi:10.3389/fgene.2021.753680

Zheng, Y., Ji, Q., Xie, L., Wang, C., Yu, C. N., Wang, Y. L., et al. (2021). Ferroptosis-
Related Gene Signature as a Prognostic Marker for Lower-grade Gliomas. J. Cel
Mol Med 25, 3080–3090. doi:10.1111/jcmm.16368

Zhou, N., and Bao, J. (2020). FerrDb: A Manually Curated Resource for Regulators
and Markers of Ferroptosis and Ferroptosis-Disease Associations. Database :
J. Biol. Databases Curation 2020, baaa021. doi:10.1093/database/baaa021

Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A. H., Tanaseichuk, O.,
et al. (2019). Metascape Provides a Biologist-Oriented Resource for the Analysis
of Systems-Level Datasets. Nat. Commun. 10, 1523. doi:10.1038/s41467-019-
09234-6

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Yan, Ji, Liu, Ma, Dong, Jiang, Hu,Wang, Zhao, Jin, Zhang,Wang,
Du and Hu. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 88086416

Yan et al. Characterization of FRGs in LGG

https://doi.org/10.1056/NEJMoa0808710
https://doi.org/10.3389/fonc.2020.01409
https://doi.org/10.3389/fonc.2020.01409
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1038/s41419-021-04406-z
https://doi.org/10.1038/s41419-021-04406-z
https://doi.org/10.1038/s41591-019-0349-y
https://doi.org/10.1038/s41591-019-0349-y
https://doi.org/10.3389/fgene.2021.753680
https://doi.org/10.1111/jcmm.16368
https://doi.org/10.1093/database/baaa021
https://doi.org/10.1038/s41467-019-09234-6
https://doi.org/10.1038/s41467-019-09234-6
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Characterization of the Ferroptosis-Related Genes for Prognosis and Immune Infiltration in Low-Grade Glioma
	Introduction
	Methods
	Dataset Acquisition
	Identification of Prognostic FRGs and Functional Analysis
	Classification of Molecular Subtypes by Consistent Clustering
	Evaluation of Immune Infiltration in the TME
	Mutational Signature Analyses
	Identification and Validation of the Prognostic Model
	Prediction of Chemotherapeutic and Immune Checkpoint Blockade Therapy Response
	Gene Set Enrichment Analysis
	Correlations of the Prognostic Model With the Autophagy and Hypoxia Score
	Statistical Analysis

	Results
	Identification of the Prognosis-Related FRGs in LGG
	Consensus Clustering Determined Ferroptosis-Related Clusters of LGG
	The Immune Microenvironment and Mutational Status in the Subtypes of Ferroptosis
	Construction and Validation of the Prognostic Model Based on FRGs
	Construction and Validation of a Prognostic Nomogram
	The Immune Microenvironment and Mutational Status in Distinct Risk Groups
	Sensitivity to Chemotherapies and ICB Therapy in Distinct Risk Groups
	Functional Analysis of the Prognostic Model
	Identification of the Hypoxia Correlation With the Ferroptosis-Related Prognostic Model

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


