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Neonates, especially those born preterm, are at increased risk of sepsis and

adverse long-term effects associated with infection-related inflammation. Distinct

neonatal immune responses and dysregulated inflammation are central to this unique

susceptibility. The traditional separation of sepsis into an initial hyper-inflammatory

response followed by hypo-inflammation is continually under review with new

developments in this area of research. There is evidence to support the

association of mortality in the early acute phase of sepsis with an overwhelming

hyper-inflammatory immune response. Emerging evidence from adults suggests

that hypo- and hyper-inflammation can occur during any phase of sepsis and that

sepsis-immunosuppression is associated with increased mortality, morbidity, and

risk to subsequent infection. In adults, sepsis-induced immunosuppression (SII) is

characterised by alterations of innate and adaptive immune responses, including, but

not limited to, a prominent bias toward anti-inflammatory cytokine secretion, diminished

antigen presentation to T cells, and reduced activation and proliferation of T cells. It

is unclear if sepsis-immunosuppression also plays a role in the adverse outcomes

associated with neonatal sepsis. This review will focus on exploring if key characteristics

associated with SII in adults are observed in neonates with sepsis.

Keywords: neonates, preterm infant, innate immunity, adaptive immunity, immune cell function, sepsis, infection,

immunosuppression

INFLAMMATION AND SEPSIS—A NEW PARADIGM?

Sepsis, defined as life-threatening organ dysfunction caused by a dysregulated host response to
infection, represents an enormous burden affecting more than 30 million people with potentially
6 million associated deaths per year (1). Until recently, adult sepsis complicated by organ
dysfunction, was termed severe sepsis, but is now represented by an increase in the Sequential
Organ Failure Assessment (SOFA) score, secondary to the infection cause (2). The SOFA
score, based on respiratory, cardiovascular, hepatic, coagulation, renal, and neurological systems,
determines the extent of organ function and an increase of two points or more is associated
with in-hospital mortality of >10% (2). Septic shock is defined as sepsis with circulatory and
cellular/metabolic abnormalities that substantially increase mortality (2). Recent evidence from
critically ill adults with sepsis and septic shock suggests the extent of recovery from sepsis may
depend on the host’s ability to orchestrate both the pro-inflammatory and hypo-inflammatory
responses to achieve immunological homoeostasis following infection (3, 4). Hotchkiss et al.,
described three potential inflammatory responses to sepsis, and acknowledged that the immune
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response to sepsis is determined by many factors, including
pathogen virulence and comorbidities (4). Firstly, at the onset of
sepsis the pro-inflammatory response can dominate, even though
both the pro-inflammatory and anti-inflammatory responses are
initiated, and lead to an overwhelming hyper-inflammatory state
that may cause multiple organ dysfunction and death within 1–2
days. Secondly, in patients with impaired immune responses due
to comorbidities, the hyper-inflammatory phase may be absent
or reduced and a profound anti-inflammatory state may occur,
which may lead to further impaired immunity with increased
risk of nosocomial infections and higher risk of death 10–14
days following sepsis onset. Thirdly, the immune response cycles
between hyper-inflammatory and hypo-inflammatory states and
death can occur in either state. With this response, there is an
increased probability of the patient developing overwhelming
immunosuppression as the infection persists (4).

There is increasing evidence to support the role of
immunosuppression in sepsis (4). Critically ill adults with sepsis
and septic shock may develop sepsis-induced immunosuppression
(SII), a phenomenon of persistent systemic hypo-inflammation
that compromises many immune functions, prevents bacterial
elimination and immune homeostasis (3–7). Importantly, SII
is associated with increased risk of multi-organ failure and
mortality, and ongoing immunosuppression results in prolonged
(10–14 days) susceptibility to secondary viral and bacterial
infections (3–6, 8).

Immunologically, SII in adults is incompletely characterised,
but is commonly associated with altered functions of the
complex network of innate and adaptive immune responses to
infection. Specifically, neutrophils, monocytes, macrophages,
and dendritic cells (DCs) display a prominent shift of phenotype
and function toward an impaired inflammatory response.
This further includes decreased bactericidal defences in
neutrophils (including oxidative burst and low intracellular
expression of myeloperoxidase and lactoferrin), reduced
neutrophil chemotaxis, biased anti-inflammatory cytokine
secretion with an increased interleukin (IL)-10 to tumour
necrosis factor alpha (TNFα) ratio. There is also reduced
expression of the major histocompatibility complex (MHC)
II cell surface receptor human leukocyte antigen-DR (HLA-
DR) and consequently impaired antigen-presenting capacity
of DCs and monocytes (3, 4, 6, 7). Changes to the adaptive
immune response in adults with SII include: reduced activation
of T cells through diminished cell surface expression of
the co-stimulatory molecules CD80 and CD86 on antigen
presenting cells (APCs); inhibition of T cell proliferation due
to expansion of cell populations with immunosuppressive
function, such as immature neutrophils, myeloid-derived
suppressor cells (MDSCs), and regulatory T cells (Tregs);
reduced effector functions of T cells, B cells, and natural
killer cells; and T cell exhaustion, typified by decreased T cell
activation, reduced ability to produce cytokines, and decreased
cytotoxic functions (3, 4, 6, 7). Sepsis-induced apoptosis of
DCs, CD4+ and CD8+ T cells and B cells occurs in primary
immune organs such as blood, bone marrow, spleen, and
thymus, resulting in an overwhelming depletion of immune cells
(3, 4, 6, 7).

The suppressive effect of endotoxin tolerance, induced
by repeat or long-term exposure to bacterial endotoxins,
like lipopolysaccharide (LPS), mediates immune dysfunction
through reprogramming of cell signalling and is associated with
immunosuppression observed in the later-stage of adult sepsis (7,
9). Leukocytes from adult patients with sepsis behave similarly to
in vitro endotoxin-tolerised cells, with a reduced responsiveness
to produce cytokines, especially TNFα, upon re-challenge with
LPS (10). The molecular mechanism is unclear, but Pena and
colleagues have recently identified an endotoxin tolerance gene
signature that may predict sepsis and organ dysfunction in adults
with sepsis (9). Murine macrophages challenged with Gram-
positive bacteria can also induce endotoxin tolerance, termed as
cross-tolerance, to a lesser extent than LPS (11), but no associated
gene signature has yet been reported.

SEPSIS-INDUCED IMMUNOSUPPRESSION
AND THE NEONATE

Neonatal immune development is complex, incompletely
understood and orchestrated by many factors, including
intra- and extra-uterine exposure to antigens and commensal
organisms (12–16). Immune development in infants born
preterm (<37 weeks’ gestation) may be further altered by
perinatal exposures to corticosteroids and antibiotics and the
unique environmental influences associated with prolonged
hospital stay (e.g., mechanical ventilation, use of indwelling
plastic devices, parenteral nutrition, invasive procedures, and
exposure to nosocomial microbes) (14, 15, 17–19).

Despite advances in neonatal care, sepsis remains a significant
cause of morbidity among neonates and is one of the most
common causes of neonatal death, accounting for over four-
hundred and twenty thousand deaths per year (20). Sepsis is a
common complication that affects up to 40% of neonates born
<28 weeks’ gestation (21, 22). Chronic long-term morbidities,
such as lung disease and neurodevelopmental impairment, are
further increased among infants who acquire nosocomial sepsis
(23, 24). Inflammation-related brain injury and the associated
long-term effects are clearly evident in preterm infants with sepsis
(23), and have also been observed in adults with sepsis (25).

The increased risk of sepsis-associated morbidity and
mortality in neonates is largely attributed to immature innate
immune functions resulting in dysregulated pro-inflammatory
responses to systemic infection—often referred to as a “cytokine
storm” (26–30). The mortality rate in infants with sepsis is
10–16%, with 50–57% of neonates die within the first 3 days
of sepsis onset, 12–20% within 4–7 days and 23–39% after 7
days (31, 32). Similar to adults (4), there is strong evidence
to support the association of mortality in the acute phase, i.e.,
within first days of sepsis, with a dysregulated pro-inflammatory
immune response (28–30, 33, 34). However, emerging evidence
suggests that the immature immune response to infection in
neonates is characteristically similar to the endotoxin tolerance
phenotype observed in critically ill adults with sepsis (7, 35).
This is evident despite Gram-positive bacteria being the major
causative organisms in neonatal sepsis (36), unlike in adult sepsis
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(37). In the neonatal setting, the risk of sepsis may be mediated
by a relative inability to initiate appropriate hyper-inflammatory
responses which, along with a predominant hypo-inflammatory
response, actively causes immunosuppression (35). In keeping
with findings in adult SII, Gervassi and colleagues proposed
that the distinct neonatal responses to invasive microbes, as
well as to vaccines, may be at least partly explained by active
immune suppression, such as inhibition of T cell proliferation
and function by Tregs and MDSCs, and the potential for B cells
to skew the immune response toward an anti-inflammatory T
helper 2 response (38).

