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Abstract

Defects in the expression of either BAFF (B cell activating factor) or BAFF-R impairs B cell development beyond the
immature, transitional type-1 stage and thus, prevents the formation of follicular and marginal zone B cells, whereas B-1 B
cells remain unaffected. The expression of BAFF-R on all mature B cells might suggest a role for BAFF-R signaling also for
their in vivo maintenance. Here, we show that, 14 days following a single injection of an anti-BAFF-R mAb that prevents
BAFF binding, both follicular and marginal zone B cell numbers are drastically reduced, whereas B-1 cells are not affected.
Injection of control, isotype-matched but non-blocking anti-BAFF-R mAbs does not result in B cell depletion. We also show
that this depletion is neither due to antibody-dependent cellular cytotoxicity nor to complement-mediated lysis. Moreover,
prevention of BAFF binding leads to a decrease in the size of the B cell follicles, an impairment of a T cell dependent
humoral immune response and a reduction in the formation of memory B cells. Collectively, these results establish a central
role for BAFF-BAFF-R signaling in the in vivo survival and maintenance of both follicular and marginal zone B cell pools.
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Introduction

The pool of peripheral B cells is continuously replenished by

newly-formed immature B cells generated in the bone marrow. In

the adult mouse, about 26107 B cells are produced per day [1,2].

Following several steps of antigen-independent differentiation and

depending upon successful rearrangement of the corresponding

genes and expression of the B cell receptor (BCR) protein on their

surface, only about 20% of the newly-generated bone marrow B

cells migrate to the spleen as immature B cells [3–7]. These cells

are characterized by a short half-life of about 2–4 days and upon

further differentiation steps develop into mature, naı̈ve B cells. It

has been shown that upon engagement of their BCR, immature B

cells undergo apoptosis whereas mature B cells, under the same

conditions, are induced to proliferate [3–7]. As for the early stages

in the bone marrow, in the periphery the BCR signal is not the

only requirement for the progression of B cells along their

developmental pathway. The surrounding stromal micro-environ-

ment, the presence of appropriate growth factors, as well as their

ability to respond to them, are all crucial players in the final

maturation steps of developing B cells.

Surface expression of CD93 is a hallmark for immature B cells

and on splenic B cells is a phenotypic characteristic for so called

transitional B cells [3,5]. The latter can be further subdivided

according to the expression of CD21, CD23, IgM and IgD. Thus,

transitional type 1 (T1) cells are CD212 CD232 IgMhigh and

IgDlow, T2 are CD21+ CD23+ IgMhigh and IgDhigh, and T3 are

CD21+ CD23+ IgMlow and IgDhigh cells [3,5,6]. Recently, it has

been suggested that T3 cells, rather than representing an

intermediate in the formation of mature B cells, might identify

an independent pool of anergic B cells [8]. Therefore, only T1 and

T2 cells would represent the immediate precursors of Follicular

and marginal zone B cells, the two major mature splenic B cell

subsets.

BAFF (B cell activating factor), a member of the TNF family (also

termed TALL-1, THANK, BlyS and zTNF4) and BAFF receptor

(BAFF-R) play a fundamental role during the transition from

immature T1 to T2 B cells and therefore for the generation of

mature B cells in the spleen. This was clearly demonstrated by an

almost complete lack of follicular and marginal zone B cells and by a

block at the T1 cell stage in BAFF as well as in BAFF-R deficient

mice [9–13]. In these mice, the B-1 compartment was not affected,

indicating that the development of this subset was independent of

BAFF-BAFF-R signaling. On the other hand, transgenic mice over-

expressing BAFF display an overall increase in all B cell subsets,

suggesting that all mature B cells express BAFF-R on their surface or

are able to respond to BAFF [10,14–16].

The binding of BAFF to the BAFF-R leads to the activation of

the NF-kB pathway and ultimately to the transcription of the anti-

apoptotic factor Bcl-2 [17–19]. The finding that Bcl-2 over-

expression can, to a large extent, rescue the mature B cell

compartment in BAFF signaling deficient mice, indicates that Bcl-

2 expression induced by BAFF is crucial for the survival of B cells

during the transition from immature to mature stages [18].

Since BAFF-R is expressed on all mature peripheral B cells and

its signaling promotes in vitro survival of immature as well as

mature B-2 cells, we hypothesised that BAFF-BAFF-R signaling

was also playing a central role in the in vivo maintenance of the

peripheral mature B cell pool. However, the potential survival role

of BAFF in the mature B cell pool is masked in both BAFF and
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BAFF-R-deficient animals due to the associated developmental

block at the T1 stage. Therefore, to address this question, we

generated a collection of anti BAFF-R mAbs some of which

blocked and others failed to block BAFF binding.

Administration of these blocking antibodies to wild-type mice

resulted in an almost complete depletion of follicular B cells and a

reduction of about 50% in the MZB cell compartment. Non-

blocking antibodies had no, or only minor effects on the mature B

cell pool. Moreover, by using FcRc-deficient or Bcl-2-transgenic

mice, we could show that this depletion was Fc-Receptor (FcR)

and complement independent. Taken together, beyond its

essential role in allowing the developmental progression from

immature T1 cells into T2–T3 and mature B cells, we formally

demonstrate the essential role of the BAFF-BAFF-R signaling in

the long-term survival and homeostasis of mature B-2 and

marginal zone B cells.

