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Abstract
This paper deals with mathematical modelling and analysis of a SEIQR model to study the dynamics of COVID-19 consider-
ing delay in conversion of exposed population to the infected population. The model is analysed for local and global stability 
using Lyapunov method of stability followed by Hopf bifurcation analysis. Basic reproduction number is determined, and 
it is observed that local and global stability conditions are dependent on the number of secondary infections due to exposed 
as well as infected population. Our study reveals that asymptomatic cases due to exposed population play a vital role in 
increasing the COVID-19 infection among the population.
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Introduction

Experts from Wuhan, Hubei Province of China reported 
an unidentified case of pneumonia in late December 2019 
which was later on declared as novel coronavirus pneumo-
nia (NCP) caused by a novel coronavirus (CoV) of coro-
navirus family (Huang et al. 2020). Disease caused by this 
coronavirus was found to be highly contagious leading to 
large number of deaths throughout the world. The World 
Health Organization (WHO) called it a pandemic and offi-
cially named the disease ‘COVID-19’ (Huang et al. 2020). 
Although source of the infection of this pandemic is still 
unclear, its initial symptoms resemble Severe Acute Respira-
tory Syndrome (SARS). This virus is highly infectious for it 
is found to be transmitted through droplets and close contact 

and poses a great threat to health and safety throughout the 
world. Whole world is looking forward to control the spread 
of COVID-19 and reduce the mortality rate as soon as pos-
sible. Major challenges that the world is facing in control-
ling the disease are the unknown mechanism of the virus 
spread and the absence of specific antiviral drugs. Hence, 
only way to control this alarming situation is to check the 
source of infection and block the route of transmission of 
infection using existing drugs (Wang et al. 2019). Prevention 
from exposure to virus and immunity boosting is imperative 
to control the disease from spreading. As a precautionary 
measure, most of the governmental agencies have imposed 
lockdown to maintain social distance. This procedure is an 
outstanding step to control the spread of the disease. Still, 
the complete lockdown may cause financial crisis for the 
near future. Although lockdown in high dense countries 
may reduce the transmission rate of infection, yet complete 
control may not be achieved. Hence keeping in view of eco-
nomic status of a country, a full lockdown for a long tenure 
is not desirable at all in any circumstances (Mandal et al. 
2020). Hence, government must spread awareness among 
the population to boost up their immunity and prevent them-
selves from catching the infection while working outside 
their homes. Strengthening of immunity may cause delay in 
entering into infectious stage after acquiring infection and a 
fairly large value of delay may even result into interruption 
of the disease at exposed level. Hence time delay plays a 
significant role in the dynamics of disease spread. We have 
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incorporated this delay factor in our model by introducing 
time delay, which is novel feature of our work in studying 
the disease through mathematical modelling.

Mathematical modelling of infectious diseases has been 
used as a significant tool in understanding the dynamics of 
diseases and predicting the size of infectious population. 
A suitable mathematical model helps the government and 
healthcare workers in framing their policies by predicting 
the behavioural aspect of the disease. Bernoulli (1760), 
Hamer (1906), Ross (1916), Kermack and McKendrick 
(1927), Keeling and Rohani (2008), Wang and Zhao 2004, 
Buonomo et al. (2008), Zhou et al. (2014), Jana et al. (2016), 
Li et al. 2018 and Zegarra and Hernandez (2018) contributed 
the major works on mathematical epidemiology. Mathemati-
cal modelling of prevailing COVID-19 research is ongoing 
at a significant pace to combat the disease. Many modellers 
Mandal et al. (2020), Kucharski et al. (2020), Ndariou et al. 
(2020), Prem et al. (2020), Mizumoto and Chowell (2020), 
Liu et al. (2020), Fanelli and Piazza (2020), Ribeiro et al. 
(2020) and Chakraborty and Ghosh (2020) have proposed 
mathematical models on COVID-19 and disseminated their 
ideas to control it. Liang (2020) compared the characteris-
tics of COVID-19 with those of SARS and MERS. They 
observed that the growth rate of COVID-19 is twice that of 
the SARS and MERS, and the doubling cycle of COVID-19 
is two to three days, implying that without human inter-
vention, the number of COVID-19 patients would double 
in two to three days. Marimuthu et al. (2020) studied the 
impact of COVID-19 on TB patients and found that on the 
peak of epidemic a large number of Coronavirus infectious 
will include TB patients. Mandal et al. (2020) formulated a 
mathematical model introducing a quarantine class and gov-
ernmental intervention measures to mitigate disease trans-
mission. They found that the most critical factor in achieving 
disease control is the reduction of the contact of exposed and 
susceptible humans. Ibarra-Vega (2020) studied SIR math-
ematical model containing COVID-19 infection and stud-
ied the effects of quarantine on the disease control. In this 
continuation, we propose a five-dimensional mathematical 
model containing susceptible, exposed, infected, quarantined 
and recovered population. We have also considered delay in 
transfer of individuals from exposed class to infected class, 
which is not yet considered in any of the previous models 
to the best of our knowledge. Time delay in entering into 
infectious population can be achieved by adopting healthy 
life style and strengthening one’s own immunity that even 
after getting infection individual takes some time to combat 
with the disease and does not enter into the infectious class 
rapidly. Hence time delay plays a significant role in study-
ing the dynamics of disease spread. Effect of quarantine on 
the controlling the spread of disease is also incorporated 
and transmission of infection from both the exposed and 
infected class is taken into account. Since people do not 

acquire immunity after recovery, we have also considered 
the loss of immunity after recovery from quarantined and 
recovered population to be more realistic.