Sepsis-induced immunosuppression has not yet been defined
in neonates. In adults, SII signifies sepsis severity, septic shock,
and mortality (3, 4, 6, 7). Identifying immunosuppression in
neonates may not be as straight forward for several reasons,
namely: the lack of a globally accepted definition for neonatal
sepsis, including grading of severity; the distinct patterns of
immune development; and the sparse data available on immune
function and response to infection at the time of neonatal sepsis.

Firstly, neonatal sepsis, especially in those born preterm, is
not clearly defined. The recently updated Third International
Consensus Definitions for sepsis and septic shock in adults are
not applicable to children, infants and neonates (2, 39, 40),
and there is no equivalent SOFA score for determining sepsis
severity in neonatal sepsis. Further to this, the international
paediatric consensus definition for sepsis specifically excludes
preterm neonates (39) and performs poorly in term neonates
(40). This has widespread implications not only for reporting
incidence and prevalence of neonatal sepsis, but for clinical
management (accurate diagnosis and appropriate treatment) and
the short- and long-term impact on clinical outcomes (41, 42).
Further to this, the lack of a clear neonatal sepsis definition
creates a substantial barrier to identifying predictive markers for
sepsis, and improving diagnostic accuracy and speed (41, 43).
To date, there is no consensus definition of neonatal sepsis and
the current “gold standard” of positive blood culture plus clinical
symptoms for the definition of “confirmed sepsis” has significant
limitations (41, 44, 45). To further complicate diagnosis, sepsis
can also be classified as “clinical sepsis,” with a negative culture in
a symptomatic newborn (41).

Secondly, development of immunoregulation is distinct in
neonates compared with adults. This includes differences in:
(a) absolute numbers of immune cells (e.g., lower neutrophil
counts and higher natural killer cell counts in neonates) (12,
46, 47); (b) the proportions of immune cell subtypes (e.g.,
higher immature/total neutrophil ratio in neonates) (48, 49),
and (c) levels of various immune plasma proteins (e.g., lower
complement, immunoglobulin, antimicrobial peptide levels in
neonates) (12, 13).

Lastly, there is limited data on neonatal innate immune
responses during sepsis, and studies relating immune function
to sepsis severity are lacking. Neonatal immune studies
commonly utilise cord blood, which is not representative
of the immune system at 1–3 weeks of age, when the
most common form of neonatal invasive infection, late-onset
sepsis (LOS), typically occurs (50). Data available from the
time of sepsis can be limited by low number of neonates

and confounded by multiple factors, such timing of sample
collection, volume of blood sample collection, pathogenesis
of the causative organism, time of sepsis onset [e.g., early-
onset sepsis (EOS) <72 h after birth and LOS >72 h after
birth], and sepsis definition (e.g., confirmed vs. clinical).
Further to this, time from sepsis onset to death is poorly
reported and therefore causative attribution not consistently
possible.

Confirming and describing SII in neonates may be
instrumental in better defining the immune pathophysiology
of neonatal sepsis. This could also aid in the identification
of unique biomarkers that could be of clinical utility for
immunomonitoring, prediction of outcomes, or even targeted
therapeutics. The remainder of this review focusses on
characterising immunosuppression in neonatal sepsis and
their associated clinical implications. The principal immune
functions characterised include cytokine secretion, antigen
presentation, expansion of immunosuppressive cells, effector
cell function, and sepsis-induced immune cell apoptosis.
Information on gestational age (GA), postnatal age at onset of
sepsis, classification (i.e., confirmed and clinical sepsis) and age
at sepsis-related death in many studies were incomplete and may
confound the interpretation. Available data were included in
this review and in Tables 1–5 and Supplementary Tables 1, 2.
For clarity, when neonatal GA was not described in the
publication, we considered any infant born ≥37 weeks’
gestation as term and any infant born <37 weeks’ gestation as
preterm.

INFLAMMATORY CYTOKINE SECRETION
IN RESPONSE TO INFECTION IN ADULTS
AND NEONATES

Circulating Inflammatory Cytokines in
Adult Sepsis
Together, pro- and anti-inflammatory cytokines influence the
innate immune responses to infection (88). Plasma levels of
pro-inflammatory cytokines, including TNFα, IL-6, IL-8, IL-1β,
interferon gamma (IFNγ), and the anti-inflammatory cytokines
IL-10 and IL-4 are elevated in adults with sepsis and septic
shock (52, 56–58, 72, 89)—study details described in Table 1.
Interestingly, those with septic shock had both higher pro-
and anti-inflammatory levels than patients without shock (57),
with the levels of IL-6 and IL-8 positively associated with IL-
10 levels (56), indicating a correlation with sepsis severity.
Further support for the positive association between sepsis
severity and immunosuppression are provided by reports of
increased mortality in septic patients with elevated IL-10 levels
or a high IL-10/TNFα ratio (52, 57–59). Additionally, patients
who regained organ function by day 4 following sepsis onset
had a significantly higher TNFα production capacity compared
to those with ongoing organ failure by day 6 (51). While
there is concomitant secretion of pro- and anti-inflammatory
cytokines during sepsis, the increased ratio of IL-10 to TNFα
is associated with sepsis mortality and immunosuppression (52,
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TABLE 1 | Sepsis-induced immunosuppression—association of secreted cytokine concentration with sepsis severity in neonates and adults with sepsis.

Adult or neonatal GA Cohort sepsis characteristics (n)

and mortality (if applicable)

Time of blood sampling and age at

sepsis

Observation in septic cohort References

TNFα

Adult Organ dysfunction during sepsis: 24

- Organ failure recovery by day 4: 11

- Organ failure ongoing: 13

Blood samples were taken within 24 h of

initial suspicion of sepsis and on hospital

days 4 and 6

Mean (median) age at sepsis 55 (55) years

Increased TNFα production

capacity is associated with organ

failure recovery

(51)

Adult Septic shock: 38

- Survivors: 22

- Non-survivors: 16

Mortality within 28 days after

diagnosis. Time from sepsis onset not

described

Blood samples were taken on days 1–2,

3–4, 5–7, and 8–15 days following

initial suspicion of sepsis

Mean age at sepsis 64 years (95% CI

59–69)

TNFα levels were increased in

non-survivors compared to

survivors, but not significantly

(52)

Term

(GA range 37–42 weeks)

Clinical (n = 10) and confirmed

(n = 3) LOS: 13

- Sepsis: 4

- Severe sepsis: 6

- Septic shock: 3

Blood sample was taken at initial

suspicion of sepsis

Median age at sepsis: 10 days (IQR 7–22

days)

TNFα levels were not associated

with sepsis severity

(53)

Mix of preterm and

Term

(mean GA not described)

Sepsis: 50

(EOS: 41 and LOS: 9)

- Survivors: 33

- Non-survivors:17

Non-sepsis inflammation: 50

Controls: 50

Time from sepsis onset to death not

described

Blood samples were taken at sepsis

evaluation (time 0) and on days 1 and 2

Age at sepsis not described

TNFα was significantly elevated

in non-survivors, compared to

survivors, at time 0, but not on

days 1 or 2

(54)

Mix of preterm and

Term

(mean GA 35.8 ± 4.1)

Confirmed sepsis: 26

(EOS n = 3 and LOS n = 13)

- Survivors: 17

- Non-survivors: 9

Controls: 29

Mortality:

EOS deaths <2 days: 5 LOS deaths

>7 days: 4

Time from sepsis onset to death not

described

Blood samples were taken at sepsis

evaluation before antimicrobial therapy

(time 0) and on days 3 and 7

Mean (±SD) age at sepsis:

EOS 1.9 (±1.1) days

LOS 20.6 (±8.4) days

TNFα significantly increased

progressively during sepsis in the

non-survivors

TNFα significantly decreased

progressively during sepsis in the

survivors

(55)

IL-6

Adult Septic shock: 20

SIRS: 11

Healthy controls: 10

Blood sample was taken within 24 h initial

suspicion of sepsis

Age at septic shock: 68 years

IL-6 levels higher in septic shock

than controls. Increased levels of

IL-6 were positively associated

with IL-10 levels in septic shock,

indicating correlation with sepsis

severity

(56)

Adult Sepsis:32

- Sepsis: 19

- Septic shock: 13

Healthy controls: 15

Blood sample was taken at initial

suspicion of sepsis

Mean age (±SD) at sepsis:

70.8 (±12.7) years

Significantly elevated IL-6 levels

in septic patients compared to

controls Significantly

elevated levels in septic shock

compared to sepsis without

shock

(57)

Term

(GA range 37–42 weeks)

Clinical (n = 10) and confirmed

(n = 3) LOS: 13

- Sepsis: 4

- Severe sepsis: 6

- Septic shock: 3

Blood sample was taken within 24 h initial

suspicion of sepsis

Median (IQR) age at sepsis:

