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Abstract

Background: Diagnosis of paradoxical tuberculosis-associated immune reconstitution 

inflammatory syndrome (TB-IRIS) is challenging and new tools are needed for early diagnosis as 

well as to understand the biochemical events that underlie the pathology in TB-IRIS.

Methods: Plasma samples were obtained from participants from a randomized HIV/TB treatment 

strategy study (AIDS Clinical Trials Group [ACTG] A5221) with (n = 26) and without TB-IRIS (n 

= 22) for an untargeted metabolomics pilot study by liquid-chromatography mass spectrometry. 

The metabolic profile of these participants was compared at the study entry and as close to the 

diagnosis of TB-IRIS as possible (TB-IRIS window). Molecular features with p < 0.05 and log2 

fold change ≥0.58 were submitted for pathway analysis through MetaboAnalyst. We also 

elucidated potential metabolic signatures for TB-IRIS using a LASSO regression model.

Results: At the study entry, we showed that the arachidonic acid and glycerophospholipid 

metabolism were altered in the TB-IRIS group. Sphingolipid and linoleic acid metabolism were 

the most affected pathways during the TB-IRIS window. LASSO modeling selected a set of 8 and 
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7 molecular features with the potential to predict TB-IRIS at study entry and during the TB-IRIS 

window, respectively.

Conclusion: This study suggests that the use of plasma metabolites may distinguish HIV-TB 

patients with and without TB-IRIS.
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Introduction

The human immunodeficiency virus (HIV) causes functional disruption of the immune 

response and impairs host ability to control infection by Mycobacterium tuberculosis 
(Walker et al., 2013) – the etiological agent of tuberculosis (TB). In 2017, there were 10 

million cases of TB, of which 900,000 (9%) were co-infected with HIV (WHO, 2018). The 

World Health Organization recommends that all persons with HIV and active TB be 

promptly treated with antiretroviral therapy (ART) in order to reduce morbidity and 

mortality (WHO, 2017). New data demonstrates that treatment with corticosteroids is 

beneficial (Meintjes et al., 2018).

ART can rapidly restore the numbers of CD4+ T cells of HIV-TB co-infected patients; 

however, this rapid restoration of the immune system can trigger an immune reconstitution 

inflammatory syndrome, known as TB-IRIS (Barber et al., 2012). This syndrome is 

characterized by strong pathogen-specific immune responses to M. tuberculosis antigens 

[reviewed in Lai et al. (2016)], which paradoxically results in worsening symptoms of TB 

during ART. About 18% of HIV-TB co-infected patients exhibit this syndrome (Namale et 

al., 2015), which can lead to substantial morbidity, death, and added health care costs. 

Currently, there are no diagnostic tests for TB-IRIS and, therefore, diagnosis is based on 

clinical case definitions (Lai et al., 2016).

Immune-inflammatory mechanisms associated with TB-IRIS are incompletely defined and 

further investigations may allow the discovery of predictive markers for this pathology. This 

may also allow preemptive treatment to reduce morbidity and mortality associated with TB-

IRIS. Most efforts to discover predictive markers have focused on immunological aspects of 

this disease (Chakrabarti et al., 2014; Esmail et al., 2018; George et al., 2017; Narendran et 

al., 2016; Rateni et al., 2018; Rohlwink et al., 2019; Tan et al., 2015) however, few studies 

have evaluated the possible metabolic alterations associated with TB-IRIS.

Metabolomics is a powerful tool to identify potential contributors to disease, as well as for 

the discovery of metabolic biosignatures within biofluids (e.g., sera and plasma samples), 

cells, and tissues (Klassen et al., 2017). The application of metabolomics has demonstrated 

that the metabolism of the human host is altered in mycobacterial diseases (Al-Mubarak et 

al., 2011; Isa et al., 2018; Mahapatra et al., 2014; Mayboroda et al., 2016; Silva et al., 2017; 

Weiner et al., 2012). Therefore, we hypothesized that patients who developed TB-IRIS (TB-

IRIS group) would exhibit metabolic differences in comparison with patients that did not 

manifest TB-IRIS symptoms (non-IRIS group), and these differences would be detectable 
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even before the onset of TB-IRIS. To test our hypothesis, a liquid chromatography-mass 

spectrometry (LC-MS) based untargeted metabolomics study was performed on stored 

plasma from the AIDS Clinical Trials Group (ACTG) A5221 study (Havlir et al., 2011). 