Results

Characterization of anti-BAFF-R monoclonal antibodies
A mixture of un-transfected and mouse BAFF-R-expressing Y3

rat myeloma cells was used to screen supernatants of individual

hybridomas generated as described in Materials and Methods. As

shown in figure 1A, BAFF-R expressing Y3 (GFP+) cells but not

control un-transfected cells (GFP-) stained with two of the

generated anti-BAFF-R antibodies, 9B9 and 5A12. After sub-

cloning and re-testing, the supernatants of positively-identified

clones were used to stain the BAFF-R-expressing Abelson

transformed pre-B cell line 40-E1. In total, eleven hybridomas

producing anti-BAFF-R mAbs were obtained and of these, five

were of rat IgG2a and 6 of IgG2b isotype. To evaluate their

blocking capacity, again a mixture of Y3 (GFP2) and BAFF-R

expressing Y3 cells (GFP+) was pre-incubated with these mAbs

and subsequently with a saturating concentration of HA-tagged

BAFF. These experiments were performed using human BAFF,

but similar results were obtained using mouse BAFF. FACS

analysis with an anti-HA mAb then allowed us to determine which

of the generated anti-BAFF-R mAbs blocked BAFF binding. As

depicted in figure 1B, pre-incubation of BAFF-R-expressing Y3

cells with mAbs 5A12 and 9B6 did not affect BAFF binding

whereas, mAbs 9B9 and 5H10 could block BAFF binding. Of the

eleven anti-BAFF-R mAbs generated, five were able to block

BAFF binding.

All BAFF-blocking and non-blocking mAbs were used to reveal

the expression of BAFF-R on ex vivo isolated spleen, lymph-node,

bone marrow, peripheral blood and peritoneal cells. All mature B

cells, irrespective of their localization within the lymphatic

compartments, namely B-2, MZB, B-1a and B-1b B cells as well

as the three immature transitional splenic B cell subsets (T1, T2

and T3) expressed similar levels of BAFF-R (figure 1C). Bone

marrow precursor B cells and haematopoietic cells of other

lineages did not express detectable surface BAFF-R (figure 1C and

data not shown).

In vivo depletion of circulating mature B cells with anti-
BAFF-R mAbs that block BAFF binding

Since BAFF was shown to be a potent survival factor for mature

and immature B cells in vitro, we reasoned that the in vivo use of

blocking anti-BAFF-R mAbs would affect the B cell pool.

Figure 1. Binding of anti-BAFF-R antibodies to BAFF-R expressing Y3 rat myeloma cells. Panel A. FACS analysis of a 1:1 mixture of BAFF-
R-IRES-GFP transfected and un-transfected Y3 myeloma cells. Upper plot: irrelevant isotype control antibody. Lower plots: the anti-BAFF-R antibodies
9B9 and 5A12 stained the BAFF-R expressing BAFF-R-IRES-GFP transfected Y3 myeloma cells but not the un-transfected GFP negative cells. Panel B.
The same mixture of BAFF-R-IRES-GFP transfected and un-transfected Y3 myeloma cells was pre-incubated with or without the four different anti
BAFF-R antibodies as indicated: 5A12, 9B6, 9B9 and 5H10 followed by HA-tagged BAFF, which was revealed by a PE labeled anti-HA antibody (upper
plot right). 9B9 and 5H10 (lower plots), but not 5A12 and 9B6 (middle plots) were preventing the binding of HA-tagged BAFF to BAFF-R, revealing
blocking capacity. Panel C. FACS analysis on the different B and T cell subsets for BAFF-R surface expression, as indicated for each plot. Dotted
histograms represent isotype control stainings.
doi:10.1371/journal.pone.0005456.g001

BAFF-R and B Cell Homeostasis
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Therefore wild-type C57BL/6 mice were treated with two BAFF-

blocking and two BAFF non-blocking anti-BAFF-R mAbs; all four

of the same isotype. At day 14 after treatment, the percentage of

mature circulating peripheral blood B cells, characterized as

CD19+ CD932 cells, was determined by flow cytometry. Mature

B cells in the control group of PBS treated mice represent about

40% of the circulating leukocytes. Similar percentages were

obtained with the non-blocking 5A12 mAb (figure 2A). For 9B6,

also a non-blocking mAb, mature B cells ranged from 25–35%,

whereas treatment with either 9B9 or 5H10 mAb, both of which

blocked BAFF binding, resulted in a dramatic decrease of up to

80–90% of circulating B cells (figure 2A). Therefore, whereas non-

blocking mAbs had only a minimal or no effect, the use of mAbs

that prevented BAFF binding drastically reduced circulating

peripheral B cell numbers. Taken together, these results suggest

that mature, circulating B cells require BAFF for their survival.

In order to determine the kinetics of mature B cells depletion,

C57BL/6 mice were injected with the BAFF-blocking mAb 9B9

and at days 4, 7 and 10 blood lymphocyte subpopulations were

analyzed. Mice injected with either PBS or the in vivo-depleting

anti-CD4 mAb (GK1.5, rat IgG2b) were used as negative and

positive controls, respectively. Results are summarized in figure 2B.

Already by day 4 after treatment with GK1.5, almost all CD4+ T

cells had disappeared and as a consequence, the other lymphocyte

sub-populations had proportionately increased. Treatment with

9B9 resulted in a 40% depletion of mature B cells at day 4, which

increased to 70% by day 7 and reached its maximal level of 80%

by day 10. In accordance with the in vivo expected half-life of IgG

antibodies, B cell numbers started to recover by day 25–30 after

antibody treatment (data not shown).

The BAFF-BAFF-R interaction is essential for the
maintenance of circulating mature B cells

The finding that mAbs that prevented BAFF binding caused a

pronounced depletion of circulating B cells whereas, isotype-

matched non-blocking ones had only a minor effect, strongly

suggested that this ablation was neither due to antibody-dependent

cellular cytotoxicity (ADCC) nor to complement-mediated deple-

tion. In order to test this hypothesis, FcR common c chain-

deficient mice were injected with the BAFF-blocking mAb 9B9 or

the non blocking mAb 5A12. At day 14 after injection, the

percentage of circulating mature B cells (CD19+CD932), was

determined in the blood and compared to untreated mice. In

untreated or 5A12-treated mice, a similar percentage of circulating

mature B cells was detected, namely 35% and 25–38%,

respectively. In contrast, there were only 7–12% circulating B

cells in FcR c-deficient mice treated with the BAFF-blocking mAb

9B9 (Figure 3A). This result shows that the depletion of circulating

mature B cells with BAFF-blocking mAb is FcR independent.