10 (7–22) days

Increased IL-6 levels are

associated with septic shock

(53)

Mix of preterm and

Term

(mean GA 35.8 ± 4.1)

Confirmed sepsis: 26

(EOS n = 13 and LOS n = 13)

- Survivors: 17

- Non-survivors: 9

Controls: 29

Mortality:

EOS deaths <2 days: 5

LOS deaths >7 days: 4 Time from

sepsis onset to death not described

Blood samples were taken at sepsis

evaluation before antimicrobial therapy

(time 0) and on days 3 and 7 following

Mean (±SD) age at sepsis:

EOS 1.9 (±1.1) days

LOS 20.6 (±8.4) days

IL-6 significantly increased

progressively during sepsis

episode in the non-survivors

IL-6 significantly decreased

progressively during sepsis

episode in the survivors

(55)

(Continued)
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TABLE 1 | Continued

Adult or neonatal GA Cohort sepsis characteristics (n)

and mortality (if applicable)

Time of blood sampling and age at

sepsis

Observation in septic cohort References

Mix of preterm and

Term

(mean GA not described)

Confirmed sepsis: 50

(EOS n = 41 and LOS n = 9)

- Survivors: 33

- Non-survivors: 17

Non-sepsis inflammation: 50

Controls: 50

Time from sepsis onset to death not

described

Blood samples were taken at sepsis

evaluation (time 0) and on days 1 and 2

following

Age at sepsis not described

IL-6 was significantly elevated in

non-survivors compared to

survivors, at time all three

timepoints

(54)

IL-8

Adult Septic shock: 20

SIRS: 11

Healthy controls: 10

Blood sample was taken within 24 h initial

suspicion of sepsis

Age at septic shock: 68 years

IL-8 levels elevated compared to

SIRS and control. Increased

levels of IL-8 are positively

associated with IL-10 levels in

septic shock, indicating

correlation with sepsis severity

(56)

Term

(GA range 37–42 weeks)

Clinical (n = 10) and confirmed

(n = 3) LOS: 13

- Sepsis: 4

- Severe sepsis: 6

- Septic shock: 3

Blood sample was taken at initial

suspicion of sepsis

Median age at sepsis:

10 (IQR 7–22) days

Increased IL-8 levels gradually

increased with sepsis severity,

but not significantly

(53)

Mix of preterm and

Term

(mean GA 35.8 ± 4.1)

Confirmed sepsis: 26

(EOS n = 13 and LOS n = 13)

- Survivors: 17

- Non-survivors: 9

Controls: 29

- Mortality:

EOS deaths <2 days: 5 LOS deaths

>7 days: 4 Time from sepsis onset to

death not described

Blood samples were taken at sepsis

evaluation before antimicrobial therapy

(time 0) and on days 3 and 7

Mean (±SD) age at:

EOS 1.9 (±1.1) days

LOS 20.6 (±8.4) days

IL-8 increased progressively

during sepsis episode in the

non-survivors (only significantly

between time 0 and day 3)

IL-8 significantly decreased

progressively during sepsis

episode in the survivors

(55)

Mix of preterm and

Term

(mean GA not described)

Sepsis: 50

(EOS n = 41 and LOS n = 9)

- Survivors: 33

- Non-survivors:17

Non-sepsis inflammation: 50

Controls: 50

Time from sepsis onset to death not

described

Blood samples were taken at sepsis

evaluation (time 0) and on days 1 and 2

Age at sepsis not described

IL-8 was significantly elevated in

non-survivors compared to

survivors, at time all three

timepoints

(54)

IL-10

Adult Septic shock: 38

- Survivors: 22

- Non-survivors: 16

Mortality within 28 days after

diagnosis. Time from sepsis onset to

death not described

Blood samples were taken on days 1–2,

3–4, 5–7, and 8–15 days following initial

suspicion of sepsis

Mean age at sepsis:

64 years (95% CI 59–69)

IL-10 levels were significantly

elevated throughout the septic

episode in non-survivors

compared to survivors

(52)

Adult Infection (includes more than only

sepsis): 399

- Survivors: 366

- Non-survivors: 33

Time from sepsis onset to death

unclear

Blood sample was taken when empirical

antibiotics commenced

Median (IQR) age at sepsis: 61 (45–77)

years

IL-10 levels were significantly

higher in the non-survivors.

Increased IL-10 levels were

associated with increased risk of

mortality

(58)

Adult Septic shock: 20

SIRS: 11

Healthy controls: 10

Blood sample was taken within 24 h initial

suspicion of sepsis

Age at septic shock: 68 years

IL-10 levels more elevated than

controls. Increased levels of IL-6

and IL-8 are positively

associated with IL-10 levels in

septic shock, indicating

correlation with sepsis severity

(56)

Adult Sepsis:32

- Sepsis: 19

- Septic shock: 13

Healthy controls: 15

Blood sample was taken at time of initial

suspicion of sepsis

Mean (±SD) age at sepsis:

70.8 (±12.7) years

Significantly elevated IL-10 levels

in septic patients compared to

controls. Significantly elevated

levels in septic shock compared

to sepsis without shock

(57)

(Continued)
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TABLE 1 | Continued

Adult or neonatal GA Cohort sepsis characteristics (n)

and mortality (if applicable)

Time of blood sampling and age at

sepsis

Observation in septic cohort References

Adult Sepsis: 61

- Survivors: 41

- Non-survivors: 20

Time from sepsis onset to death not

described

Blood sample was taken on day of

admission and the next day

Median (IQR) age at sepsis in years:

Survivors 52.5 (36–61.5)

Non-survivors 54.5 (42.5–62.5)

Significantly elevated IL-10 levels

in non-survivors compared to

survivors

(59)

Adult Post-operative sepsis: 35

- Survivors: 24

- Non-survivors: 11

Post-operative non-sepsis controls:

85

Mean time to mortality 22.3 (±6.6)

days. Time from sepsis onset to

death not described

Blood sample was taken at time of initial

suspicion of sepsis

Mean (±SEM) age at sepsis:

61 (±2) years

Sepsis is associated with

deficient IL-10 production.

Sepsis survival correlated with

recovery of pro-inflammatory

secretion, but not IL-10

(60)

Term

(GA range 37–42 weeks)

Clinical (n = 10) and confirmed

(n = 3) LOS: 13

- Sepsis: 4

- Severe sepsis: 6

- Septic shock: 3

Blood sample was taken at time of initial

suspicion of sepsis

Median (IQR) age at sepsis: 10 (7–22) days

Increased IL-10 levels gradually

increased are with sepsis

severity, but not significantly

(53)

IL-10/TNFα RATIO

Adult Septic shock: 38

- Survivors: 22

- Non-survivors: 16

Mortality within 28 days after

diagnosis. Time from sepsis onset to

death not described

Blood samples were taken on days 1–2,

3–4, 5–7, and 8–15 days following initial

suspicion of sepsis

Mean age at sepsis:

64 years (95% CI 59–69)

IL-10/TNFα ratio was significantly

increased during the first days of

sepsis in non-survivors

compared to survivors

(52)

Adult Infection (includes more than only

sepsis): 399

- Survivors: 366

- Non-survivors: 33

Time from sepsis onset to death

unclear

Blood sample was taken when empirical

antibiotics commenced

Median (IQR) age at sepsis: 61 (45–77)

years

IL-10/TNFα ratio was significantly

higher in non-survivors

compared to survivors

(58)

Neonate of any GA Not assessed – – –

GA, gestational age; LOS, late-onset sepsis; EOS, early-onset sepsis; VLBW, very low birth weight; SIRS, systemic inflammatory response syndrome; IL, interleukin; TNFα, tumour

necrosis factor alpha; IFNγ, type II interferon; IQR, interquartile range; SD, standard deviation; CI, confidence interval.

58), however, the mechanism for this association has yet to be
elucidated.

Functional Assessment of Cytokine
Secretion in Adult Sepsis
Pro-inflammatory (TNFα, IL-1β, IL-6, IL-12) and anti-
inflammatory (IL-10) responses occur concomitantly in
stimulated whole blood and isolated monocytes from septic
adults, albeit at a reduced capacity compared to healthy adults
(60, 84, 89–91). Interestingly survival in these patients was
associated with the recovery of pro-inflammatory cytokine
production, but not IL-10 production—the IL-10/TNFα ratio
was not reported (60). A similar pattern of decreased TNFα,
IL-6, IFNγ, and IL-10 was also observed in a post-mortem study
of stimulated splenocytes from patients who died of sepsis (84).
These results suggest patients with sepsis have a sub-optimal
capacity to produce pro- and anti-inflammatory cytokines,
which is inversely associated with sepsis severity, especially when
IL-10 levels remain relatively higher, eventually leading to organ
failure, septic shock, and/or death.