Mathematical model

COVID-19 has produced a significant burden on the 
healthcare system around the world leading to large num-
ber of mortality rates. Many researchers have studied 
mathematical models on COVID-19 to predict the dynam-
ics of disease and help the government and health care 
system to frame their policies. India is also not untouched 
by this pandemic and already faced two waves of the pan-
demic. Depending on the recent condition, Indian Govern-
ment has adopted quarantine strategy to stop the spread 
of COVID-19 virus. In this section, we presents a SEIQR 
compartment model of COVID-19 (Fig. 1) based on the 
current situation of the disease. Our model is extended 
form of SIR epidemic model given by Kermack and McK-
endrick (1927). We denote susceptible population by S(t), 
exposed population by E(t), infected, quarantined and 
recovered population are denoted by I(t), Q(t) and R(t), 
respectively. We assume that total population of India is 
N(t) and N(t) = S(t) + E(t) + I(t) + Q(t) + R(t) . Exposed 
population refers to the population in incubation period, 
infected population refer to the population who have got 
the infection and showing clinical symptoms of disease. 
Quarantined population refer to the population suspected 
to have disease and hence are separated so that they do 
not transmit infection among the population. Recovered 
population refer to the population who have recovered 
from the disease. We assume that there is influx of popu-
lation in the system at the constant rate A. After getting 
COVID-19 infection, it is assumed that the population is 
ready to spread infection among the population after the 
incubation period of nearly five days. During incubation 
period, population does not show any symptom; therefore 
we assume that population in exposed class is in asympto-
matic stage and after incubation period since, population 
starts showing symptoms of infection; therefore infected 
population is assumed to be in the symptomatic stage of 
the infection. Since COVID-19 spreads by asymptomatic 
as well as symptomatic infection, we assume transmission 
of infection among susceptible population both by exposed 
as well as infected class at the rate � and �1 , respectively. 
After incubation period, exposed population population 
enter into infected population and a fraction of exposed as 
well as infected population is quarantined and get trans-
ferred to the quarantine population. Apart from the natu-
ral deaths of population in each compartment, disease-
related deaths are also considered. While formulating 
the model, we assume that � is the natural death rate of 
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each population and � is the disease-related death rate of 
infected and quarantined population. Moreover, since pop-
ulation does not get permanent immunity after recovery 
from COVID-19, we assume that recovered population and 
quarantined population again are susceptible to disease 
at the rate � and � , respectively. � is the transfer rate of 
exposed population to infected population and �1 , �2 are the 
transfer rate of exposed population to infected and quaran-
tined population, respectively. In addition, India has recov-
ery rate of 35% from COVID 19; we assume that infected 
and quarantined population get recovered at the rate � and 
� , respectively. Furthermore, since any natural process 
is not instantaneous, there is some delay in manifesting 
clinical symptoms after getting infection; we introduce a 
delay term � in the equation displaying infected population 
dynamics. Keeping the above facts and assumptions in 
mind our model may be described by the following system 
of nonlinear autonomous differential equations:

(1)
dS

dt
=A − �SE − �1SI − �S + �R + �Q,

(2)
dE

dt
=�SE − �E − �E − �1E,

(3)
dI

dt
=�1SI + �E(t − �) − �I − �I − �2I − �I,

(4)
dQ

dt
=�1E + �2I − �Q − �Q − �Q − �Q,

(5)
dR

dt
=�I + �Q − �R − �R,

with initial conditions S(0) > 0 , E(0) ≥ 0 , I(0) ≥ 0 , Q(0) ≥ 0 
and R(0) ≥ 0.

Boundedness of the solutions

The region of attraction of the model system (1–5) with no 
delay is given in the following lemma:

Lemma 3.1 If assumptions of Sect. 2 hold, then solutions of 
the model system (1–5) with no delay are bounded within 
following set

Proof Adding all the equations of model system (1–5) and 
after doing some algebraic calculations, we have

which gives that

which implies that,

This completes the proof of the Lemma 3.1.

Ω =

{
(S,E, I,Q,R) ∶ S + E + I + Q + R ≤ A

�

}
.

(6)
dS

dt
+

dE

dt
+

dI

dt
+

dQ

dt
+

dR

dt

= A − �S − �E − (� + �)I − (� + �)Q − �R,

(7)
dS

dt
+

dE

dt
+

dI

dt
+

dQ

dt
+

dR

dt

≤ A − �(S + E + I + Q + R),

lim
t→∞

sup(S(t) + E(t) + I(t) + Q(t) + R(t)) ≤ A

�
.

Fig. 1  Schematic diagram
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Equilibrium analysis

Model system (1–5) has two non-negative equilibrium point 
in which disease-free equilibrium point (A

�
, 0, 0, 0, 0) exists 

trivially and the existence of endemic equilibrium point 
(S∗,E∗, I∗,Q∗,R∗) is discussed below.

Existence of (S∗,E∗, I∗,Q∗,R∗) : S∗,E∗, I∗, Q∗ and R∗ are 
obtained by solving the system of equations

From Eq. (9), we get

Further, from Eq. (10), we have

Let us take �1 =
[
(� + � + �2 + �) −

(�+�+�1)�1
�

]
 , then 

E∗ = �1I
∗ . Now, from Eq. (11), we have

substituting the value of E∗ , we get

Equation (12) implies that

Let us take �2 =
1

� + �

[
� +

(�1�1+�2)

�+�+�+�

]
 , then R∗ = �2I

∗ . Now, 

from Eq. (8), we have

(8)A − �S∗E∗ − �1S
∗I∗ − �S∗ + �R∗ + �Q∗ = 0,

(9)�S∗E∗ − �E∗ − �E∗ − �1E
∗ = 0,

(10)�1S
∗I∗ + �E∗ − �I∗ − �I∗ − �2I

∗ − �I∗ = 0,

(11)�1E
∗ + �2I

∗ − �Q∗ − �Q∗ − �Q∗ − �Q∗ = 0,

(12)�I∗ + �Q∗ − �R∗ − �R∗ = 0.

(13)S∗ =
(� + � + �1)

�
.

(14)E∗ =

[
(� + � + �2 + �) −

(
� + � + �1

)
�1

�

]
I∗.