It has been shown that BAFF-induced B cell survival is achieved

through an NF-kB mediated increase in anti-apoptotic molecules,

including members of the Bcl-2 family. Based on this finding, we

wondered whether B cell depletion with BAFF-R blocking mAbs

would still be seen in transgenic mice over-expressing Bcl-2.

Therefore, C57BL/6 and Bcl-2 transgenic mice were injected with

the 9B9 mAb and analyzed after 14 days. As shown in figure 3B

the mature B cell pool in the blood of C57BL/6 mice treated with

9B9 was reduced by 80–90%. In marked contrast, only a 5–10%

reduction was observed in 4 out of 5 Bcl-2 transgenic animals

(figure 2B). Transgenic over-expression of the anti-apoptotic Bcl-2

gene was therefore able to overcome to a large extent, the B cell

depleting effect of blocking anti-BAFF-R mAbs. Collectively, these

results rule out a role for either ADCC or complement-mediated

lysis in the observed depletion of re-circulating B cells and strongly

suggest that interactions between BAFF and BAFF-R are crucial

for the survival and maintenance of the mature B cell pool.

BAFF is a survival factor for B-2 and marginal zone B cells
in vivo

Mature, peripheral B cells in the mouse can be subdivided into

B-2, also called follicular B (Fol B), MZB and B-1 B cells. In order

to determine the effect of a blocking anti-BAFF-R mAb on the

Figure 2. Circulating mature B cells and kinetic analysis of
peripheral blood B and T cell depletion. Upper graph: C57BL/6
mice were injected i.v. at day 0 with 0.5 mg of a given anti-BAFF-R
antibody, as indicated. At day 14 the percentage of CD932CD19+

mature B cells was determined by FACS analysis on the peripheral
blood mononucleated cells. Each symbol represents an individual
mouse. Statistical analysis revealed a significant difference for control
versus 9B6, 9B9 and 5H10 (p,0.05). Lower graph: C57BL/6 mice were
injected with either 0.5 mg of the anti-BAFF-R mAb 9B9 (white bars), or
0.5 mg of the anti-CD4 mAb GK1.5 (grey bars). Black bars represent PBS
injected controls. The mAbs were injected at day 0 and the percentages
of immature B cells (CD93+CD19+), mature B cells (CD932CD19+), CD4
and CD8 T cells were determined by FACS at days 4, 7 and 10. Each
column represents a time point: day 4 left column, day 7 middle and
day 10 right column. Statistical analysis revealed a significant difference
between PBS treated mice as compared to anti-BAFF-R mAb at each
time point analyzed for mature B cells but not for immature B cells.
doi:10.1371/journal.pone.0005456.g002
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different B cell subsets, we injected C57BL/6 mice with the mAb

9B9 and analyzed the bone marrow, spleen, lymph nodes and

peritoneal cavity lymphocytes at days 14 to 21. In the spleen, the

immature transitional B cell subpopulations were only slightly

affected with no reduction of T1 and a two fold reduction in T2/

T3 subsets (figure 4A and B). Mirroring the depletion of

circulating B cells, injections with the mAb 9B9 resulted in a 4–

5 fold reduction of CD932CD19+ mature splenic B cells. The

highest reduction, 80–90%, was observed among follicular

(CD21+CD23+) B cells, whereas MZB (CD21highCD23low) cells

were only decreased by 50%. The number of CD212CD232

mature splenic B cells, which to a large extent comprises B-1 B

cells, was not affected at all. CD4 and CD8 T cells also remained

unchanged (figure 4B).

Mature B cells in the bone marrow or lymph nodes, both of

which consist almost entirely of B-2 B cells, were also reduced by

80–90% upon 9B9 treatment (data not shown). Bone marrow B

cell progenitors were not affected by the treatment (data not

shown).

Mature B cell subsets in the peritoneal cavity can be subdivided

into B-2 (CD19+CD23+), B-1a (CD19+CD232CD11b+CD5+) and

B-1b (CD19+CD232CD11b+CD52) B cells (figure 4C upper

plots). All these subsets express similar levels of BAFF-R (figure 1C).

However, upon 9B9 treatment, whereas 70% of the B-2 B cells

were depleted, both B-1a and B-1b cell subpopulations remained

unaffected (figure 4C).

Taken together, these findings show that maintenance of the

vast majority of B-2 and about half of the marginal zone B cells is

highly dependent upon the interaction between BAFF and BAFF-

R, whereas that of B-1 B cells is largely BAFF-R independent. The

fact that some B-2 and about half MZB cells remained following

antibody treatment might suggest either that some of these B cells

do not require BAFF-BAFF-R interaction for their survival or that

B-2 and MZB cells are constantly re-generated having a high

turnover rate but are still dependent upon BAFF for their survival.

In order to discriminate between these alternatives, we determined

the turnover rate of splenic B cell subpopulations in control and

9B9 treated mice by BrdU labeling. In accordance to their high

turn-over rate, after 10 days of continuous BrdU labeling, the vast

majority of T1 and T2/T3 in control and 9B9 treated mice were

found to be BrdU positive (figure 5A), whereas only about 10% of

control and 18% of B-2 cells from 9B9 treated mice were BrdU

positive (figure 5A). Taken together, the turnover rate of the

remaining B-2 cells in 9B9 treated mice was similar to that of B-2

cells in control mice and is indicative of a BAFF-BAFF-R-

independent mechanism for the maintenance of this small number

of B-2 cells in treated mice. After 10 days of BrdU labeling, about

25% of the MZB cells from the control and 20% from the 9B9

treated mice, were positive (figure 5A).