This study was designed primarily to determine the best time to begin anti-HIV treatment in 

individuals who have HIV and tuberculosis.

Materials and methods

Ethics

Institutional Review Boards approvals were obtained via the ACTG study A5221 (Havlir et 

al., 2011) and via the standard in-country approval process.

Study population

A5221 was a randomized trial of early antiretroviral therapy (ART) (within 2 weeks after TB 

treatment initiation) versus late ART (8-12 weeks after TB treatment) in 806 HIV-infected 

patients starting TB treatment for confirmed or probable TB; the study design and primary 

results were published elsewhere (Havlir et al., 2011, Luetkemeyer et al., 2014). Eight 

percent developed TB-IRIS. All participants received efavirenz, tenofovir, and emtricitabine, 

and 1-14 days of rifamycin-based TB treatment prior to entry. Participants were considered 

to have confirmed TB by acid-fast bacilli smear or culture typically of sputum or lymph 

node aspirates. The diagnosis of probable TB was based on expert clinician assessment of 

signs and symptoms that warranted empiric TB treatment (Havlir et al., 2011). TB-IRIS was 

defined as in Havlir et al. (2011) and Luetkemeyer et al. (2014) and based on the widely 

accepted INSHI definition (Meintjes et al., 2008).There were 61 TB-IRIS cases observed in 

A5221. Participants were eligible for the study if there was both a sample at study entry and 

one collected within 4 weeks before or after TB-IRIS diagnosis. Each TB-IRIS case was 

retrospectively matched to one control by baseline HIV viral load (within 0.5 log10 

copies/mL) and baseline CD4 cell count (within 2 cells when CD4 < 10 cells/mm3, within 5 

cells when CD4 < 100 cells/mm3, and within 10 cells if CD4 <250 cells/mm3). The control 

also had samples at study entry and matched to the case’s sample based on the timing of TB-

IRIS. Due to sample unavailability, 26 TB-IRIS cases were included.

Sample collection

EDTA-plasma samples from TB-IRIS (n = 26) and non-IRIS (n = 22) groups were collected 

at study entry (red circles in Figure 1) and as close to the diagnosis of TB-IRIS as possible 

(TB-IRIS window; blue circles in Figure 1). Black circles in Figure 1B represent the time of 

TB-IRIS diagnosis in the participants (“onset” of TB-IRIS) relative to start of study-

provided ART (week 0). The number of plasma samples for the non-IRIS and TB-IRIS 

groups at each time point was slightly different from the total numbers of individuals 

enrolled in the study since some samples were absent in the biobank (Figure 1 and Table 1). 

For the TB-IRIS group, 25 samples were collected at the study entry and 22 were from the 

TB-IRIS window (participants were eligible for the study, but not all samples were available 

from the biobank). For the non-IRIS group, 20 samples were used at study entry and 18 at a 

second time point matched to the TB-IRIS window for participants developing TB-IRIS.
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Metabolite extraction and LC-MS

Metabolites were extracted from plasma aliquots (80 μL) by incubation with 3 volumes of 

cold methanol for 1 h at −20 °C as described previously (Al-Mubarak et al., 2011) with 

some modifications (Supplemental Methods). Plasma metabolites were analyzed by LC-MS 

in negative and positive ionization modes. For the positive mode, an aliquot corresponding 

to 10 μL of plasma was applied to LC-MS analysis (Supplemental Methods). The order of 

sample injection was randomized. Chromatographic separation of metabolites was 

performed using an Agilent Poroshell 120 EC-C8 Column (2.7 μm particle size; 2.1 mm × 

100 mm) with a gradient of 100% water with 0.1% formic acid (Solvent A) to 100% 

methanol and 0.1% formic acid (solvent B). Specifically, metabolites were applied to the 

column in Solvent A followed by an 8 min linear gradient to 20% Solvent B and a 4 min 

gradient to 100% Solvent B, which was held for 4 min. The solvent flow rate was 350 μL/

min, column temperature was 30 °C and sample temperature was 4 °C. Further details are in 

Supplemental Methods. For LC-MS analyses in negative mode, the conditions used were 

described in Silva et al. (2017). In negative mode, the samples were analyzed in triplicate 

(20 μL for each injection). The order for sample injection for LC-MS analysis for both 

ionization modes, including the triplicates in negative mode, was randomized. A qualitative 

analysis was based on the peak area of the features.