(15)Q∗ =
�1E

∗ + �2I
∗

� + � + � + �
,

(16)Q∗ =
(�1�1 + �2)I

∗

� + � + � + �
.

(17)
R∗ =

(�I∗ + �Q∗)

� + �

=
1

� + �

[
� +

(�1�1 + �2)

� + � + � + �

]
I∗

which implies that

Hence, interior equilibrium point of the system (1–5) exists 
if following inequalities hold:

Basic reproduction rate by NGM method

We find reproduction ratio through use next-generation 
matrix approach given by Van Den Driessche and Wat-
mough (2002). Our system can be written as Ẋ = R1 − R2 , 
where Ẋ = [

dS

dt

dE

dt

dI

dt

dQ

dt

dR

dt
],

Now, we compute the Jacobian R1 and R2 from R∗
1
 and R∗

2
 , 

respectively, for the classes containing infected population 
E, I and Q.

(18)
A − (� + � + �1)�1I

∗ −
�1(� + � + �1)I

∗

�

−�(� + � + �1)

�
+ ��2I

∗ +
(�1�1 + �2)�I

∗

� + � + � + �
= 0,

(19)I∗ =
A −

�(�+�+�1)

�

(� + � + �1)�1 +
�1(�+�+�1)

�
− ��2 −

�(�1�1+�2)

(�+�+�+�)

.

(20)(𝜇 + 𝛼 + 𝛾2 + 𝜃) >

(
𝜂 + 𝜇 + 𝛾1

)
𝛽1

𝛽
,

(21)

[
A −

𝜇(𝜂 + 𝜇 + 𝛾1)

𝛽

]

[
(𝜂 + 𝜇 + 𝛾1)𝜉1 +

𝛽1(𝜂 + 𝜇 + 𝛾1)

𝛽

−𝛿𝜉2 −
𝜎(𝛾1𝜉1 + 𝛾2)

(𝜇 + 𝜋 + 𝜎 + 𝛼)

]
> 0.

(22)

R∗
1
=

⎡
⎢⎢⎢⎢⎢⎣

�SE

�1SI

0

0

0

⎤
⎥⎥⎥⎥⎥⎦

,

R∗
2
=

⎡⎢⎢⎢⎢⎢⎣

(� + � + �1)E

−�E + (� + � + �2 + �)I

�1E − �2I + (� + � + � + �)Q

−�I − �Q + (� + �)R

−A + �SE − �1SI + �S − �R − �Q

⎤⎥⎥⎥⎥⎥⎦

.



3205Modeling Earth Systems and Environment (2022) 8:3201–3214 

1 3

where |R2| = (� + � + �1)(� + � + �2 + �)(� + � + � + �).
The basic reproduction number is defined as spectral 

radius of R1R
−1
2

 (Driessche and Watmough 2002). Thus,

where

may be defined as the number of secondary infections pro-
duced by exposed and infectious population, respectively. 
From this we infer that rate of spread of infection among the 
population is dependent on both the exposed and infected 
individuals in the population. Basic reproduction number 
is contributed by both the exposed and infected class since 
mathematical expression for basic reproduction number is 
dependent upon the transmission coefficient of infection 
from both the exposed and infected class. Basic reproduc-
tion number is proportional to larger transmission coefficient 
of infection. Hence, policy makers must take care of the 
density of exposed population in the system as well along 
with infected population.

Local stability of disease free equilibrium 
point

Now, we linearise the model system (1–5) about disease free 
equilibrium point (A

�
, 0, 0, 0, 0) by taking S = s +

A

�
 , E = e , 

I = i , Q = q and R = r , where s, e, i, q and r are small pertur-
bations about the disease-free equilibrium point. After lineari-
sation about disease-free equilibrium point, our model takes 
the following form

(23)

R1 =

⎡
⎢⎢⎣

�S 0 0

0 �1S 0

0 0 0

⎤
⎥⎥⎦
,

R2 =

⎡
⎢⎢⎣

(� + � + �1) 0 0

−� (� + � + �2 + �) 0

�1 − �2 (� + � + � + �)

⎤
⎥⎥⎦

(24)R1R
−1
2

=
1

�R2�
⎡
⎢⎢⎢⎣

�A

�
(� + � + �2 + �)(� + � + � + �) 0 0

�1A�

�
(� + � + � + �)

�1A

�
(� + � + �1)(� + � + � + �) 0

0 0 0

⎤
⎥⎥⎥⎦
,

(25)
R0 =max

{
�A

�(� + � + �1)
,

�1A

�(� + � + �2 + �)

}

=max{Re,Ri},

(26)Re =
�A

�(� + � + �1)

(27)Ri =
�1A

�(� + � + �2 + �)
,

(28)
ds

dt
= −

A�

�
e −

A�1

�
i − �s + �r + �q,

(29)
de

dt
=
A�

�
e − �e − �e − �1e,

Let us consider following semi-positive definite function

After differentiating it with respect to t and substituting the 
values of ṡ, ė, i̇, q̇, ṙ , we get

If we write it as follows

then conditions of local stability of disease-free equilibrium 
point are

(30)
di

dt
=
A�1

�
i + �e − �i − �i − �2i − �i,

(31)
dq

dt
=�1e + �2i − �q − �q − �q − �q,

(32)
dr

dt
=�i + �q − �r − �r.