Circulating Inflammatory Cytokines in
Neonatal Sepsis
In both preterm and term neonates with EOS or LOS, the
circulating levels of pro-inflammatory cytokines, IL-6 (28, 53–

55, 92–96), IL-8 (53–55), and IFNγ (92, 94, 95) are consistently

elevated compared to non-septic neonates. Whereas, TNFα and
IL-1β levels aremore variable (28, 53, 95, 96) or increased (28, 53–

55, 92, 94, 96). The inconsistent reports of TNFα and IL-1β

concentrations in neonatal sepsis may be a confounded by the

kinetics and short half-life of circulating TNFα and IL-1β and

the timing of sample collection relative to the onset of sepsis

(97, 98). Circulating anti-inflammatory IL-10 concentrations

(28, 53, 92, 94, 95) are elevated in preterm and term neonates

with EOS or LOS compared to non-septic neonates, whereas

the concentration of IL-4 is more variable (28, 92, 94, 95).
These studies did not report the ratio of IL-10 to TNFα.

Neonatal and sepsis characteristics, and relevant outcomes of

these studies not in relation to sepsis severity are described in the

Supplementary Table 1.
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TABLE 2 | Sepsis-induced immunosuppression—association of monocyte surface HLA-DR expression with sepsis severity in neonates and adults with sepsis.

Adult or neonatal GA Cohort sepsis characteristics (n)

and mortality (if applicable)

Time of blood sampling and age at

sepsis

Observation in septic cohort References

Adult Septic shock: 38

- Survivors: 22

- Non-survivors: 16

Mortality within 28 days after

diagnosis. Time from sepsis onset to

death not described

Blood samples were taken on days 1–2,

3–4, 5–7, and 8–15 days following initial

suspicion of sepsis

Mean age at sepsis:

64 years (95% CI 59–69)

Decreased % HLA-DR expression

in septic shock

Significantly lower % HLA-DR

expression in non-survivors

compared to survivors

(52)

Adult Sepsis: 61

- Survivors: 41

- Non-survivors: 20

Time from sepsis onset to death not

described

Blood sample was taken on day of

admission and the next day

Median (IQR) age at sepsis in years:

Survivors 52.5 (36–61.5)

Non-survivors 54.5 (42.5–62.5)

Decreased HLA-DR expression in

sepsis. Significantly lower in

non-survivors compared to

survivors

(59)

Adult Organ dysfunction during sepsis: 37

SIRS: 13

Healthy control: 20

Blood sample was taken within 24 h of

sepsis development

Median (IQR) age at sepsis:

69.4 (±2.7) years

Progressive significant decrease in

CD14/HLA-DR expression in the

organ dysfunction during sepsis

group

(61)

Adult Sepsis/septic shock: 20

Post-surgical inflammation: 20

Non-sepsis controls: 10

Blood sample was taken within 24 h of

study inclusion

Median (IQR) age at sepsis:

60 (53–67) years

Decreased HLA-DR surface protein

and mRNA expression in

sepsis/septic shock

TNFα:HLA-DR ratio correlates

negatively with SOFA score

(62)

Adult Sepsis: 17

- Survivor: 6

- Non-survivors: 11

Non-sepsis controls: 10

Healthy control: 12

Time to mortality:

During 1st septic episode n = 9

During 2nd septic episode n = 2

Time from sepsis onset to death not

described

Blood sample was taken upon admission

to the study

Mean (±SEM) age at sepsis:

71 (±5) years

HLA-DR expression significantly

decreased in sepsis group. HLA-DR

expression was significantly lower in

non-survivors, compared to

survivors

6 of 17 with sepsis later developed

nosocomial infections

(63)

Mix of preterm and

Term

(mean GA 37.5 ± 3.8)

Clinical (n = 22) and confirmed

(n = 18) LOS: 40

- Survivor: 32

- Non-survivor: 8

Non-sepsis disorder: 24

Controls: 25

Time to mortality: during hospital stay.

Time from sepsis onset to death not

described

Sample collection time not described

Mean (±SD) age at sepsis:

16.3 (±5.8) days

Significantly lower HLA-DR

expression in sepsis group

HLA-DR expression was

significantly lower in non-survivors

compared to survivors No

significant difference HLA-DR

expression between term and

preterm

No significant difference HLA-DR

expression between clinical and

confirmed LOS

(64)

Mix of moderate preterm

and term (median GA 36;

IQR 32–39 wks)

Clinical (n = 42) and confirmed

(n = 21) EOS and LOS: 63

-Survivor: 50

-Non-survivor: 13

Non-sepsis: 37

Controls: 29

Mortality < 30 days n = 13 Time from

sepsis onset to death not described

Blood sample taken upon initial suspicion

of sepsis

Median (IQR) age at sepsis:

4 (2–11) days

HLA-DR expression was

significantly decreased in the sepsis

group. Lower, but not significantly,

in non-survivors compared to

survivors

(65)

Preterm (mean GA 31 ±

2 weeks)

EOS: 22

- Mild sepsis: not described

-Severe sepsis: not described

Controls: Not described

Blood samples taken at admission to

NICU during first 48 h of life, during

infection, and recovery

Mean age at sepsis: Not described

Percent of HLA-DR positive

monocytes significantly recovered in

those with mild sepsis. Percent

expression of HLA-DR on

monocytes significantly dropped

followed by a significant recovery in

those with severe sepsis

(66)*

HLA-DR, Human Leukocyte Antigen-DR isotype; GA, gestational age; LOS, late-onset sepsis; EOS, early-onset sepsis; VLBW, very low birth weight; SIRS, systemic inflammatory

response syndrome; SD, standard deviation; IQR, inter-quartile range. *Conference abstract only, limited data available.
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TABLE 3 | Sepsis-induced immunosuppression—association of immunosuppressive cell expansion with sepsis severity in neonates and adults with sepsis.

Adult or neonatal GA Cohort sepsis characteristics (n)

and mortality (if applicable)

Time of blood sampling and age

at sepsis

Observation in septic cohort References

IMMATURE NEUTROPHILS

Adult Sepsis: 177

- Sepsis: 82

- Organ dysfunction during sepsis: 66

- Septic shock: 29

Outpatient control: 50

Community-acquired infection

without SIRS: 15

Blood sampling was done as part of

routine haematological analysis.

Sample collection time not described

Mean (±SD) age at sepsis:

Sepsis: 57 (±22) years

Organ dysfunction during sepsis: 62

(±17) years

Septic shock: 63 (±14) years

Sepsis group had increased immature

granulocytes compared to the two

control groups

(67)

Adult Sepsis: 83

- Confirmed sepsis: 51

- Clinical sepsis: 32

Non-infection SIRS: 39

Non-SIRS: 14

Healthy control: 20

Blood sample was taken within 48 h

of admission to the intensive care unit

Mean (±SD) age at sepsis:

Confirmed sepsis: 62 (±16) years

Clinical sepsis: 66 (±13) years

Immature neutrophils were elevated in

the sepsis group. Immature

neutrophils frequency was

significantly higher in confirmed

sepsis compared to clinical sepsis

and non-infection inflammation

(68)

Adult Septic shock: 43

- Survivor: 35

- Non-survivors: 8

Healthy controls: 23

Time to mortality: within 28 days of

sepsis onset. Time from sepsis onset

to death not described

Blood samples were taken at days

3–4 and 6–8 after onset of septic

shock

Median (IQR) age at septic shock in

years: 70 (65–80)

Increased circulating immature

granulocytes associated with

increased risk of death

(69)

Mix of:

Preterm

≤28 weeks GA (n = 21)

Preterm

>28–36 weeks GA

(n = 123)

Term

>36 weeks GA

(n = 141)

Clinical and confirmed EOS (n = 76)

and LOS (n = 134): 210

- Survivor: 222

- Non-survivor: 63

No sepsis: 75

Time from sepsis onset to death not

described

Blood sample was taken upon initial

suspicion of sepsis

Mean (±SD) age at sepsis:

6.7 (±7.4) days

Severity of neutrophil left shift

correlates with increased sepsis

mortality risk in both preterm and

term neonates

(70)

VLBW

<1500g

(approximate mean GA

27 weeks)

EOS: 5

- Survivor: 0

- Non-survivors: 5

LOS: 15

- Survivor: 0

- Non-survivors: 15

Controls: NA Mean (±SD) age of

death: EOS:1.6 (±0.5) days LOS:17.8

(±12.1) days Time from sepsis onset

to death not described

Post-mortem examination completed

within 2 h of death

Mean (±SD) age at sepsis:

EOS: 0 (±0) days

LOS: 14.1 (±9.9) days

EOS: Slightly elevated, but not

significantly, circulating immature

neutrophils during early phase of

sepsis

LOS: Elevated circulating immature

neutrophils. Significantly elevated

during terminal stages

(71)