Data processing and statistical analysis

Separately for the negative ion and positive ion mode data, all raw LC-MS data files were 

processed for peak detection, retention-time correction, chromatogram alignment and 

molecular features annotation using XCMS package version 1.46 (Smith et al., 2006) 

installed in R version 3.2 (RCoreTeam, 2017). For peak detection, the algorithm centwave 

(Tautenhahn et al., 2008) was used. Related isotopic features were grouped and annotated 

using the CAMERA package version 3.2 (Kuhl et al., 2012) with default parameters. 

Normalization and feature filtering criteria for statistical analysis are described in 

Supplemental Methods.

All statistical analyses were performed using the open source software R 3.2. In the 36 

participants that had samples at both time points, the peak area of each feature was log2-

transformed and compared between TB-IRIS and non-IRIS groups for each time point 

separately using the R package limma (Ritchie et al., 2015; Smyth, 2004) (Supplemental 

Methods). The p-values were adjusted for false discovery rate (Benjamini and Hochberg, 

1995). Features with significantly altered levels (p < 0.05 and log2 fold change [log2FC] ≥ 

0.58) between TB-IRIS and non-IRIS were used for pathway analysis. Principal 

Components Analysis (PCA) was also performed (Supplemental Methods). Differences in 

sex and probable tuberculosis between non-IRIS and TB-IRIS were evaluated with Fisher’s 

exact test.

Pathway analysis

In order to identify metabolic pathways that differed between the TB-IRIS and non-IRIS 

groups, pathway analysis was performed with MetaboAnalyst 3.0 (Xia et al., 2015; Xia and 

Wishart, 2011) (http://www.metaboanalyst.ca/). Prior to this analysis, the accurate mass of 

each feature that differed significantly between the TB-IRIS and non-IRIS groups was 
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queried against the Human Metabolome Database (HMDB, www.hmdb.ca) (Wishart et al., 

2009) (mass error tolerance of +/− 10 ppm). The lists of putative metabolites generated by 

HMDB were imported into MetaboAnalyst and mapped to the Kyoto Encyclopedia of Genes 

and Genomes (KEGG) for over-representation analysis (Xia and Wishart, 2010) and 

pathway topology analysis. Over-representation was evaluated using hypergeometric tests 

and p values were adjusted using the Holm-Bonferroni correction (Dunn, 1961). Metabolic 

pathways with adjusted p values lower than 0.05 were considered significantly enriched. The 

pathway topological analysis was based on the relative betweenness centrality (Aittokallio 

and Schwikowski, 2006) and the pathway impact value threshold was set to >0.10 (Liao et 

al., 2012; Wang et al., 2012). Pathway impact values closer to 1.0 indicate a more perturbed 

pathway.

Predictive LASSO modeling

To determine potential diagnostic or prognostic metabolic signatures in the plasma of 

participants that developed TB-IRIS, predictive models were built by fitting separate 

LASSO regression models to all metabolites with differential abundances between TB-IRIS 

and non-IRIS groups at study entry and during the TB-IRIS window. Metabolite peak areas 

were log2-transformed and standardized as described in the data processing and statistical 

analysis section. A training set consisting of 64% of the 36 participants with a sample at 

both time points was randomly selected (n = 23); the models were tested on all samples not 

used for building the model (n varies depending on time point). Modeling was implemented 

using the R package glmnet (Friedman et al., 2010).

Results

Participant characteristics

Participant clinical and demographic characteristics are summarized in Table 1. Although 

there were more women in the non-IRIS group (50% and 61% at study entry and TB-IRIS 

window, respectively) than in TB-IRIS group (36% and 41%at study entry and TB-IRIS 

window, respectively), this was not statistically significant at either time point (p = 1 and 

0.16, respectively). The groups were similar, except that the number of participants with 

probable TB in the non-IRIS group (55% and 61% at study entry and TB-IRIS window, 

respectively) was significantly higher than in the TB-IRIS group (12% and 9% at study entry 

and TB-IRIS window) at the TB-IRIS window (p = 0.32 and 0.03, respectively). The 

majority of the plasma samples from non-IRIS and TB-IRIS groups at study entry (red 

circles) were collected before the start of study-provided ART (week zero) (13 [65%] out of 