(33)V =
s2

2
+

e2

2
+

i2

2
+

r2

2
+

q2

2
,

(34)

V̇ = − 𝜇s2 +

(
𝛽A

𝜇
− 𝜂 − 𝜇 − 𝛾1

)
e2 +

(
𝛽1A

𝜇
− 𝛼 − 𝜇 − 𝛾2

)
i2

− (𝜇 + 𝜋 + 𝜎)q2 − (𝜇 + 𝛿)r2 −
𝛽A

𝜇
se −

𝛽1A

𝜇
si

+ 𝛿sr + 𝜎sq + 𝜂ie + 𝛾1qe + 𝛾2qi + 𝜃ri + 𝜋rq,

(35)

V̇ = −
a11

4
s2 + a12se −

a22

3
e2 −

a11

4
s2 + a13si −

a33

4
i2

−
a11

4
s2 + a14sq −

a44

4
q2 −

a11

4
s2 + a15sr −

a55

3
r2

−
a22

3
e2 + a23ei −

a33

4
i2 −

a22

3
e2 + a24eq −

a44

4
q2

−
a33

4
i2 + a34iq −

a44

4
q2 −

a33

4
i2 + a35ir −

a55

3
r2

−
a44

4
q2 + a45qr −

a55

3
r2,
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that is

These conditions infer that the disease-free equilibrium point 
is locally asymptotically stable if above conditions are satis-
fied and Re < 1 , Ri < 1.

Global stability of disease‑free equilibrium 
point

Theorem 7.1 The disease-free equilibrium of the model is 
globally asymptotically stable whenever Re < 1 , Ri < 1.

Proof Consider the following Lyapunov function

(36)

a2
12

<
a11a22

3
, a2

13
<

a11a33

4
, a2

14
<

a11a44

4
,

a2
15

<
a11a55

3
, a2

23
<

a22a33

4
, a2

24
<

a22a44

4
,

a2
34

<
a33a44

4
, a2

35
<

a33a55

3
, a2

45
<

a44a55

3
,

(37)
(
𝛽A

𝜇

)2

<
𝜇

3
(𝜂 + 𝜇 + 𝛾1)(1 − Re),

(38)
(
𝛽1A

𝜇

)2

<
𝜇

4
(𝛼 + 𝜇 + 𝛾2 + 𝜃)(1 − Ri),

(39)𝜎2 <
𝜇

4
(𝜇 + 𝜋 + 𝜎 + 𝛼),

(40)𝛿2 <
𝜇

4
(𝜇 + 𝛿),

(41)𝜂2 <
1

4
(𝜂 + 𝜇 + 𝛾1)(𝛼 + 𝜇 + 𝛾2 + 𝜃)(1 − Re)(1 − Ri),

(42)𝛾2
1
<

1

4
(𝜂 + 𝜇 + 𝛾1)(1 − Re)(𝜇 + 𝜋 + 𝜎 + 𝛼),

(43)𝛾2
2
<

1

4
(𝛼 + 𝜇 + 𝛾2 + 𝜃)(1 − Ri)(𝜇 + 𝜋 + 𝜎 + 𝛼),

(44)𝜃2 <
1

3
(𝛼 + 𝜇 + 𝛾2 + 𝜃)(1 − Ri)(𝜇 + 𝛿),

(45)𝜋2 <
1

3
(𝜇 + 𝜋 + 𝜎 + 𝛼)(𝜇 + 𝛿).

where m1 =
1

�+�+�1
 , m2 =

1

�+�+�2+�
 and m3 = 1 . Differentiat-

ing Eq. (32) with respect to t, we get

after substituting the values of m1, m2, m3, Ė, İ, Q̇ and 
doing some algebraic manipulations, we get

which implies that L̇ ≤ 0 , if following inequalities hold

and L̇ = 0 if and only if E = I = Q = 0 . Hence L is a Lya-
punov function on R if inequalities (49) and (50) satisfied 
by the parameters.

Therefore, the largest compact invariant subset of the set 
where L̇ = 0 is the singleton set {(E, I,Q) = (0, 0, 0)} . Thus, 
it follows by the LaSalle’s invariance principle (LaSalle 
1976) that (E, I,Q) → (0, 0, 0) as t → ∞ . Thus, this proves 
the statement of the theorem.

Local stability of interior equilibrium point

If s, e, i, q and r are small perturbations given to S, E, I, Q and 
R, respectively, such that S = S∗ + s , E = E∗ + e , I = I∗ + i , 
Q = Q ∗ +q and R = R∗ + r , then linearised form of system 
(1–5) about interior equilibrium point ( S∗ , E∗ , I∗ , Q ∗ , R∗ ) is

(46)L = m1E + m2I + m3Q,

(47)L̇ = m1Ė + m2 İ + m3Q̇,

(48)
L̇ ≤ 2

[
Re − 1 + 𝛾1 +

𝜂

𝜇 + 𝛼 + 𝛾2 + 𝜃

]
E

+ 2
[
Ri − 1 + 𝛾2

]
I,

(49)Re < 1 − 𝛾1 −
𝜂

𝜇 + 𝛼 + 𝛾2 + 𝜃
,

(50)Ri < 1 − 𝛾2

(51)
ds

dt
= − �S∗e − �E∗s − �1S

∗i − �1I
∗s − �s + �r + �q,

(52)
de

dt
=�S∗e + �E∗s − �e − �e − �1e,

(53)
di

dt
=�1S

∗i + �1I
∗s + �e(t − �) − �i − �i − �2i − �i,

(54)
dq

dt
=�1e + �2i − �q − �q − �q − �q,

(55)
dr

dt
=�i + �q − �r − �r,
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The variational matrix of this linearised system has the fol-
lowing characteristic equation,

where

h e r e  A11 = ��1 + �1I
∗  ,  A22 = �S∗ − � − � − �1  , 

A33 = �1S
∗ − � − � − �2 − �  ,  A44 = � + � + � + �  and 

A55 = � + �.
Case 1: In absence of delay (� = 0) , Eq. (56) can be 

written as follows

Routh Hurwitz criterion deduce that interior equilibrium 
point will be locally asymptotically stable if following hold,

(56)
e−λ�

[
B1λ

2 + B2λ + B3

]
+ λ5 + B4λ

4 + B5λ
3

+ B6λ
2 + B7λ + B8 = 0,

(57)B1 =���1�1I
∗S∗,

(58)B2 =���1I
∗(�1S

∗(A44 + A55) − �� − ��2),

(59)B3 =���1I
∗(�1S

∗A44A55 − ��2A55 − �(�2� + �A44)),

(60)B4 =A11 + A44 + A55 − A22 − A33,

(61)