T REGULATORY CELLS

Adult Sepsis: 80

- Sepsis: 31

- Organ dysfunction during sepsis: 33

- Septic shock: 16

Healthy controls: 18

Blood sample was taken within 24 h

after sepsis diagnosis

Median (IQR) age at sepsis:

Sepsis: 45 (28–72) years

Organ dysfunction during sepsis: 54

(18–87) years

Septic shock: 64 (18–84) years

Increased Treg mRNA in sepsis

patients

(72)

Adult Sepsis: 32

- Sepsis:19

- Septic shock: 13

Healthy controls: 10

Blood sample was taken at time of

sepsis diagnosis

Mean (±SD) age at sepsis:

70.8 (±12.7) years

Significantly increased Tregs in CD4+

T cells in sepsis group. Significantly

higher in septic shock than sepsis

without shock

(57)

Adult Septic shock: 16

- Survivor: 7

- Non-survivor: 9

Healthy controls: 36

Blood sampling was taken on days 1,

3, 5 and 7–10 following sepsis onset

Mean age at sepsis: 54 years

Elevated circulating CD4+ Treg cells

in the sepsis group. CD4+ Treg more

elevated in non-survivors compared

to survivors

(73)

Adult Sepsis: 118

- Sepsis: 78

- Septic shock: 40

Healthy control: 21

Blood sample was taken the day of

study inclusion

Median (IQR) age at:

Sepsis: 73.5 (62–81) years

Septic shock: 78.5 (60–84) years

Increased Tregs in CD4+ T cells in

the sepsis group

(74)

(Continued)
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TABLE 3 | Continued

Adult or neonatal GA Cohort sepsis characteristics (n)

and mortality (if applicable)

Time of blood sampling and age

at sepsis

Observation in septic cohort References

Adult Sepsis: 42

- Survivor: 23

- Non-survivor: 19

Healthy control: 14

Time to mortality: <28 days. Time

from sepsis onset to death not

described

Blood samples were taken days 0

and day 5

Mean (±SD) age at sepsis:

49.1 (±10.2) years

Increased CD39+ Tregs in the sepsis

group. Higher Treg expression in

those with organ failure and

non-survivors

(75)

Neonate of any GA Not assessed – – –

MYELOID DERIVED SUPPRESSOR CELLS

Adult Sepsis: 94

- Organ dysfunction during sepsis: 22

- Septic shock: 72

Non-septic ICU: 11

Healthy controls: 67

Blood sample taken within 3 days of

sepsis diagnosis

Median (IQR) age, in years, at:

Organ dysfunction during sepsis: 57

(41–75)

Septic shock: 63 (53–73)

In the sepsis group MDSC genes are

up-regulated, G-MDSCs expanded

and plasma MDSC mediator levels

are increased

(76)

Adult Septic shock: 74

Healthy controls: 18

Blood samples were taken within 12 h

of sepsis diagnosis, and on days 1, 4,

7, 14, 21 and 28

Mean age at sepsis: 60 years

MDSCs persistently increased in the

septic shock group. MDSCs were

functionally immunosuppressive

(77)

Adult Sepsis: 24

- Sepsis: 12

- Septic shock: 12

Non-sepsis: 12

Blood samples were taken at

enrolment, and on days 2–4 and

7-discharge

Median (IQR) age at:

Sepsis: 45 (39–55) years

Septic shock: 52 (45–57) years

G-MDSCs were increased in the

sepsis group. G-MDSCs were

significantly higher in septic shock

compared to sepsis without shock.

G-MDSCs were functionally

immunosuppressive

(78)

Neonate of any GA Not assessed – – –

GA, gestational age; LOS, late-onset sepsis; EOS, early-onset sepsis; VLBW, very low birth weight; ICU, intensive care unit; Treg, T regulatory cells; MDSC, myeloid derived suppressor

cells; G-MDSC, granulocytic-myeloid derived suppressor cells; SIRS, systemic inflammatory response syndrome; SD, standard deviation; IQR, inter-quartile range.

Gestational age may significantly influence the neonatal
cytokine response to infection. In 14 very preterm (mean GA
28.7 ± 1.3 weeks) and 12 moderately preterm (mean GA
34.6 ± 1.8 weeks) neonates with confirmed or clinical sepsis
(including LOS and EOS), the cytokine profiles differed (92).
During sepsis, the levels of IFNγ, IL-6, IL-10, and IL-4 were
significantly elevated in the moderate preterm group only. In
contrast, the levels of TNFα did not significantly change from
pre-sepsis to during sepsis in either group. These results suggest
that increasing GA may be associated with a more robust pro-
and anti-inflammatory response. While the lack of inflammatory
response in very preterm infants may explain the increased
incidence and severity of sepsis (99). The results from this
small study do not allow firm conclusions on neonatal clinical
outcomes.

Increased IL-6, IL-1β, and IL-8 cytokine production might
be associated with sepsis severity and/or mortality in neonates
with sepsis (53–55)—study details described in Table 1. Silveira-
Lessa and colleagues investigated cytokine production in 13 term
(GA range 37–42 weeks) neonates with confirmed (n = 3) and
clinical (n = 10) LOS, including 6 with severe sepsis [classified
as per the international paediatric consensus definition for sepsis
(39)] and 3 with septic shock (53). Higher IL-6 and IL-1β levels
were significantly associated with septic shock (n = 3) and
mortality (n = 2), respectively (53). Increased levels of IL-8
and IL-10 were associated with sepsis, whereas TNFα was not
changed. The sample size in this study was small, thus limiting the

interpretation of significant changes in cytokine levels associated
with sepsis severity. Similarly, increased levels of IL-6 and IL-8
persisted for longer in preterm and term neonates with fatal LOS
and EOS (combined n = 26), whereas the duration of elevated
TNFα levels was variable (54, 55). Similar to adults (100, 101),
it has been suggested that IL-6 concentrations are a strong
indicator of sepsis prognosis in neonates (53, 54). The results
from these studies, summarised in Table 1, suggest increased
and persistent levels of pro-inflammatory mediators correlate
with greater neonatal sepsis severity. However, evidence as to the
association between persistent anti-inflammatory mediator levels
and clinical sepsis severity in neonates remains inconclusive.

The focus of the above neonatal studies was to characterise
patterns of cytokine production in septic neonates as potential
predictive or diagnostic tools or markers of development, and not
necessarily to associate cytokine responses to clinical outcomes.
From these results, we can acknowledge that neonates are capable
of eliciting a cytokine response similar to that of adults in
response to infection (52, 56–58, 72, 89). We cannot, however,
infer that the pattern of cytokine production associated with SII
and sepsis severity in adults, is also present in these neonates.

Functional Assessment of Cytokine
Secretion in Neonatal Sepsis
One study has assessed monocyte cytokine production in 32
extremely (median gestation 25.5 weeks, range <28 weeks) and
44 very (median gestation 29 weeks, range 28–32 weeks) preterm
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TABLE 4 | Sepsis-induced immunosuppression—association of effector cell function and programmed cell death-1 receptor expression with sepsis severity in neonates

and adults with sepsis.

Adult or neonatal GA Cohort sepsis characteristics (n)

and mortality (if applicable)

Time of blood sampling and age at

sepsis

Observation in septic cohort References

Adult Sepsis: 118

- Sepsis: 78

- Septic shock: 40

Healthy control: 21

Blood sample was taken on day of study

inclusion

Median (IQR) age at:

Sepsis: 73.5 (62–81) years

Septic shock: 78.5 (60–84) years

Increased PD-1 expression on

Tregs in sepsis group

(74)

Adult Septic shock: 64

Trauma control: 13

Healthy control: 49

Blood samples were taken on days 1–2,

3–5, and 6–10 after diagnosis

Median (IQR) age at septic shock: 64

(54–73) years

Increased PD-1, PD-L1

expression on monocytes, and

CD4+ T cells in septic shock

group

(79)

Adult Sepsis: 135

- Sepsis: 59

- Septic shock: 76

Healthy control: 29

Blood samples were taken 3–4 days

after onset of symptoms

Median (IQR) age at:

Sepsis: 71 (66–78) years

Septic shock: 71 (61–78) years

Increased PD-L1 expression on

monocytes in the sepsis group

(80)

VLBW <1,500 g and ≤32

weeks GA (mean GA 26.8

weeks)

LOS: 39

- Sepsis: 28

- Septic shock: 5

Non-survivors: 6

Control: NA

Time to mortality during

hospitalisation

Time from sepsis onset to death not

described

Blood sample was taken within 24 h of

symptom onset

Age at sepsis not described

Increased PD-L1 expression on

monocytes in sepsis group.