20 for non-IRIS and 21 [84%] out of 25 for TB-IRIS) (Figure 1A and B). For the TB-IRIS 

group, that time period between the diagnoses of TB-IRIS (black circle; assumed as the 

“onset” of TB-IRIS) from the time of plasma collection at TB-IRIS window (blue circle) 

was very different for each participant (Figure 1B). Only two plasma samples from TB-IRIS 

group were collected at the clinic visit when TB-IRIS symptoms were identified, all other 

plasma samples for the TB-IRIS window were collected after the diagnosis of TB-IRIS.
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Exploratory metabolomics study

LC-MS data of TB-IRIS and non-IRIS groups at both time points were processed together 

by XCMS. As a result, the same number of totals features were extracted for TB-IRIS versus 

non-IRIS groups at the study entry and at TB-IRIS window (14,888 features for the positive 

ion mode data and 2,610 features for the negative ion mode data). After applying the 

filtering criteria (Supplemental Methods), only 3628 features and 343 features from the 

positive and negative ion mode data, respectively, were selected for further statistical 

evaluations.

Statistical analysis showed that 479 features (positive ion mode) and 29 features (negative 

ion mode) displayed significantly altered levels in the plasma (p < 0.05 and log2FC ≥ 0.58) 

of TB-IRIS versus non-IRIS participants at study entry. The number of features that were 

higher and lower in each mode and at each time point can be seen in Table 2. A Venn 

diagram shows that 219 features and 9 features exhibited differential levels between TB-

IRIS and non-IRIS groups at both time points in positive and negative modes, respectively 

(Figure 2). In contrast, 260 features presented a significant log2FC only at the study entry, 

while 470 features significantly differed only at TB-IRIS point (positive ion mode, Figure 

2A). Likewise, with the negative ion mode data, 20 features were significantly altered only 

at the study entry and 34 features only during the TB-IRIS window (Figure 2B).

Principal component analysis (PCA) performed with all features retained by the filtering 

criteria, which included features that were not significantly different, showed no clear 

separation between TB-IRIS and non-IRIS groups at study entry and at TB-IRIS window for 

both ionization modes (Figures 3 and 4). However, a PCA performed only with features that 

significantly differed between TB-IRIS and non-IRIS groups revealed separation between 

both groups at study entry and at the TB-IRIS window (Figures 3 and 4). This suggests that 

features with p < 0.05 and log2FC ≥ 0.58 can be used to distinguish participants that 

developed TB-IRIS from the ones that did not.

Pathway analysis

Evaluation using MetaboAnalyst (Xia et al., 2015) of potentially altered metabolic pathways 

revealed 13 KEGG pathways present at the study entry time point. Over-representation 

analysis showed that only arachidonic acid metabolism exhibited a significant number of 

metabolites that matched to this pathway (Table 3 and Figure 5A). However, topology 

analysis showed that the metabolites found in arachidonic acid metabolism had a low impact 

value (0.044). On the other hand, the results of topology analysis demonstrated that 

glycerophospholipid metabolism displayed the greatest impact value (0.228) followed by 

linoleic acid metabolism (0.114) (Table 3).

During the TB-IRIS window, 11 KEGG pathways were mapped, but none of them had a 

significant number of matched metabolites (Table 3 and Figure 5B). Topology analysis 

showed that the metabolic pathways with highest impact values were sphingolipid 

metabolism (0.1402), linoleic acid (0.114) and glycerophospholipid metabolism (0.103).
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Predictive LASSO model

LASSO regression models were fitted to the randomly selected training set of 23 

participants for whom we had samples at both time points. Peak areas of metabolites were 

transformed as previously described. Separate models were constructed for the study entry 

and TB-IRIS window data. The LASSO model training with the LC-MS data determined 

which features could distinguish TB-IRIS versus non-IRIS patient samples. Our pathway 

analyses indicated major contributions from arachidonic acid, linoleic acid and 

glycerophospholipid metabolism in the separation of TB-IRIS versus non-IRIS patient 

samples. The metabolites of these pathways are detected more robustly by MS as anions. 

Thus, the LC-MS negative-ion mode data was targeted for predictive model development 

and testing.