B5 =A44A55 + A11A55 + A11A44 − A33A55

− A33A44 − A11A33

+ A22(A33 − A11 − A44 − A55) + I∗S∗�2
1
+ �1I

∗S∗�2,

(62)

B6 =A11A44A55 − A33A44A55 − A33A11A55 − A33A11A44

− A22(A44A55 + A11A55 + A11A44

− A33A55 − A33A44 − A11 ∗ A33)

− �1I
∗(A22�1S

∗ − �1S
∗(A44 + A55) + ��2 + ��)

− ��1I
∗(A33�S

∗ + ��1 − �S∗(A44 + A55)),

(63)

B7 =A22(A33A44A55 − A11A44A55

+ A33A11A55 + A33A11A44)

− A11A33A44A55 − �1I
∗(A22(�1S

∗(A44

+ A55) − ��2 − ��) − �1S
∗A44 ∗ A55

+ ��2A55 + �(�2� + �A44))

− ��1I
∗(A33(�S

∗(A44 + A55 − ��1)

+ ��1A55 + ��1� − �S∗A44A55)),

(64)

B8 =A22(�1I
∗(−�1S

∗A44A55 + ��2A55 + �(�2� + �A44))

+ A11A33A44A55)

− ��1I
∗A33(�S

∗A44A55 − ��1A55 − ��1�),

(65)
λ5 + B4λ

4 + B5λ
3 + (B1 + B6)λ

2 + (B2 + B7)λ + B3 + B8 = 0.

Case 2: In presence of delay (� ≠ 0) , the stability switch may 
occur if the characteristic Eq. (56) has purely imaginary root. 
Let λ = i� be a root of Eq. (56). By substituting this value 
of λ and comparing real and imaginary parts Eq. (56) will 
give following equations,

Now, squaring and adding these equations, we get

If we take �2 = X , then Eq. (72) can be written as

I f  we  t ake ,  F(X) = X5 + (B2
4
− 2B5)X

4  +(B2

5
+ 2B7

−2B4B6)X
3 +(B2

6
+ 2B4B8 − 2B5B7 − B1)X

2 +(B2
7
− 2B6B8 

+2B1B3 − B2
2
)X + B2

8
− B2

3
 and if B2

3
< B2

8
 , then F(0) < 0 and 

because F(X) is a polynomial function with leading coef-
ficient positive, so there will be at least one positive root 
of Eq. (73) and from this root we can find a positive root of 
Eq. (72), say �0 . Hence, if B2

3
< B2

8
 holds then the interior 

equilibrium point will experience a stability switch for some 
𝜏 > 0 and by solving Eqs. (70) and (71) we get the following 
critical value for the time lag

(66)
B4 > 0, B5 > 0, B1 + B6 > 0, B2 + B7 > 0, B3 + B8 > 0,

(67)B4B5 > B1 + B6

(68)
(B4B5 − B1 − B6)(B1 + B6) > (B4B2 + B4B7 − B3 − B8)B4

(69)
(B4B5 − B1 − B6)(B1B2 + B1B7 + B6B2 + B6B7

− B5B3 − B5B8) > (B4B2 + B4B7 − B3 − B8)
2

(70)
(B3 − B1�

2) cos�� + B2� sin�� = −B4�
4 + B6�

2 − B8

(71)
B2� cos�� − (B3 − B1�

2) sin�� = −�5 + B5�
3 − B7�.

(72)

�10 + (B2
4
− 2B5)�

8 + (B2
5
+ 2B7 − 2B4B6)�

6

+ (B2
6
+ 2B4B8 − 2B5B7 − B1)�

4

+ (B2
7
− 2B6B8 + 2B1B3 − B2

2
)�2 + B2

8
− B2

3
= 0.

(73)

X5 + (B2
4
− 2B5)X

4 + (B2
5
+ 2B7 − 2B4B6)X

3

+ (B2
6
+ 2B4B8 − 2B5B7 − B1)X

2

+ (B2
7
− 2B6B8 + 2B1B3 − B2

2
)X + B2

8
− B2

3
= 0.

(74)

�n =
1

�0

sin−1

[
B2�0(−B4�

4
0
+ B6�

2
0
− B8) − (B3 − B1�

2
0
)(−�5

0
+ B5�

3
0
− B7�0)

B2
2
�2
0
+ (B3 − B1�0)

2

]

+
2n�

�0

, n = 0, 1,… .
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Existence and direction of Hopf bifurcation

In this section, we will investigate the conditions of the 
existence of Hopf bifurcation at the critical point of the 
delay. Differentiating Eq. (56) with respect to � , we get

If d(Reλ)
d�

|�=�n ≠ 0 , then the transversality condition for the 
existence of Hopf bifurcation at critical value �n of the delay 
holds and system will experience stability switch at that 
point. Now, we will use normal form method and centre 
manifold theory (Hassard et al. 1981) to investigate the qual-
ity of Hopf Bifurcation. After re-scaling the time t by t

�
 and 

linearising the system (1–5) by transforming S = S∗ + u1 , 
E = E∗ + u2 , I = I∗ + u3 , Q = Q∗ + u4 and R = R∗ + u5 , we 
get the following linearised form:

and remaining nonlinear terms are

L e t  u s  t a k e  � = �n + �0  ,  �0 ∈ ℝ  ,  n ow  fo r 
� = (�1,�2,�3,�4,�5)

T ∈ C([−1, 0],ℝ5) let us define

where

(75)

dλ

d�
|�=�

n

=
λ(B

1
λ2 + B

2
λ + B

3
)e−�0λ − B

7

e−�0λ[�B
1
λ2 + (�B

2
+ 2B

1
)λ + �B

3
+ B

2
] + 5λ4 + 4B

4
λ3 + 3B

5
λ2 + 2B

6
λ
.