Significant increases in those

with septic shock and/or death

compared to survivors of sepsis

without shock

(81)

GA, gestational age; LOS, late-onset sepsis; VLBW, very low birth weight; PD-1, programmed cell death protein-1; PD-L1, programmed cell death ligand-1; Tregs, T regulatory cells;

SD, standard deviation; IQR, inter-quartile range.

neonates with confirmed (n = 38) and clinical (n = 38) LOS
(102). The authors of this report found that following monocyte
stimulation with Pam3Cys, both groups produced equivalent
IL-1β, but extremely preterm neonates produced higher IL-18
(102). These results highlight the influence GA has on neonatal
immune regulation, but outcomes are limited. There is a need to
further investigate if immune cell dysfunction at the time of sepsis
underpins immunosuppression in neonatal sepsis.

REDUCED MHC CLASS II EXPRESSION IN
ADULT AND NEONATAL SEPSIS

HLA-DR Expression in Adult Sepsis
The upregulation of HLA-DR cell surface expression on APCs
is a hallmark of APC activation and essential for increased
presentation of antigens to naïve T cells, a critical step for
initiating the adaptive immune response (103). Low HLA-
DR expression associated with SII is often referred to as
immunoparalysis (6, 104, 105) and the established cut-off for
identifying immunoparalysis in adult patients with sepsis is
<30%HLA-DR positive monocytes (6, 106, 107). In adults, sepsis
and septic shock have been shown to negatively affect HLA-DR
cell surface expression and cause immunosuppression (52, 61–
63, 73, 76, 108)—study details summarised in Table 2. Low HLA-
DR expression onmonocytes and immunoparalysis are related to
sepsis severity as shown by a significant increase in SOFA scores
in adults with sepsis (61, 62). Monocyte HLA-DR expression
is also significantly lower in sepsis non-survivors compared to
survivors (52, 59, 61, 63).

Low HLA-DR expression on adult monocytes during sepsis is
associated with altered immune responses, including imbalanced
secretion of pro- and anti-inflammatory mediators and reduced
antigen presentation capacity, and importantly sepsis severity
and mortality (52, 59, 61–63). Decreased monocyte HLA-DR
expression in critically ill adults with sepsis or septic shock has
also been associated with a prominent shift toward significantly
increased circulating levels of IL-10 (52, 59, 63). Interestingly,
IL-10 mediates HLA-DR expression on monocytes (109–111),
suggesting that HLA-DR expression could be a marker of SII-
related cytokine changes.

In a study of 17 critically ill adults with sepsis, decreased
expression of HLA-DR and CD86 on monocytes and CD28 on
lymphocytes was significantly associated with reduced antigen
presentation (63). Although the authors did not find any
association between the levels of HLA-DR expression or antigen
presentation and development of secondary infections, 6 of the
8 patients who survived sepsis went on to develop a secondary
infection, 2 of whom later died (63).

Low HLA-DR Expression in Neonatal
Sepsis
Several studies reported a decrease in monocyte HLA-DR
expression in preterm and term neonates with confirmed or
clinical sepsis (including EOS and LOS) (64–66, 93, 112).
Neonatal and sepsis characteristics, and relevant outcomes of
these studies not in relation to sepsis severity are described
in the Supplementary Table 2. Decreased HLA-DR expression
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TABLE 5 | Sepsis-induced immunosuppression—association of sepsis-induced immune cell apoptosis and depletion with sepsis severity in neonates and adults with

sepsis.

Adult or neonatal GA Cohort sepsis characteristics

(n) and mortality (if applicable)

Time of blood sampling and

age at sepsis

Observation in septic cohort References

Adult Prospective study:

Sepsis: 71

Non-sepsis:55

Healthy control: 6

Blood samples were collected at

various times during sepsis

Mean age range at sepsis: 57–59

Increased T cell, B cell, and

dendritic cell apoptosis in the

sepsis group

(82)

Adult Prospective study:

Septic shock: 19

Healthy control: 22

Blood sample was collected at

time of study inclusion

Mean (±SD) age at sepsis:

58 (±4) years

Marked increase in apoptosis of

CD4+ and CD8+ T cells and B

cells in the septic shock group

(83)

Adult Post-mortem study:

Organ dysfunction during sepsis:

40

Trauma control: 29

Median (range) days of sepsis: 4

(1–40). Time from sepsis onset to

death not described

Post-mortem sample collection

occurred 30–180min following

death

Mean (±SD) age at organ

dysfunction during sepsis: 71.7

(±15.9) years

Extensive depletion of splenic

CD4+ and CD8+ T cells and

HLA-DR cells in the organ

dysfunction during sepsis group

(84)

Adult Prospective and post-mortem

study Sepsis: 27

- Survivor: 2

- Non-survivors: 25

Non-septic critically ill: 16

Trauma control: 25

Mean age of death and time from

sepsis onset to death not

described

Sample collection was either

intraoperatively (survivors) or

post-mortem (15min to 6 h

following death)

Mean age as sepsis not

described

Depletion of splenic CD4+ T

helper cells and B cells in the

sepsis group

(85)

VLBW

<1,500 g

(approximate mean GA

27 weeks)

EOS: 5

- Survivor: 0

- Non-survivors: 5

LOS: 15

- Survivor: 0

- Non-survivors: 15

Controls: NA Mean (±SD) age of

death: EOS:1.6 (±0.5) days

LOS:17.8 (±12.1) days Time from

sepsis onset to death not

described

Post-mortem examination

completed within 2 h of death

Mean (±SD) age at sepsis:

EOS: 0 (±0) days

LOS: 14.1 (±9.9) days

EOS: No cell depletion

LOS: Depletion of thymus

lymphocytes

(71)

Moderate preterm

(GA range 35–37

weeks)

Sepsis: 6

- Survivor: 0

- Non-survivor:6 Control mortality:

6 Mean age of death and time

from sepsis onset to death not

described

Post-mortem examination time

not described

Age at sepsis not described

Depletion of neutrophils in the

sepsis group

(86)

Mix of preterm and

term

(GA mean 29.2 (range

24–38) weeks)

EOS: 10

- Survivor: 0

- Non-survivor: 10 Control

mortality: 20 Time to mortality

within 48 h after birth. Time from

sepsis onset to death not

described

Post-mortem examination

occurred between 4 and 12 h

following death

Age at sepsis <48 h after birth

Depletion of T cells and B cells (87)

GA, gestational age; LOS, late-onset sepsis; EOS, early-onset sepsis; VLBW, very low birth weight; HLA-DR, Human Leukocyte Antigen-DR isotype.

observed in mixed cohorts of preterm and term with neonatal

sepsis appears unrelated to the GA (64, 93, 112). Serial assessment
of HLA-DR expression during neonatal sepsis demonstrated that
3 days after sepsis onset, HLA-DR expression in both preterm and
term neonates were similar to those without sepsis (93). However,
low HLA-DR expression is a possible marker of sepsis-related
mortality, as monocyte HLA-DR expression is down-regulated in
term and preterm non-survivors of sepsis compared to survivors

(64, 65)—study details summarised in Table 2. In this small
study, Genel et al reported a significant decrease in monocyte
HLA-DR expression between non-survivor (n = 8) and survivor
(n = 32) preterm and term (median GA 36 weeks) neonates
with confirmed (n = 18) and clinical (n = 22) LOS (mean
postnatal age 16.3 days) (64). The preterm and term neonates
with ≤30% HLA-DR positive monocytes had a 30-fold higher
risk of mortality (Odds ratio 30); with 53.8% mortality among
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those with≤30% HLA-DR positive monocytes compared to only
3.7% in neonates with >30% HLA-DR positive monocytes (64),
similar to adults with confirmed immunoparalysis (61). Unlike
for HLA-DR surface expression levels, the proportion of cells
expressing any HLA-DR in neonates is correlated with GA and
acts as a predisposing factor for sepsis as reported in 31 very low
birth weight infants (VLBW;GA range 23–31weeks) with clinical
(n = 14) and confirmed (n = 17) sepsis (EOS n = 2 and LOS
n = 29) (113). Pradhan et al. suggested that monocyte HLA-DR
expression, combined with CD64 expression on neutrophils, may
be a useful prognostic marker for neonatal sepsis (65).

There is a decrease in HLA-DR positive monocytes among
preterm and term neonates with sepsis, compared to non-septic
neonates (64, 66, 93, 112, 114, 115). Decreased HLA-DR positive
monocytes in neonates with sepsis appears unrelated to the GA
(64, 93, 112). Fotopoulos et al. monitored the proportion of HLA-
DR positive monocytes over the course of a septic episode in
preterm neonates (mean GA 31 weeks), with and without EOS
(66). They reported that the percentage of HLA-DR positive
monocytes significantly recovered over the course of sepsis in
those neonates with mild sepsis, while those with severe sepsis
showed a significant drop followed by a rise only upon recovery
(66). While the authors did not provide the criteria for defining
sepsis severity, this data may suggest that a decreased percentage
of HLA-DR positive monocytes is associated with sepsis severity
in neonates, however additional research in this area is essential.