Using the LC-MS negative-ion data, the LASSO analysis identified 8 features as being 

nearly perfectly predictive on a test group at the study entry time point (sensitivity for TB-

IRIS = 0.92, specificity = 1.00) and 6 features as nearly perfectly predictive on a test group 

for the TB-IRIS window (sensitivity = 0.89, specificity = 1.00). The high classification 

accuracy supports a strong potential for a predictive biosignature. Although, a test group of 

samples was withheld from model development, it must be noted that these test samples 

were used in the identification of the initial biosignatures. Thus, the models may be subject 

to some overfitting. Of note, the majority of features were not identified after interrogation 

against HMDB database (Table 4). Further investigation is needed to define the structures of 

these metabolites and additional patient samples are required to further test the TB-IRIS 

versus non-IRIS classification models.

Discussion

This proof-of-concept study identified several host metabolites as well as metabolic 

pathways that were perturbed in TB-IRIS patients compared to a non-IRIS cohort, 

suggesting that metabolic profiling has the potential as a new tool for early diagnosis of TB-

IRIS.

Our findings also support the concept that immune-inflammatory responses are linked with 

metabolic alterations (Ganeshan and Chawla, 2014). We observed a limited number of 

metabolic pathways involved at study entry and in the TB-IRIS window. Pathway analysis 

performed by MetaboAnalyst provided an exploratory tool that integrated over-

representation and pathway topology analysis (Xia et al., 2015) to assess pathways that were 

perturbed in TB-IRIS patients. The over-representation analysis evaluated whether a 

particular pathway was statistically more represented than others (Goeman et al., 2004), 

while topology analysis evaluated the relative importance of the metabolites in a metabolic 

pathway based on their relative locations in a pathway (Aittokallio and Schwikowski, 2006). 

Pathway analysis suggests that arachidonic acid metabolism was significantly enriched at 

study entry, but was not perturbed per the topology analysis. Our search in the HMDB 

database indicated that, at study entry, hydroxyeicosatetraenoic acids (HETEs) were 

significantly increased in the TB-IRIS group. HETEs have a limited role in arachidonic acid 

metabolism, which explains why this pathway was not perturbed despite being significantly 
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enriched in the TB-IRIS group, since metabolites with a peripheral position in a specific 

pathway will trigger a lower MetaboAnalyst impact score for that pathway.

Related to arachidonic acid metabolism, linoleic acid metabolism was also altered in TB-

IRIS patients at study entry and in the TB-IRIS window of time. Linoleic acid is another ω6-

polyunsaturated fatty acid (PUFA) that serves as a precursor for arachidonic acid (Choque et 

al., 2014). In addition, linoleic acid gives rise to a specific series of oxidized mono-

unsaturated and poly-unsaturated fatty acids (Santoro et al., 2013). An evaluation of the 

putative structures identified by interrogation of the HMDB database indicated increased 

levels of the 9-Hydroxy-octadecadienoic (9-HODE) precursor (Choque et al., 2014), and 9-

Hydroperoxy-octadecadienoic (9-HPODE), both products of linoleic acid oxidation. 9-

HODE has been shown to elicit strong pro-inflammatory activity in the skin (Hattori et al., 

2008) and, therefore, greater production of 9-HODE could be postulated to enhance the 

immune-inflammatory response in TB-IRIS. 9-HPODE is also a constituent of the low 

density lipoproteins oxidized by human monocytes (Folcik et al., 1995) and increased levels 

of this compound might indicate higher oxidative stress in TB-IRIS patients. Although HIV-

TB co-infected patients have a higher oxidative stress than HIV mono-infected patients 

(Awodele et al., 2012), it is unknown whether TB-IRIS patients experience more oxidative 

stress.