(76)
du1

dt
=�[−�s∗u2 − �e∗u1 − �1s

∗u3 − �1i
∗u1

− �u1 + �u5 + �u4,

(77)
du2

dt
=�[�s∗u2 + �e∗u1 − �u2 − �u2 − �1u2],

(78)
du3

dt
=�[�1s

∗u3 + �1i
∗u1 + �u2(t − 1)

− �u3 − �u3 − �2u3 − �u3],

(79)
du4

dt
=�[�1u2 + �2u3 − �u4 − �u4 − �u4 − �u4],

(80)
du5

dt
=�[�u3 + �u4 − �u5 − �u5],

(81)f (u1, u2, u3, u4, u5) = �

⎛
⎜⎜⎜⎜⎜⎝

−�u1u2 − �1u1u3
�u1u2
�1u1u3

0

0

⎞
⎟⎟⎟⎟⎟⎠

.

(82)L�0
(�) = (�n + �0)[F1�(0) + F2�(−1)],

and

Application of Riesz representation theorem implies that 
there exists a matrix having functions of bounded variation 
as its component, say �0(�,�0) for � ∈ [−1, 0] , such that 
for � ∈ C

We take

where � is a Dirac delta function. Now, we define

for � ∈ C1([−1, 0],ℝ5) and for � ∈ C([−1, 0],ℝ5) , we take

Let us define

Then model system (1–5) will be equivalent to following 
operator equation

where ut(�) = u(t + �) for � ∈ [−1, 0] .  Fur ther, for 
� ∈ C1([0, 1], (ℂ5)∗) , we define

(83)F1 =

⎛
⎜⎜⎜⎜⎜⎝

−A11 − �S∗ − �1S
∗ � �

�E∗ A22 0 0 0

�1I
∗ 0 A33 0 0

0 �1 �2 − A44 0

0 0 � � A55

⎞
⎟⎟⎟⎟⎟⎠

(84)F2 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 0

0 � 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

.

(85)L�0
� = ∫

0

−1

d�0(�,�0)�(�).

(86)�0(�,�0) = (�0 + �0)[F1�(�) − F2�(� + 1)],

(87)

P(�0)(�)(�) =

⎧⎪⎨⎪⎩

d�(�)

d�
if � ∈ [−1, 0),

∫ 0

−1
d�0(y,�0)�(y) if � = 0,

(88)

f�0
(�) = f (�0,�) = (�0 + �0)

⎛⎜⎜⎜⎜⎜⎝

−��1(0)�2(0) − �1�1(0)�3(0)

��1(0)�2(0)

�1�1(0)�3(0)

0

0

⎞⎟⎟⎟⎟⎟⎠

.

(89)R(�0)(�)(�) =

{
0 if � ∈ [−1, 0),

f (�,�0) if � = 0.

(90)
dut

dt
= P(�0)ut + R(�0)ut,
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and a bilinear inner product

where �0(�) = �0(�, 0) . Since ±i�0�n are eigenval-
ues of P(0) and P and P∗ are adjoint operators, so 
±i�0�n will also be the eigenvalues of P∗ . We can eas-
ily check that vectors h(�) = (1, h1, h2, h3, h4)

Tei�0�n� and 
h∗(y) = K(1, h∗

1
, h∗

2
, h∗

3
, h∗

4
)Tei�0�ny are the eigenvectors of 

P(0) and P∗ corresponding to the eigenvalue i�0�n and 
−i�0�n , respectively, where

(91)P∗�(y) =

⎧
⎪⎨⎪⎩

−
d�(y)

dy
if y ∈ (0, 1],

∫ 0

−1
d�T

0
(t, 0)�(−t) if y = 0.

(92)

⟨� ,�⟩ = �(0)�(0) − ∫
0

−1 ∫
0

�2

�(�2 − �)d�0(�)�(�2)d�2,

(93)h1 =
�E∗

�0i − A22

h2 =
�1I

∗ + �e−�0�nih1

�0i − A33

(94)h3 =
�1h1 + �2h2

A44 + �0i
, h4 =

�h2 + �h3

�0i − A55

,

(95)

h∗
1
=
�S∗ − �e−�0�nih∗

2
− �1h

∗
3

A22 + �0i
, h∗

2
=

�1S
∗ − �2h

∗
3
− �h∗

4

A33 + �0i
,

(96)h∗
3
=

� + �h∗
4

A44 − �0i
, h∗

4
=

−�

A55 + �0i
,

We can easi ly ver ify that  ⟨h∗(y), h(�)⟩ = 1 and 
⟨h∗(y), h(�)⟩ = 0 . Using the algorithm given by Hassard et al. 
(1981) for the analysis of Hopf bifurcation and following the 
computational process as done by Devi and Gupta (2019), 
we can calculate following coefficients to compute important 
quantities describing the quality of Hopf bifurcation:

where

(97)K =[1 + h
∗
1
h1 + h

∗
2
h2 + h

∗
3
h3 + h

∗
4
h4 + �h∗

2
h1�ne

�0�ni]−1

(98)g20 = 2�nK[�h1(h
∗
1
− 1) + �1h2(h

∗
2
− 1)],

(99)g02 = 2�nK[�h1(h
∗
1
− 1) + �1h2(h

∗
2
− 1)],

(100)g11 = �nK[�(h1 + h1)(h
∗
1
− 1) + �1(h2 + h2)(h

∗
2
− 1)],

(101)

g21 =2�nK

[
�(h∗

1
− 1)

(
h1W

1
20
(0)

2
+ h1W

1
11
(0)

+W2
11
(0) +

W2
20
(0)

2

)

+�1(h
∗
2
− 1)

(
h2W

1
20
(0)

2
+ h2W

1
11
(0) +W3

11
(0) +

W3
20
(0)

2

)]
,

(102)