In order to test whether prolonged treatment would improve the

B cell depletion, mice were injected over a 5 months time. FACS

analysis revealed that such a prolonged treatment did not alter the

outcome of the B cell depletion. Meaning that, B-1 B cell

compartment was not affected (data not shown), MZB cells were

reduced by half and 10–20% of the B-2 B cell compartment was still

present (figure 5B). Thus, the vast majority of B-2 cells are highly

dependent for their survival on BAFF-BAFF-R signaling, and only

about half of the MZB cells seem to be BAFF-BAFF-R dependent.

Disturbed splenic architecture and partly impaired
humoral immune response in 9B9 treated mice

In the spleen of normal mice, IgMlow IgDhigh follicular B (B-2)

cells are clustered in B cell follicles and are surrounded by a rim of

IgMhigh IgDlow marginal zone B cells (figure 6). Plasma cells,

characterized by strong cytoplasmic IgM expression, are localized

outside the follicles within the red pulp. In mice treated with the

BAFF-R blocking mAb 9B9 splenic B cell follicles were considerably

smaller (figure 6) as a consequence of the drastic reduction of the

follicular B cells. T cell areas did not show a significant reduction in

size, confirming the results obtained from the FACS analysis

(figure 6). As in controls, plasma cells in anti-BAFF-R treated mice

Figure 3. Circulating mature B cells in FcRc deficient and Bcl2-transgenic mice following anti BAFF-R 9B9 injection. Panel A. FcRc2/2

mice were injected at day 0 and the percentage of CD932CD19+ mature B cells in the blood was determined at day 14 by FACS analysis. Non-injected
FcRc2/2 mice were used as controls. The difference between FcRc2/2 treated versus untreated mice was statistically significant (p,0.05). Panel B.
The percentage of mature B cells in the blood of C57BL/6 and Bcl2 transgenic mice at day 14 following the injection of 9B9 mAb. The difference
between C57BL/6 and Bcl2 transgenic mice following 9B9 treatment was statistically significant (p,0.01).
doi:10.1371/journal.pone.0005456.g003

BAFF-R and B Cell Homeostasis

PLoS ONE | www.plosone.org 4 May 2009 | Volume 4 | Issue 5 | e5456



Figure 4. Depletion of the B and T cell subsets following anti BAFF-R 9B9 antibody injection. Panel A. Representative FACS plot of the
immature (CD93+CD19+) and mature (CD932CD19+) B cell compartments in the spleen of C57BL/6 mice; upper plots untreated control, lower plots
day 14 after 0.5mg of anti-BAFF-R 9B9 injection. On the left side total splenocytes are depicted. On the right side, gated on mature B cells
(CD932CD19+) follicular (CD21+CD23+) and MZB (CD21highCD23low) B cells are shown. Panel B. Absolute numbers of splenic T1 and T2/3 immature B
cells, B-2 and MZ B cells, CD4 and CD8 T cells in controls (black bars) and 9B9 injected C57BL/6 mice at day 14 after injection (white bars). 5 mice were

BAFF-R and B Cell Homeostasis
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were localized in the red pulp and were identical in numbers, as

determined by ELISpot assay (data not shown). Collectively, these

results show that treatment with a blocking anti-BAFF-R mAb

perturbs the splenic follicular organization by severely depleting

mature B cell numbers and thereby reducing follicular size.

In order to test whether the B cell depletion and alteration of the

splenic architecture, induced by the treatment, would influence

humoral immune responses, mice were immunized with NIP-ficoll

or NIP-ovalbumin 10 days after treatment with 9B9 mAb. Serum

IgM and IgG anti-NIP titers were determined at day 12 after

antigen administration. Depletion, following anti-BAFF-R treat-

ment was not affecting IgM titers upon challenge with T cell

independent NIP-ficoll antigen (data not shown), whereas, a 5 to

10 fold reduction in the titers was observed in 9B9 treated

compared to control animals, following a T dependent NIP-

ovalbumin (NIP-OVA) immunization (figure 7A). However, 9B9

injected mice were still able to mount a significantly higher

immune response (3–5 fold), compared to mice depleted of CD4 T

cells by GK1.5 mAb injections (figure 7A). Consistent with this

finding, the presence of small germinal centers could be detected

in 9B9 treated mice after immunization by histological analysis

(data not shown). Thus, mice treated with an anti-BAFF-R mAb

which prevents BAFF binding showed an impaired but not a

completely abrogated ability to mount a primary antigen specific

IgG response. To evaluate the impact of B cell depletion on the

formation of memory B cells mice were injected with the 9B9

blocking mAb or the 5A12 control non-blocking mAb 14 days

before being immunized with NIP-OVA. The Ab treatment was

continued over a two months period and at day 60 after priming

mice were boosted, and the recall IgG anti-NIP response was

determined at day 74. As shown in figure 7B (3 versus 6) the IgG

anti-NIP titer of the memory response was 5–10 fold lower in the

9B9 treated group (figure 7B group 6) as compared to the 5A12

treated group (figure 7B group 3). Thus, treatment with an anti-

BAFF-R mAb that prevents BAFF binding impaired the formation

of memory B cells. Nevertheless the induction of memory

formation was not completely abrogated by 9B9 treatment, since

the antigen specific IgG response was still higher as compared to

not immunized (figure 7B group 1), not immunized 9B9 treated

(figure 7B group 4) mice as well as mice which received only the

booster immunization, irrespective of the 9B9 treatment (figure 7B

group 2 and 7B group 5, respectively).