EXPANSION OF IMMUNOSUPPRESSIVE
CELLS IN ADULT AND NEONATAL SEPSIS

Immature Neutrophils in Adult Sepsis
The ability of immature neutrophils to suppress T cell
proliferation was first observed by Pillay et al. (116), although
the mechanism for suppression remains unclear. An increased
frequency of immature neutrophils has been observed in adults
with sepsis and is associated with sepsis severity, poor clinical
outcomes, and increased risk of septic shock and mortality (67–
69)—study details summarised in Table 3. As sepsis becomes
more severe in adults, the increased frequency in immature
neutrophil has been shown to be associated with a decrease in
T cell proliferation (67).

Immature Neutrophils in Neonatal Sepsis
While neonates with sepsis have increased numbers of circulating
immature neutrophils compared to neonates without sepsis,
this is not a reliable diagnostic marker (117–121). There is
a paucity of data on whether the T cell suppressive function
of immature neutrophils contributes to sepsis severity, adverse
outcomes, and increased mortality in neonatal sepsis. Saied
and colleagues evaluated neutrophil left shift for its predictive
value in sepsis outcomes in extremely preterm (n = 21; GA
range ≤28 weeks), very/moderate preterm (n = 123; GA range
>28–36 weeks), and term (n = 141; GA range >36 weeks)
neonates with confirmed or clinical sepsis (EOS n = 76; LOS
n = 134) (70). Although T cell function was not assessed in
this study, they found that an increase in left shift (and hence
proportions of immature neutrophils) correlates with increased

sepsis mortality risk in preterm and term neonates (70). Further
to this, Itoh et al. found a high number of circulating immature
neutrophils, in addition to depleted lymphocytes in the thymus
and hypertrophic spleen, in 15 VLBW infants (<1,500 g) that
died from confirmed LOS (mean time from sepsis onset to death
3.7 ± 3.3 days) (71). Yet, the number of circulating immature
neutrophils was only slightly elevated during the initial stage
of sepsis the neonates that died from confirmed EOS (n = 5;
mean time from sepsis onset to death 1.6 ± 0.5 days) (71).
However, the number of neonates with sepsis were low and
a non-septic control group was lacking for comparison. The
frequency of immature neutrophils and its relation to sepsis
severity observed in both neonates and adults are summarised
in Table 3. These two studies suggest that immature neutrophils
may be associated with worse outcomes with neonatal sepsis,
however, further studies with larger sample size and non-septic
controls are essential. Whether increased numbers of immature
neutrophils are a consequence of sepsis or whether they cause
more severe infection due to their immunosuppressive function
on T cells remains to be determined in neonatal sepsis.

Regulatory T Cells (Tregs) in Adult Sepsis
Tregs play an important role in the maintenance of immune
homeostasis, however their role in immunosuppression during
sepsis is not entirely clear (7, 122, 123). Several studies have
reported an elevated proportion of Tregs following the onset
of sepsis or septic shock in adults, and associated this with an
increased risk of immunosuppression, mortality, and morbidity
(57, 72–75)—study details summarised in Table 3. The increased
risk of mortality associated with sepsis and sepsis shock may
be attributed to the immunosuppressive functions of Tregs by:
(a) directly inhibiting effector CD4+ T cell proliferation and
cytokine secretion (124–126); (b) indirectly supressing APC/T-
cell receptor mediated CD4+ and CD8+ T cell activation
(125–127); (c) suppressing T cell activation through increased
expression of programmed cell death-1 (PD-1) receptor (128); or
(d) suppressing other immune effector cells such as natural killer
cells, B cells, and monocytes (129–131).

Regulatory T Cells (Tregs) in Neonatal
Sepsis
Identifying the role of Tregs in neonatal sepsis is an emerging
area of research. The proportion of Tregs is elevated in term
neonates with confirmed sepsis (n = 30) (132). Likewise, the
proportion of Tregs is higher in 22 preterm neonates (mean
GA 28.1 ± 3.7 weeks) with clinical EOS (133). Sepsis severity
and mortality were not discussed in these studies, nor was the
age of sepsis onset. Surprisingly, unlike cord blood (134–137),
the elevated proportion of Tregs reported in septic neonates
may not be affected by GA (133), suggesting sepsis alone, and
not gestation, influences Treg frequency, postnatally. There are
no data on the potential impact of Tregs on sepsis severity,
immunosuppression, or mortality during neonatal sepsis. Treg
frequencies and further functional analysis is required to
determine whether Tregs suppress T cell proliferation and
function during neonatal sepsis, as observed in adults with SII
(74, 122, 123, 125).
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Myeloid-Derived Suppressor Cells
(MDSCs) in Adult Sepsis
In healthy adults, the immature cells of the myeloid lineage,
namely monocytic- and granulocytic-MDSCs, rapidly
differentiate into DCs, macrophages, and granulocytes and
act to preserve innate immunity (138). The expansion of MDSCs
to suppress both the innate and adaptive immune responses is
a phenomenon under investigation in adults with SII (77, 138).
MDSC expansion has been observed in adults with sepsis
and septic shock (76–78, 138), as summarised in Table 3. The
immune suppressive characteristics of MDSC expansion, namely
inhibition of T cell proliferation (76–78, 138) and increased
secretion of immunosuppressive mediator IL-10 (78, 138),
have been observed in adults with sepsis. MDSC expansion is
associated with sepsis severity (77, 78) and adverse outcomes,
such as chronic immune suppression following prolongedMDSC
expansion in critically ill adults with sepsis (77). Expansion of
MDSCs has also been shown to be associated with higher risk for
subsequent nosocomial infections (76, 77), a characteristic found
among patients with SII. However, the frequency of MDSCs
among sepsis survivors and non-survivors was found to be
similar, suggesting MDSC expansion alone does not influence
mortality (76).

Myeloid-Derived Suppressor Cells
(MDSCs) in Neonatal Sepsis
Only one group has investigated the frequency of MDSCs during
neonatal sepsis, and found a significant increase in the frequency
of MDSCs in 10 preterm neonates (mean GA 25± 3 weeks) with
early- and late-onset clinical (80%) and confirmed (20%) sepsis
compared to preterm neonates (GA range 23 to <37 weeks)
without sepsis (139). No associations with severity or sepsis
outcomes were made in this study. With the limited data and
small sample size in this publication the characterisation
of MDSCs during neonatal sepsis requires further
evaluation.

PROLONGED IMMUNOSUPPRESSION
AND ALARMINS

Alarmins (also referred to as damage-associated molecular
patterns), such as S100A8 and S100A9, are pro-inflammatory
mediators present in low levels in circulating myeloid cells,
namely monocytes and granulocytes, even in healthy subjects.
S100A8 and S1009A are up-regulated in response to bacterial
products, as well as pro- (e.g., TNFα and IL-1β) and
anti-inflammatory cytokines (e.g., IL-10 and transforming
growth factor β) (140). Up-regulation of S100A8 and S100A9
positively regulates MDSC frequency and function (141, 142),
stimulates Treg expansion (140), and induces endotoxin
tolerance by rendering phagocytes unresponsive to secondary
Toll-Like Receptor-4 stimulation (143). Whether S100A8 and
S100A9 function to enhance inflammation or to support
immunosuppression is still unclear.

Alarmins in Adult Sepsis
Plasma levels of S100A8 and S100A9 were elevated, as was up-
regulation of S100A12, S100A9, and arginase-1 gene expression,
in adults with sepsis, compared to non-septic patients in
intensive care (76). The increased levels of S100A12, S100A9,
and arginase-1 were associated with MDSC expansion, and high
initial levels of granulocytic-MDSCs, arginase-1 and S100A12
were associated with subsequent infections (76). Alarmins, such
as the S100 proteins, may therefore, play multiple roles in
adult SII.

Alarmins in Neonatal Sepsis
S100A8/A9 levels were elevated in eight neonates with
confirmed sepsis (144). Gestational age, postnatal age at
sepsis onset and relation of alarmin levels to the severity
of the sepsis were not discussed. Whether alarmins, such
as S100A8/S100A9, play a role in MDSC expansion and
immunosuppression in neonatal sepsis requires further
investigation.

COMPROMISED T CELL EFFECTOR CELL
FUNCTION IN ADULT AND NEONATAL
SEPSIS

Immune Checkpoint Molecule Expression
in Adult Sepsis
The increased expression of the negative co-stimulatory molecule
PD-1, and its associated ligand (PD-L1), on circulating
monocytes, neutrophils and effector T cells may contribute to
SII (79). Increased expression of PD-1/PD-L1 on monocytes
and lymphocytes is associated with decreased monocyte HLA-
DR expression, increased proportions of Tregs, and T cell
exhaustion (3, 4, 79, 145–147). Several groups have reported
an over-expression of PD-1 on T cells, including CD4+ and
Tregs, and PD-L1 on monocytes in adults with sepsis and septic
shock compared to healthy adults (74, 79, 80, 83, 84). Increased
expression of PD-1 and PD-L1 on lymphocytes and monocytes
is associated with more organ dysfunction during sepsis and
increased risk of secondary infections and mortality (74, 79,
80), as summarised in Table 4. In addition, increased PD-L1
expression on monocytes has been shown to be an independent
predictor of mortality in septic shock patients (80).