W20(�) =
ig20

��n
h(0)ei�0�n� +

ig20

3�0�n
h(0)e−i�0�n� + E1e

2i�0�n� ,

(103)W11(�) = −
ig11

�0�n
h(0)ei�0�n� +

ig11

�0�n
h(0)e−i�0�n� + E2,

(104)M2 =

|||||||||||

A11 + 2�0i �S∗ �1S
∗ −� −�

−�E∗ −A22 + 2�0i 0 0 0

−�1I
∗ −�e2�0�ni −A33 + 2�0i 0 0

0 −�1 −�2 A44 + 2�0i 0

0 0 −� −� −A55 + 2�0i

|||||||||||

,

(105)E
(1)

1
=

1

M2

|||||||||||

−�h1 − �1h2 �S∗ −� −�

�h1 −A22 + 2�0i 0 0 0

�1h2 −�e2�0�ni −A33 + 2�0i 0 0

0 −�1 −�2 A44 + 2�0i 0

0 0 −� −� −A55 + 2�0i

|||||||||||

,

(106)E
(2)

1
=

1

M2

|||||||||||

A11 + 2�0i −�h1 − �1h2 �1S
∗ −� −�

−�E∗ �h1 0 0 0

−�1I
∗ �1h2 −A33 + 2�0i 0 0

0 0 −�2 A44 + 2�0i 0

0 0 −� −� −A55 + 2�0i

|||||||||||

,
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(107)E
(3)

1
=

1

M2

|||||||||||

A11 + 2�0i �S∗ −�h1 − �1h2 −� −�

−�E∗ −A22 + 2�0i �h1 0 0

−�1I
∗ −�e2�0�ni �1h2 0 0

0 −�1 0 A44 + 2�0i 0

0 0 0 −� −A55 + 2�0i

|||||||||||

,

(108)

E
(4)

1
=

1

M2

|||||||||||||||

A11 + 2�0i �S∗ �1S
∗ −�h1 − �1h2 −�

−�E∗ −A22 + 2�0i 0 �h1 0

−�1I
∗ −�e2�0�ni −A33 + 2�0i �1h2 0

0 −�1 −�2 0 0

0 0 −� 0 −A55 + 2�0i

|||||||||||||||

,

(109)

E
(5)

1
=

1

M2

|||||||||||||||

A11 + 2�0i �S∗ �1S
∗ −� −�h1 − �1h2

−�E∗ −A22 + 2�0i 0 0 �h1

−�1I
∗ −�e2�0�ni −A33 + 2�0i 0 �1h2

0 −�1 −�2 A44 + 2�0i 0

0 0 −� −� 0

|||||||||||||||

,

(110)M4 =

|||||||||||

A11 �S∗ �1S
∗ −� −�

−�E∗ −A22 0 0 0

−�1I
∗ −�e2�0�ni −A33 0 0

0 −�1 −�2 A44 0

0 0 −� −� −A55

|||||||||||

,

(111)

E
(1)

2
=

2

M
4

|||||||||||||||||

−Re(�h
1
− �

1
h
2
) �S∗ −� −�

−Re(�h
1
) −A

22
+ 2�

0
i 0 0 0

−Re(�
1
h
2
) −�e2�0�n i −A

33
+ 2�

0
i 0 0

0 −�
1

−�
2

A
44
+ 2�

0
i 0

0 0 −� −� −A
55
+ 2�

0
i

|||||||||||||||||

,

(112)

(113)

(114)

(115)

E
(2)

2
=

2

M4

|||||||||||

A11 + 2�0i −Re(−�h1 − �1h2) �1S
∗ −� −�

−�E∗ −Re(�h1) 0 0 0

−�1I
∗ −Re(�1h2) −A33 + 2�0i 0 0

0 0 −�2 A44 + 2�0i 0

0 0 −� −� −A55 + 2�0i

|||||||||||

,

E
(4)

2
=

2

M4

|||||||||||

A11 + 2�0i �S∗ �1S
∗ −Re(−�h1 − �1h2) −�

−�E∗ −A22 + 2�0i 0 −Re(�h1) 0

−�1I
∗ −�e2�0�ni −A33 + 2�0i −Re(�1h2) 0

0 −�1 −�2 0 0

0 0 −� 0 −A55 + 2�0i

|||||||||||

,

E
(5)

2
=

2

M4

|||||||||||

A11 + 2�0i �S∗ �1S
∗ −� −Re(−�h1 − �1h2)

−�E∗ −A22 + 2�0i 0 0 −Re(�h1)

−�1I
∗ −�e2�0�ni −A33 + 2�0i 0 −Re(�1h2)

0 −�1 −�2 A44 + 2�0i 0

0 0 −� −� 0

|||||||||||

.

E
(3)

2
=

2

M4

|||||||||||

A11 + 2�0i �S∗ −Re(−�h1 − �1h2) −� −�

−�E∗ −A22 + 2�0i −Re(�h1) 0 0

−�1I
∗ −�e2�0�ni −Re(�1h2) 0 0

0 −�1 0 A44 + 2�0i 0

0 0 0 −� −A55 + 2�0i

|||||||||||

,
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Now, we can calculate following quantities to investigate 
the direction, stability and period of bifurcating periodic 
solutions at critical value of delay:

and

(116)C1(0) =
i

2�0�n

(
g20g11 − 2|g11|2 −

|g02|2
3

)
+

g21

2
,

(117)
�2 = −

Re(C1(0))

Re

(
dλ(�n)

d�

) ,

(118)�2 =2Re(C1(0)),

From classical bifurcation theorem (Hassard et al. (1981)), 
we deduce that bifurcation periods exist for 𝜏 > 𝜏n(𝜏 < 𝜏n) 
and Hopf bifurcation is supercritical (subcritical) if sign of 
�2 is positive (negative) and if 𝛽2 < 0 ( 𝛽2 > 0 ), then these 
bifurcating periodic solutions are stable (unstable). Further, 
their period increases (decreases) if T2 > 0 (T2 < 0).