To address the role of BAFF-BAFF-R signaling on the

maintenance of memory B cells, NIP-OVA primed mice were

injected with 9B9 mAb at day 60 and 74 following immunization.

At day 80 after priming mice were boosted and the IgG anti-NIP

titer was determined at day 94. As shown in figure 7B group 7, the

mice mounted an IgG anti-NIP response that was not significantly

different from control treated mice (figure7B group 3). Collective-

ly, these results suggest that formation of memory B cells requires

BAFF-BAFF-R signaling, while the maintenance and survival of

memory B cells is not affected by 9B9 treatment and therefore

BAFF independent.

Discussion

The role of BAFF in the development of mouse B cells was most

clearly demonstrated by the generation of two different BAFF

deficient strains and by the characterization of BAFF-R deficient

mice [9–13]. These mutant mice displayed a severe block in B cell

development at the differentiation from, so called, T1 to T2 B cells

in the spleen, whereas the development of B-1 B cells appeared to

be unaffected. As a consequence of the profound decrease in T2 B

cell numbers, their downstream mature B cell progeny, namely

follicular and marginal zone B cells, were drastically depleted.

Whether BAFF was necessary either for the survival of T2 cells or

for promoting their differentiation and maturation, however,

remained an open question. Furthermore, the role of BAFF in the

survival of mature B cell in vivo could not be addressed using these

mice, since their precursors depended on BAFF for their

generation and development.

By the generation and administration of anti-BAFF-R mono-

clonal antibodies capable of preventing BAFF binding, we show in

this report, that the in vivo survival of almost all follicular and half

of the marginal zone B cells is dependent upon BAFF-BAFF-R

signaling. Injection of mice with a blocking anti-BAFF-R antibody

induced a profound depletion of the mature B cell compartment,

whereas a non-blocking antibody had only a minimal or no effect.

The possible scenarios which could explain this phenomenon

include: an antibody-dependent cellular cytotoxicity (ADCC), a

complement-mediated lysis, an impairment of the survival through

prevention of BAFF binding or a limited generation of newly

formed mature B cells as a consequence of the depletion of

transitional B cells. The fact that an isotype-matched non-blocking

anti-BAFF-R monoclonal antibody is not affecting the peripheral

mature B cell pool and that in addition, the detectable presence of

the non blocking anti-BAFF-R antibody on the surface of non-

depleted B cells (data not shown), taken together would indicate

that an ADCC mechanism is unlikely. Moreover, that B cell

depletion is still occurring in FcR-c-chain [20] deficient mice

confirms that ADCC is most likely not involved. In comparison to

the rapid ADCC dependent anti-CD4-mediated depletion of T

cells, the relatively slow kinetic of B cell deletion observed after the

administration of blocking anti-BAFF-R antibody suggested a

major role for BAFF-R signaling on mature B cell survival.

Moreover, treatment of Bcl-2 transgenic mice [21], where B cells

were only slightly reduced, further corroborates the hypothesis of a

BAFF mediated survival on the one hand and makes complement

mediated cell lysis improbable on the other hand.

Yet an alternative explanation for the observed depletion of

mature B cells upon treatment would be that the numbers of

differentiating T2/T3 immature B cells into mature cells decrease

with time. However based on BrdU in vivo labeling studies

performed by us and others this seems to be an unlikely scenario

[3,7]. These studies showed that in an adult mouse about 1% of

the mature B-2 cells are replaced per day. Upon treatment we see

already an 80–90% reduction of mature B cells at day 10–14,

whereas only a 10–14% reduction could be explained by the

differentiation block of T2/T3 into mature B-2 cells. Therefore

collectively our findings demonstrate that the vast majority of B-2

cells and about half of MZB cells require BAFF for their survival.

Different experimental approaches, performed by other groups,

were also suggestive of a survival role of BAFF-BAFF-R signaling

in mature B cells. Treatment of mice with a TACI-Fc fusion

protein was shown to lead to a reduction of B cells [22–24].

However, in these studies the extent of B-2 and MZB cells

depletion was not analyzed in detail [22,23]. Moreover, given that

TACI can interact with both BAFF and APRIL [24], the potential

analyzed for each group. A significant difference could be observed for T2/T3, B-2 and MZB cell numbers in control as compared to 9B9 injected mice.
Panel C. Representative FACS plot analysis indicating the percentages of CD19+CD23+ B-2, CD19+CD11b+ B-1b and CD19+CD5+ B-1a B cells in the
peritoneal cavity of control (upper dot plots) and C57BL/6 mice injected with 9B9 mAb at day 14 after injection (lower dot plots).
doi:10.1371/journal.pone.0005456.g004
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role for APRIL in this depletion process could not be excluded.

Several groups showed that treatment of mice with a BAFF-R-Fc

fusion protein also resulted in a depletion of B cells [22,25]. Since

BAFF is the only known ligand for BAFF-R these studies strongly

suggest that peripheral B cells require BAFF for their survival. In

one of these studies a more detailed analysis of the extent of

Figure 5. Turnover of splenic B cells following injection with anti-BAFF-R 9B9. Panel A. Turnover of splenic B cell populations in control
(black bars) and 9B9 injected C57BL/6 mice (white bars). C57BL/6 mice were injected with 1 mg of BrdU and BrdU was added to the drinking water.
10 days after splenic T1, T2/3, B-2 and MZ B cells were stained, sorted and the percentage of BrdU positive cells was determined by FACS analysis.
Mean values with standard deviation are shown. 4 mice were analyzed for each group. Differences were statistically not significant. Panel B.
Representative FACS plot analysis of the immature (CD93+CD19+) and mature (CD932CD19+) B cell compartments in the spleen of C57BL/6 mice
treated over a 5 months period with anti-BAFF-R 9B9 mAb. Depicted on the right side, CD21 and CD23 staining gated on immature B cells (upper
plot) and on mature B cells (lower) plot. Indicated are the percentages of the cells represented in each quadrant.
doi:10.1371/journal.pone.0005456.g005
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depletion of the various mature B cell subpopulations is reported

[25]. This analysis revealed that after such a treatment the B-2 and

MZB compartments were largely reduced whereas the B-1 cell

numbers were practically not affected. In other words, treatment

of mice with a BAFF-R-Fc fusion protein results in a very similar B

cell depletion as we observed here upon treatment with the

blocking anti-BAFF-R mAbs. Thus, our results confirm and extent

previously reported findings on the role of BAFF-BAFF-R

signaling in the survival and maintenance of the mature B cell

compartments.