PD-1/PD-1L are inhibitory immune checkpoint molecules
and blockade of their function to interact with other immune
cells is being explored as a therapeutic agent for reversing
the effects of immunosuppression (148). Pre-clinical models of
sepsis, have shown that blockade of the PD-1/PD-L1 pathway
with an antagonistic anti-PD-L1 antibody improves survival by
inhibiting lymphocyte apoptosis and T cell exhaustion (145,
149, 150). Further to this, in vitro blockade of the PD-1/PD-L1
pathway in the blood from septic adults, decreases lymphocyte
apoptosis, increases pro-inflammatory cytokine production and
decreases IL-10 production (83, 146). Antibody blockade of PD-
1 or PD-L1 as an immunomodulatory therapy for reversing
immunosuppression is being trialled to improve survival in
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human patients with cancer (151). This promising therapy may
spark exploration for PD-1 blockade immunotherapy in sepsis.

Immune Checkpoint Molecule Expression
in Neonatal Sepsis
Despite the interest in exploring PD-1 blockade for reversing
immunosuppression in septic adults, there is a paucity of data
pertaining to PD-1 and PD-L1 expression or T cell exhaustion in
neonates, and importantly neonates with sepsis. PD-1 expression
was increased in 34 VLBW (<1,500 g and GA range ≤32
weeks) with confirmed LOS, and expression was significantly
increased in 5 preterm infants with septic shock (identified using
the international paediatric consensus criteria) and/or mortality
(n = 6) compared to surviving preterm infants without shock
(81). The role of GA on PD-1 expression during neonatal
sepsis has not been explored. The results from this study,
summarised in Table 4, suggest increased PD-1 expression may
have an immunosuppressive function in neonatal sepsis, however
with the limited available data this interpretation remains
inconclusive.

Interestingly, Young and colleagues recently investigated the
role of PD-1 in murine neonates and found improved survival
in septic PD-1 knockout mice, further supporting the functional
importance of PD-1 in neonatal sepsis and related mortality
(152). The therapeutic potential for targeted blockade of PD-1
means that this is an area that deserves urgent exploration.

Up-regulation of carcinoembryonic antigen-related cell-
adhesion molecule 1 (CEACAM1), another inhibitory immune
checkpoint molecule (153), on T cells leads to reduced
proliferation and cytokine secretion causing T cell suppression
and subsequent prolonged immunosuppression (154, 155).
Although not reported in adults with SII, the percentage of
CEACAM1-positive CD4+ T cells in 12 preterm neonates with
LOS is increased compared to 16 non-septic controls (155). With
the small sample size and limited available data it is inconclusive
as to whether increased expression of CEACAM1 on CD4+ T
cells contributes to immunosuppression in septic neonates and
thus requires further investigation.

SEPSIS-INDUCED IMMUNE CELL
APOPTOSIS IN ADULTS AND NEONATES

Immune Cell Apoptosis in Adult Sepsis
Cell death is an important step for resolving infection and
maintaining immune homeostasis. However, sepsis-induced
immune cell apoptosis, resulting in an overwhelming depletion
of immune cells, including T cells (CD4+ and CD8+), B cells,
and DCs, is evident in prospective studies of adults with sepsis
(82, 83). Similar findings have been reported in post-mortem
studies of adults who died from sepsis, septic shock, and sepsis-
related multiple organ dysfunction (84, 85, 156, 157)—study
details summarised in Table 5. The degree of immune cell
apoptosis has been shown to be correlated with sepsis severity,
supporting a role for apoptosis in SII (82). In support of this
concept, in mice in vivo prevention of cell death improves sepsis
survival (158–162).

Immune Cell Apoptosis in Neonatal Sepsis
Three post-mortem studies have reported lymphocyte depletion
in the spleen, thymus, and bone marrow in both preterm and
term neonates that died from EOS and LOS compared to
neonates that died of causes other than sepsis (71, 86, 87). The
sample size in all three studies was small, with 5–15 neonates
in the sepsis groups. There were conflicting results between the
two studies that reported on lymphocyte depletion following EOS
(71, 87). Only two of the three studies described the time from
sepsis onset to death; death occurred within 48 h after sepsis onset
for EOS (71, 87) and, on average, 3.7 (± 3.3) days following
sepsis onset for LOS (71). These results, summarised in Table 5,
suggest both term and preterm neonates with severe sepsis may
develop sepsis-induced immune cell apoptosis, however there
are no prospective studies to support this conclusion. Sepsis-
induced immune cell apoptosis in relation to disease severity
has not been assessed in neonates. A mouse model of neonatal
sepsis found that blocking necroptosis, programmed cell death
triggered by the caspase-independent pathway through death
receptors, by inhibition of receptor-interacting protein kinase 1
with necrostatin-1, reduced lung injury associated with sepsis and
improved survival (162).

IS SEPSIS-INDUCED
IMMUNOSUPPRESSION A FEATURE OF
NEONATAL SEPSIS?

In adults, SII is associated with increased risk of multi-organ
failure and mortality as well as susceptibility to secondary viral
and bacterial infections (3, 4, 6, 8). Similar clinical characteristics,
including increased risk of multi-organ failure and mortality,
are observed in neonatal sepsis (31, 163–165). It is unclear
if these adverse outcomes observed in neonates are due to
an overwhelming hyper-inflammatory immune response and/or
SII. From the limited data available, it appears that fatal
neonatal sepsis may be associated with alterations in immune
function that are in agreement with SII findings in adults
(3, 4, 6). The dysregulated immune responses observed in
various neonatal studies include imbalanced secretion of pro-
and anti-inflammatory mediators (53–55), diminished HLA-
DR monocyte surface expression (64), expansion of immature
neutrophils (70, 71), increased expression of PD-1/PD-L1 (81),
and depletion of leukocytes (71, 86, 87). Published neonatal
studies are limited by: (i) small sample size of neonates, (ii)
incomplete reporting of time from sepsis onset to death, and
(iii) the lack of consistent neonatal sepsis definition and objective
measures for the degree of severity.

Despite distinct patterns of causative pathogens in adult
and neonatal sepsis, similar immune function alterations are
observed and endotoxin tolerance appears to be a feature in
both adult and neonatal sepsis (9, 35). Therefore, SII may occur
independently as a feature of the subsequent host response to
inflammation.

In adults, SII is associated with increased susceptibility to
secondary bacterial infections and associated late mortality (166,
167). Whether this is a result of organ damage or persistent SII
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is unclear. Interestingly, one study reported that the immune
alterations associated with SII in adult septic shock survivors
continued until discharge from the intensive care unit, but
resolved by 6 months (168). It is unclear if survivors of
neonatal sepsis remain at increased risk of developing subsequent
infections (31, 163, 169–171). Preterm infants may have more
than one episode of sepsis (∼20%) during their NICU admission,
and it is uncertain whether having a previous episode of sepsis
contributes to the overall risk compared to the major risk
factor that is degree of immaturity (31, 163, 169). Preterm
neonates, remain at increased risk of infection-related admissions
to hospital well into childhood (inversely related to both GA and
birth weight) (172), however if neonatal sepsis contributes to
infection-related hospital readmissions in childhood has not been
studied. Increased risk of subsequent, more severe infections is a
hallmark of SII in adults, but it is unclear if this clinical outcome
is observed in neonates with sepsis.

CONCLUSIONS

Sepsis mortality in neonates may be associated with alterations

in immune function that are in agreement with SII findings
in adults. Whether immune cell dysfunction or impairment

underpins immunosuppression in neonatal sepsis requires
further investigation and stronger evidence. Large, collaborative

longitudinal studies, from birth through to childhood, are

essential to evaluate immune changes in neonates with sepsis,
including the role for SII. Yet, first a definitive consensus

on the definition of neonatal sepsis and severity needs to be

established. Until then, sepsis severity could be measured by

mortality. Advances in further understanding the immunological

mechanisms behind immunosuppression may lead to effective
targeted treatment therapies for reversing or modulating SII

and improve outcomes. Immunosuppression reversal with PD-

1/PD-L1 antibody blockade is currently being trialled in adult
cancer patients who share similar immune defects as those with

SII (151). Furthermore, pentoxifylline, an immune modulatory
drug, is currently being trialled to improve long-term outcomes,
primarily neurodevelopment impairment, associated with
neonatal sepsis (ANZCTR ACTRN12616000405415). Assessing
the impact of such interventions on SII-associated markers may
provide a mechanistic insight into the success or failure of these
interventions in preventing short and long-term negative sepsis
outcomes.
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