(119)
T2 =

−Im(C1(0)) + �2Im

(
dλ(�n)

d�

)

�0�n
.

Table 1  Parameter values for simulation

Parameter Value Unit

A 67447 Person
� 8 × 10−8 Per person per unit time
�1 7.9 × 10−8 Per person per unit time
� 3.95 × 10−3 Per unit time
� 2.66 × 10−1 Per unit time
� 4 × 10−1 Per unit time
� 2 × 10−1 Per unit time
�1 5.379 × 10−1 Per unit time
�2 5.380 × 10−9 Per unit time
� 8 × 10−1 Per unit time
� 4 × 10−1 Per unit time
� 4 × 10−3 Per unit time

Fig. 2  Variation of all population with time

Fig. 3  Variation of infected population with time for different �

Fig. 4  Variation of infected population with time for different �1
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Simulation

In this section, we justify the analytical findings by a set 
of parameters as given below (Table 1):

With the above set of parameters, we observe that con-
ditions of local and global asymptotic stability are satis-
fied. In addition, value of basic reproductions number due 
to exposed population was found to be 1.8418 and that due 
to infected population was observed to be 1.002. Further, 
we draw the graphs between various population with time 
for different parameter values. Figure 2 confirms the local 
asymptotic stability of the system and displays variation 

of each population with time. Figure 2 displays variation 
of infected population with time for different rate of trans-
mission of infection from exposed population, � . Figure 3 
shows variation of infected population size for different 
transmission rate of coefficient of infection from infected 
population, �1 . Figure 4 displays variation of infected pop-
ulation with time for different rate of loss of immunity 
after infection, � . Figure 5 displays variation of infected 
population with time for different rate of quarantining 
exposed and infected population, �1 and �2 . This graph also 
displays that when we are failed to quarantine asympto-
matic exposed population, infected population rises even 
though infected population are quarantined. Further, as �1 
and �2 rise, infected population decrease.

Moreover, we computed the model for delay term � and 
observed that infected population start showing prominent 
oscillation in the equilibrium value after � = 14 . Figure 5 
shows oscillations in the equilibrium value of infected popu-
lation for � = 14 . In Fig. 6, we observe that as value of � 
increases, oscillations become more prominent and also it 
is found that as � increase, infected population decrease.

Discussion

Numerical simulation is done for some hypothetical 
parameter values to determine the behaviour of exposed 
and infected population with time for different values of 
parameters. It is observed that behaviour of population with 
parameters is consistent with the model formulated. Graphs 
for infected and exposed population with time for differ-
ent values of rate of transmission of infection show that 
as transmission rate increases, both the population rise as 
formulated by our model. Further, it is observed that as � 

Fig. 5  Variation of infected population with time for different values 
of �

Fig. 6  Variation of infected population with time for different �1 and 
�2 Fig. 7  Variation of infected populations with time for � = 14
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increases, infected population also rises. This implies that 
more and more population will become infected if reinfec-
tion occurs rapidly after recovery from the disease. Signifi-
cance of quarantining the exposed and infected population 
is depicted through the graphs. It is observed that quar-
antining the population reduce the exposed and infected 
population as depicted by the model. Moreover, simulation 
confirms that quarantining the population in exposed stage 
will play a major role in controlling the spread of infection. 
We have two different forms of basic reproduction number, 
one due to exposed population and the other due to infected 
population. It is observed that basic reproduction number 
due to exposed population in asymptomatic stage is greater 
than that due to infected population in the symptomatic 
stage. This supports the fact that number of secondary infec-
tions of COVID-19 are contributed more by the exposed 
population. Time delay in conversion of population from 
exposed stage to infected stage is studied through numerical 
simulation. Prominent oscillation in the infected popula-
tion is observed if delay is 14 days or more. This may be 
interpreted by stating that as time delay increases although 
people recover but at the mean time oscillations signify that 
number of active cases due to exposed or asymptomatic 
population are more as compared to the infected population; 
therefore, number of secondary infections are significant as 
represented by oscillations in the graph (Figs. 7, 8).

Conclusion

We present a mathematical model on COVID-19 with the 
assumption that infection spread among the population 
by both asymptomatic(exposed) class and symptomatic 

(infected) class. We further assume that there is time delay in 
entering in to the symptomatic stage from the asymptomatic 
stage. We have studied the model by performing equilibrium 
analysis and numerical simulation. Numerical simulation 
results are found to be consistent with the model formulated. 
Basic reproduction number is computed by next-generation 
matrix approach. It is observed that basic reproduction num-
ber is contributed by both the exposed and infected classes. 
In addition, local and global stability analysis of the disease 
free equilibrium point is determined. It is observed that sys-
tem is globally asymptotically stable if basic reproduction 
number due exposed class and infected class are less than 
unity. Furthermore, local stability of endemic equilibrium 
point is studied with and without delay. Conditions of exist-
ence and direction of Hopf bifurcation are determined. 
Critical value of delay is determined analytically at which 
stability switch occurs. Moreover to justify the analytical 
findings and to depict the behaviour of exposed and infected 
population with variation in different parameters, we have 
performed numerical simulation with a set of hypothetical 
parameter values. Numerical study reveals that number of 
secondary infections caused by asymptomatic population 
are higher as compared to symptomatic or infected popula-
tion. It also displays that quarantining of asymptomatic class 
must be done on priority basis as quarantining asymptomatic 
population decreases the infected population at higher rate 
as compared to only quarantining infected or symptomatic 
class. Further, it is observed that time delay plays a sig-
nificant role in determining the infected population size. If 
time delay increases, i.e. if a person remains in asympto-
matic stage for a longer time, recovery takes place instead 
of going to infected stage if immunity of the person is strong 
enough that is why infected population size reduces with 
the increase in delay. However, oscillation observed in the 
infected population size indicates that in the asymptomatic 
stage population produce more infected population along 
with increase in recovered population, thereby causing oscil-
lations in the number of infected population with time.
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