B-1 B cells express relatively high amounts of BAFF-R on their

surface. However, as shown in BAFF as well as BAFF-R deficient

mice their generation and maintenance is not affected [9–13]. Also

the here described short-term and long-term (5 months) treatment

with anti-BAFF-R mAbs that block BAFF binding did not affect

the B-1 B cell compartment. Moreover, we could rule out an

inability of the injected mAbs to enter the peritoneal cavity since

FACS analysis with an anti-rat IgG revealed the presence of the

anti-BAFF-R mAb on the surface of B-1 B cells (data not shown).

Thus the role of the BAFF-R in B-1 B cell biology still needs to be

elucidated. However the findings that the B-1 B cell compartment

is largely expanded in BAFF transgenic mice [10,14–16] might

suggest that BAFF can act as a B-1 B cell growth factor.

Following anti-BAFF-R treatment, we observed that the B-2 B

cell compartment was the most affected B cell subset, indicating

that the majority of B-2 cells rely on BAFF signaling for their

survival. Marginal zone B cells were reduced only by half upon

treatment, which compared to their almost complete absence

observed in BAFF and BAFF-R deficient mice, is indicative for a

crucial role of BAFF signaling during marginal zone B cell

development or survival of their progeny, but dispensable for their

survival subsequent to maturation. In BAFF-R deficient mice,

over-expression of Bcl-2 could not overcome the marginal zone B

cell defect [18], arguing for an instructive role of BAFF for their

development, which still needs to be elucidated.

By BrdU labeling experiments and FACS analysis we show that

the survival of a small subset of B-2 B cells seemed to be BAFF-

independent and not reflecting newly formed mature B cells. A

similar result was shown in BAFF as well as BAFF-R deficient

mice, where the mature follicular B cell compartment was

drastically reduced but still present in small numbers [26]. The

follicular B cells that survived this BAFF-R blockage could not be

distinguished according to phenotypic criteria (data not shown).

Because B-1 cells were not affected by anti-BAFF-R treatment and

considering their predominant origin during fetal/neonatal

development, we wondered whether the surviving B-2 cells were

also of fetal origin. A hallmark of B cell development during fetal

life is the lack of expression of deoxynucleotidyl transferase which

prevents non-templated nucleotide additions in the V-D and D-J

junction of the BCR heavy chain. No difference could be observed

comparing junctional regions of untreated to 9B9 treated B-2 B

cells, ruling out this hypothesis (data not shown).

Prolonged (5 months) treatment with the 9B9 mAb did not

improve the depletion of these mature B cell subsets. FACS

analysis with an anti-rat IgG mAb revealed the presence of 9B9 on

the surface of B-2 and MZB cells surviving the treatment (data not

shown). Moreover, the surface available BAFF-R seemed to be

saturated by the injected 9B9, as anti-BAFF-R mAbs were

Figure 6. Immunohistochemistry of spleen sections. Spleen histology of C57BL/6 mice 14 days after injection of either the non-blocking 5A12
or blocking 9B9 anti-BAFF-R mAbs, as indicated. Cryosections were stained with anti-IgM (red) and CD90 (T cells) (green), left panels, and with anti-
IgM (green) and anti-IgD (red), right panels, as indicated above. Magnification 2406.
doi:10.1371/journal.pone.0005456.g006
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undetectable by FACS analysis (data not shown). Therefore, the

survival of these mature B cell subsets seems to be BAFF–BAFF-R

signaling independent.

It has been shown that surface BCR expression is mandatory for

mature B cell survival, since conditional ablation of BCR

expression subsequent to the establishment of steady-state B cell

numbers, resulted in rapid death of most peripheral B cells [27].

The mechanism by which BCR expression influences B cell

longevity remains to be clarified.

The survival of mature B cells is dependent on signaling

processes that use the NF-kB signal transduction pathway [28,29].

Two pathways leading to NF-kB activation in B cells have been

described, namely the classical and the alternative pathways [30].

Several mutations affecting one or both NF-kB signaling cascades

were shown to affect the B cell compartment [12,31–37]. Since the

two NF-kB pathways employ both shared and distinct compo-

nents, the role of each activation pathway in B cells remains to be

elucidated [18].

Several in vitro studies have demonstrated a survival role of

BAFF on transitional as well as mature B cells [16,38]. The

mechanism by which this increased survival is achieved seems to

be dependent on the NF-kB mediated up-regulation of anti-

apoptotic Bcl-2 family proteins and inhibition of the nuclear

translocation of the pro-apoptotic protein kinase Cd [39,40].

Collectively, BCR as well as BAFF-R signaling seem to be essential

for the maintenance of mature B cells and this is probably

achieved by up-regulating anti-apoptotic pathways, where Bcl-2

might be a key player. In fact, transgenic expression of Bcl-2 was

able to rescue the survival of B cells upon BCR deletion [27], and

we show that it is able to overcome, to a large extent, the ablating

effect of anti-BAFF-R blocking antibodies. Mature B cell survival

seems to be regulated by the achievement of a certain activation

state induced by a combination of basal BCR and BAFF-BAFF-R

signaling, with a different contribution of the two pathways which

might also be dependent on the B cell subset. Nevertheless, it still

remains to be clarified how BCR and BAFF-R signals act on one

another and are integrated within the cell to maintain cell survival.