Collectively, the results of our study provide evidence that PUFA metabolism is altered in 

patients that develop TB-IRIS as compared to the patients without TB IRIS. Such a result is 

not surprising as the PUFAs give rise to lipid mediators such as prostaglandins, leukotrienes, 

lipoxins, and resolvins that have pro-inflammatory and pro-resolving activities (Spite et al., 

2014). Bell et al. recently demonstrated via proteomic analyses that stimulation of 

mononuclear cells from TB-IRIS subjects with M. tuberculosis antigens produced an 

inflammatory response with higher magnitude and a greater number of inflammation and 

immune pathways activated (Bell et al., 2017). Thus, altered PUFA metabolism would be 

expected based on the conclusions derived from proteomic analyses. Additionally, in TB-

IRIS there is an abrupt activation of a pro-inflammatory Th1 response (Andrade et al., 

2015), as observed in leprosy patients with type 1 reactions. We recently found leprosy type 

1 reactions were associated with an inversion of the pro-resolving and pro-inflammatory 

lipid mediators (Silva et al., 2017). Together, with our current study, these findings provide 

support for additional studies that specifically target the role of PUFA metabolism and lipid 

mediators in the pathogenesis of TB-IRIS. Alterations in glycerophospholipid and 

sphingolipid metabolism during the TB-IRIS window were also observed. The reported 

involvement of these pathways with inflammation in others diseases, such as atherosclerosis 

(Dang et al., 2016) and Alzheimer’s disease (Han et al., 2011), also make them interesting 

targets for further study in TB-IRIS.

Evaluation of the diagnostic or prognostic potential of metabolite profiling by LASSO 

modeling revealed a small set of metabolites identified in the LC-MS negative-ion data as 

potential signatures for TB-IRIS patients. Others have demonstrated that a biomarker 

signature is more specific and accurate than the use of a single metabolite for making 

predictions (Maertzdorf et al., 2014). Thus, the metabolite set revealed by LASSO for both 

time points might be able to predict and identify patients with TB-IRIS. However, it is 
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important to highlight that our LASSO modeling was performed with a small sample size 

and with samples used for the original selection of differentiating features. Additional 

studies with a larger number of patients are needed to confirm the utility of our metabolic 

signatures as a diagnostic tool for TB-IRIS. Such studies would need to include plasma from 

patients with other clinical illnesses including IRIS in HIV patients co-infected with other 

pathogens. Such studies would not only assess the specificity of a TB-IRIS metabolic 

signature, but would also allow evaluation of the overlap or dissimilarity in the metabolic 

pathways altered with the various co-infections of HIV that are associated with IRIS.

Another limitation is that a few participants were missing samples for either the study entry 

or the TB-IRIS window, lowering the number of samples available for statistical tests and 

modeling. In addition, the window of TB-IRIS diagnostic time point was rather broad and, 

therefore, the samples were not necessarily drawn at the point of maximum symptoms. This 

was unavoidable since the A5221 protocol required samples to be collected as soon as 

possible after TB-IRIS presentation. Thus, the majority of plasma samples collected from 

the participants were close to the time of diagnosis of TB-IRIS. Since TB-IRIS takes 3-18 

months to resolve (Massiliano and Sandro, 2016), all plasma samples were collected when 

the individuals were experiencing TB-IRIS symptoms. In addition, the inclusion of probable 

TB is in accordance with clinical practice, but we acknowledge that a microbiologically 

confirmed diagnosis would have been more rigorous. Although the TB-IRIS group had 

lower numbers of women in comparison with the non-IRIS group, the difference was not 

statistically significant (p = 0.61) and there was no evidence of sex influence in the 

development of TB-IRIS (Karmakar et al., 2011; Lawn et al., 2007). In addition, we were 

able to use clinical samples from individuals that were similar with respect to HIV viral load 

and CD4 cell count at baseline.

The current work provides evidence that TB-IRIS patients have a distinct metabolic profile 

from patients without TB-IRIS and that these differences in TB-IRIS metabolism might be 

used to discover biosignatures that can predict and diagnose the development of TB-IRIS. 

Properly designed prospective clinical trials that include a larger number of participants will 

be crucial to confirm and validate our findings. In conclusion, our findings open new 

avenues for the discovery of metabolic biomarkers signatures for TB-IRIS.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Time distribution of TB-IRIS and non-IRIS samples used. The time points (in weeks) that 

the plasma samples from the non-IRIS (A) and TB-IRIS (B) groups were collected with 

respect to the beginning of antiretroviral therapy (ART). Time point zero represents the 

beginning of ART. Red circles represent the first time in which the plasma samples were 

collected (Study Entry). None of the participants from the non-IRIS and TB-IRIS groups 

exhibited clinical symptoms of TB-IRIS at study entry. Small black circles represent the 

time points that participants from the TB-IRIS group were diagnosed with TB-IRIS (TB-