The different impact of BCR and BAFF-BAFF-R signaling on the

activation state and as a consequence on the survival of mature B

cells could explain why some B cells survive anti-BAFF-R

treatment as a BAFF-independent subset. In agreement with this

hypothesis is the finding that many marginal zone B and B-1 B

cells survived treatment with anti-BAFF-R mAb.

It is believed that formation of the different mature B cell

compartments is influenced by specific BCR-ligand interactions

[41–43]. Thus, B cells in transgenic mice expressing recombinant

BCRs for self antigens tend to differentiate into B-1 and marginal

zone B cells [44]. Both, B-1 and MZB cells are enriched for self

reactive clones, whereas follicular B cells generally require higher

levels of BCR signaling for their formation. Therefore, if for the

survival of mature B cells a certain threshold of activation is

required and if this activation is a combination of basal BCR

signaling and competition for as well as the availability of BAFF,

prevention of BAFF binding would rather favor the survival of

those B cells with relatively higher affinity for self antigens, such as

B-1 and MZB cells. Nevertheless, we cannot rule out an alternative

explanation for the BAFF independent survival of MZB cells,

namely that their location next to metallo-phillic macrophages

could provide them with a specific environmental niche favoring

their survival. Moreover, considering that their development is

dependent on Notch signaling [45,46], different Notch ligands

might also be involved in their maintenance.

As a consequence for the observed B cell depletion in anti-

BAFF-R treated mice, we show that splenic follicles are greatly

Figure 7. Humoral immune response. Panel A. 12 days after T
dependent immunization serum levels of anti-NIP IgG were measured by
ELISA in groups of 5 controls and 5 C57BL/6 mice injected either with
anti-BAFF-R mAb 9B9 or anti-CD4 mAb GK1.5, as indicated. Immunization
with NIP-ovalbumin was performed 10 days after injection of the 9B9 or
the GK1.5 mAbs. The titer is defined as the serum dilution that gives OD
values twice the background and is depicted on a logarithmic scale. Each
symbol represents a mouse. A significant difference could be observed in
the response of 9B9 as well as GK1.5 mAbs treated mice as compared to
untreated. Panel B. Sera of mice subjected to different treatments was
collected at different time points as indicated for each group. Mice
received repeated injections of the mAb every third week, over the
indicated period of time. Levels of anti-NIP IgG were measured. Each
symbol represents a mouse. The titer is defined as the serum dilution that
gives OD values twice the background and is depicted on a logarithmic
scale. Groups 1 and 4: serum collected at day 1. Mice were treated with
5A12 mAb (non-blocking) and 9B9 mAb (blocking), respectively from day
1 to day 14. Mice were not immunized. Groups 2 and 5: serum was
collected at day 74. Mice were treated with 5A12 mAb (non-blocking) 9B9
mAb (blocking), respectively from day 1 to day 74. Mice were only
boosted at day 60. Groups 3 and 6 Serum was collected at day 74. Mice
were treated with 5A12 mAb (non-blocking) and 9B9 mAb (blocking),
respectively from day 1 to day 74. Mice were primed with NIP-ovalbumin
at day 14 and boosted at day 60. Group 7. Serum was collected at day 94.
Mice were treated with 9B9 mAb (blocking) from day 60 to day 74. Mice
were primed with NIP-ovalbumin at day 14 and boosted at day 80.
Statistical analysis revealed a significant difference for group 3 versus
group 6, but not for group 3 versus 7.
doi:10.1371/journal.pone.0005456.g007
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reduced in size. Moreover, the primary immune response to T

dependent antigen was impaired, with IgG titers reduced by a

factor of 5 to 10 following treatment with an anti-BAFF-R

blocking antibody, whereas total immunoglobulin levels were not

affected. This result is in line with what was shown for BAFF-R

deficient mice, where the IgG1 response to T-dependent antigen

was significantly reduced [12]. Moreover, we showed that in

absence of BAFF-R signaling the induction memory B cells is

strongly impaired. However, the maintenance of memory B cells

seems to be BAFF–BAFF-R signaling independent since 9B9 mAb

treatment of mice primed before with a T cell dependent antigen

did not impair the recall response. This finding confirms the very

recent data published by Benson et al. [22] showing that treatment

of antigen primed mice with TACI-Ig or BAFF-R-Ig does not

impair their ability to mount an efficient recall response.

These findings enlighten a new role of BAFF-BAFF-R signaling

as a crucial factor for the formation of memory or the survival of

developing memory B cells, while confirming its dispensable role

in the maintenance of memory B cells. Therefore the question

whether therapies, based on BAFF as well as BAFF-R neutrali-

zation in B cell mediated autoimmune diseases, could be successful

remains uncertain. On the other hand, since elevated BAFF serum

levels and deregulated BAFF-R signaling were shown to contribute

to the pathogenic B survival in oncological as immunological

disorders [47–52], a potential use of anti-BAFF-R mAb might

represent an optimal targeted therapy, which would not

compromise the ability of these patients to respond to already

encountered antigens.

Materials and Methods

Experimental animals
Female C57BL/6 and Lewis rats were purchased from RCC

Ltd., (Füllinsdorf, Switzerland). FcRcc2/2 mice were obtained

from Taconic (Ejby, Denmark). Bcl-2 transgenic mice [21] were

obtained from Dr. A. Trump (ISREC, Lausanne, Switzerland) and

were bred under pathogen free conditions at the Center for

Biomedicine, Basel. All animal experiments were carried out

within institutional guidelines with the permission of the national

and local authorities (the permission number for the principal

investigator are 1886, 1887 and 1888).

Antibodies and flow cytometric analysis
FITC-, PE-, APC-Cy7-, PE-Cy7- or biotin-conjugated mAbs

specific for CD4 (RM4-5), CD5 (53-7.3), CD8a (53-6.7), CD11b

(M1/70), CD19 (1D3), CD21 (CR2/CR1; 7G6), CD23 (B3B4)

and CD45R (B220; RA3-6B2) were purchased from BD

Biosciences (BD PharmingenTM). Biotin-labeled Mouse anti-Rat

IgG was purchased from Jackson ImmunoResearch Laboratories,

Europe LtD. Antibodies specific for IgD (1.19), IgM (M41), CD90

(Thy-1; T24), CD93 (C1qRp; PB493) and HA-peptide (12CA5)

were purified from hybridoma supernatants and labeled with

FITC or biotin using standard procedures. Biotin-labeled

antibodies were revealed by PE- or PE-Cy7-Streptavidin (BD

Biosciences). Staining of cells was performed as described

previously [53]. In vivo BrdU labeling and subsequent analysis

was performed as described [3]. Flow cytometry was performed

using a FACS Calibur (BD Biosciences) and data were analyzed

using the Cell Quest Pro Software (BD Biosciences).

Cloning, expression and purification of soluble human
BAFF

A soluble form of human BAFF was expressed as a HA-tagged

molecule from Drosophila SL-3 cells as previously described [54–

56], briefly a fragment corresponding to the soluble C-terminal

part of the human BAFF was cloned into the ApaI-NotI-opened

expression vector pRmHa-3 HA/myc/TM (a kind gift of Dr. K.

Karjalainen, NTU School of Biological Sciences, Singapore),

yielding the pRmHa-3 HA-hBAFF plasmid.

Cloning of the mouse BAFF-R gene and its expression in
rat and mouse B cell lines

Full-length mouse BAFF-R cDNA (GenBank accession number:

NM_028075) was amplified from mouse spleen cDNA using

primers mBAFF-R4 (59-ATT AGA TCT GAA ATG GGC GCC

AGG AGA CTC C-39) and mBAFF-R5r (59-GAT GAA TTC

CTA TTG CTC TGG GCC AGC TG-39). The PCR fragment

was digested with BglII and EcoRI and cloned into the BglII and

EcoRI opened pMIG plasmid (Addgene plasmid 9044), allowing

the bi-cistronic expression of BAFF-R together with green

fluorescent protein (GFP). The retroviral vectors were transfected

into the Phoenix retroviral packaging cell line (ATCCH Number:

SD 3443); according to the manufacturer’s instructions. The rat

myeloma cell line Y3 (ATCCH Number: CRL-1631) and the

mouse pre B cell line 40E1 (Alt, 1981) were retrovirally transduced

by spin-infection using standard procedures. Transduced cells

were sorted by FACS ARIA (BD Biosciences) on the basis of high

GFP expression.

Generation of anti-mBAFF-R mAbs
Lewis rats were immunized subcutaneously with 107 Y3-

mBAFF-R cells to generate anti-mBAFF-R mAbs as described

earlier [3]. Hybridomas were screened for IgG antibodies

selectively binding to mBAFF-R. For FACS analysis of BAFF-R

expression, purified mAbs were labeled with biotin, Alexa FluorH
488 or Alexa FluorH 647 (Invitrogen AG, Basel, Switzerland)

according to standard procedures. In order to test whether the

generated anti-BAFF-R mAb’s were able to block BAFF binding, a

mixture of Y3 (non GFP expressing) and Y3-mBAFF-R (GFP

expressing) cells was incubated with the various mAbs for

30 minutes on ice. After washing, cells were then incubated

30 minutes with 10 mg/ml of soluble HA-tagged hBAFF. After

washing, hBAFF binding was revealed by using the HA-peptide

specific mAb 12CA5.

Treatment of mice with anti-BAFF-R mAbs
Mice were injected intravenously (i.v.) with 0.5 mg mAb in PBS.

Lymphocyte subpopulations in the blood, spleen, lymph nodes,

bone marrow and peritoneal cavity were analyzed by FACS at

various time points after injection. Mice treated with the in vivo

depleting [57] rat IgG2b anti-CD4 mAb GK1.5 (0,5 mg i.v.) were

used as controls.

Immune responses
Mice were immunized i.p. with 100 mg NIP-OVA (Biosearch

Technologies Inc., Novato, CA) in alum (T dependent immune

response) or i.v. with 50 mg NIP-FICOLL (Biosearch Technolo-

gies Inc., Novato, CA) in PBS (T independent immune response).

At day 14 after immunization, the mice were bled and the serum

IgG anti-NIP titer was determined by ELISA as previously

described [58]. For recall response, 8 weeks after immunization

mice were boosted with 10 mg NIP-OVA in PBS and 10 days after

serum IgG anti-NIP titer was determined by ELISA.

Immunohistology
Spleens were snap frozen and embedded into OCT compound

(Sakura, Zoetermeer, NL). Cryostat sections of 5 mm were
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prepared and fixed for 10 minutes in acetone. Sections were

stained with anti-IgMFITC (M41) and anti-IgDBiotin (1.19) or anti-

Thy1FITC (T24) and anti-IgMBiotin (M41). Biotin-labeled antibod-

ies were visualized using streptavidin Texas red (BD Biosciences).

Stained sections were analyzed using an Axioskop Immunofluo-

rescence (Zeis, Feldbach, CH) equipped with a Nikon digital

camera.

Statistical analysis
Differences between groups were evaluated for statistical

significance using the two-tailed paired student’s t test, assuming

equal variances.
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