IRIS “Onset”). Blue circles denote the time point for plasma collection within the TB-IRIS 

window (the time when TB-IRIS was diagnosed, with timing for the non-IRIS controls 

matched at the same time point). None of the participants from the non-IRIS group exhibited 

clinical symptoms of TB-IRIS.
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Figure 2. 
Depiction of TB-IRIS differentiating molecular features (MFs) that were common or 

specific based on sample time point collection. The Venn diagrams show the overlap 

between the Study Entry and TB-IRIS Window time points for MFs with significant 

abundance differences (log2 fold change (FC) ≥0.58 and p < 0.05) between the TB-IRIS and 

non-IRIS groups. (A) MFs identified with the positive ion mode data. (B) MFs identified 

with the negative ion mode data.
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Figure 3. 
Principal component analysis (PCA) of molecular features (MFs) that differentiate the TB-

IRIS and non-IRIS groups at Study Entry (before the onset of TB-IRIS). PCA was 

performed with MFs identified in the negative (A) and positive (B) ion mode data. The LC-

MS data files were analyzed by XCMS software and MFs that were submitted for further 

statistical analyses were selected based on filtering criteria (Supplemental Methods). The 

level of separation provided by all filtered MFs is shown in the PCA panels on top. The level 

of separation provided by those filtered MFs that differed significantly (log2 fold change 

(FC) ≥ 0.58 and p < 0.05) in abundance between TB-IRIS and non-IRIS groups are shown in 

the lower PCA panels.
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Figure 4. 
Principal component analysis (PCA) of molecular features (MFs) that differentiate the TB-

IRIS and non-IRIS groups at TB-IRIS Window. PCA was performed with MFs identified 

from the negative (A) and positive (B) ion mode data. The LC-MS data files were analyzed 

by XCMS software and MFs that were used for further statistical analysis were selected 

based on filtering criteria (Supplemental Methods). The level of separation provided by all 

filtered MFs is shown in the PCA panels on top. The level of separation provided by those 

filtered MFs that differed significantly (log2 fold change (FC) ≥ 0.58 and p <0.05) in 

abundance between TB-IRIS and non-IRIS groups are shown in the lower PCA panels.
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Figure 5. 
Metabolic pathways predicted to be altered between participants that presented with TB-

IRIS versus those that did not. Summary plots of metabolic pathways predicted to be altered 

between the TB-IRIS and non-IRIS participants based on enrichment (y-axis) and topology 

(x-axis) analyses are shown. The significance and impact of specific metabolic pathways 

differs for TB-IRIS versus non-IRIS pathways at the two time points evaluated. Study Entry 

(A) and TB-IRIS Window (B). −log(p) is the negative natural log of the raw p values (p 

values not corrected for multiple comparison analysis). Only pathways with p < 0.05 and/or 

pathway impact value > 0.10 are marked. g = glycerophospholipid metabolism; l = linoleic 

acid metabolism; a = arachidonic acid metabolism; s = sphingolipid metabolism.
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Table 4

Molecular Features that Predict TB-IRIS for Study Entry and TB-IRIS Window Time Points.

Molecular Features (m/z-retention time pair) Human Metabolome database hits

Study Entry Time Point

121.037-6.17 No hits

126.993-9.72 No hits

200.129-7.37 Capryloylglycine

N-(5-methyl-3-oxohexyl)alanine

Valproylglycine

2-(acetylamino)Octanoic acid

265.178-14.95 No hits

295.170-11.41 Ethinyl estradiol

Exemestane

5-methoxy-1,7-diphenyl-3-heptanone

17-alpha-ethinyl estradiol

343.224-13.09 No hits

357.278-17.03 1-phenyl-1,3-octadecanedione

Tetracosapentaenoic acid (24:5n-3)

Tetracosapentaenoic acid (24:5n-6)

568.395-17.21 No hits

TB-IRIS Window Time Point

126.993-9.72 No hits

158.116-6.46 No hits

288.938-14.34 No hits

411.382-17.9 No hits

550.241-8.66 Endoxifen O-glucuronide

1238.748-12.32 No hits

This table shows the putative identification for each molecular feature (MF) identified by LASSO analysis obtained through the interrogation of the 
accurate mass from each MF against Human Metabolome Database (HMDB). Mass error tolerance of +/−10 ppm.
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