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Abstract  
Subarachnoid hemorrhage (SAH) is a dominant cause of death and disability worldwide. A sharp 
increase in intracranial pressure after SAH leads to a reduction in cerebral perfusion and insufficient 
blood supply for neurons, which subsequently promotes a series of pathophysiological responses 
leading to neuronal death. Many previous experimental studies have reported that excitotoxicity, 
mitochondrial death pathways, the release of free radicals, protein misfolding, apoptosis, necrosis, 
autophagy, and inflammation are involved solely or in combination in this disorder. Among them, 
irreversible neuronal apoptosis plays a key role in both short- and long-term prognoses after SAH. 
Neuronal apoptosis occurs through multiple pathways including extrinsic, mitochondrial, endoplasmic 
reticulum, p53 and oxidative stress. Meanwhile, a large number of blood contents enter the 
subarachnoid space after SAH, and the secondary metabolites, including oxygenated hemoglobin 
and heme, further aggravate the destruction of the blood-brain barrier and vasogenic and cytotoxic 
brain edema, causing early brain injury and delayed cerebral ischemia, and ultimately increasing 
neuronal apoptosis. Even there is no clear and effective therapeutic strategy for SAH thus far, but by 
understanding apoptosis, we might excavate new ideas and approaches, as targeting the upstream 
and downstream molecules of apoptosis-related pathways shows promise in the treatment of SAH. 
In this review, we summarize the existing evidence on molecules and related drugs or molecules 
involved in the apoptotic pathway after SAH, which provides a possible target or new strategy for the 
treatment of SAH.
Key Words: blood-brain barrier; mechanism; mediators; neuronal apoptosis; pathways; subarachnoid 
hemorrhage; targets; treatment

Introduction 
Subarachnoid hemorrhage (SAH) is a type of hemorrhagic stroke that 
comprises 3% of all stroke types, 85% of which are caused by the rupture 
of intracranial aneurysms (IAs) (Go et al., 2014; Macdonald and Schweizer, 
2017). SAH caused by ruptured IAs remarkably increases the chance of 
mortality and morbidity by 50% (32–67%) despite advances in management 
(Huang and van Gelder, 2002; van Gijn et al., 2007). Stroke has many genetic 
and environmental risk factors. A study of single-gene diseases has shown that 
common variations in approximately 35 loci are strongly associated with the 
risk of hemorrhagic stroke (Dichgans et al., 2019). In addition, various health-
related and environmental factors, such as high blood pressure, diabetes, high 
cholesterol, high body mass index, smoking, and a history of hemorrhagic 
stroke, all increase the risk of hemorrhagic stroke (Donnan et al., 2008). The 
main causes of death are associated with the sharp increase in intracranial 
pressure due to initial hemorrhage and cerebral edema, which eventually 
lead to cerebral hernia. Several studies have shown that 20% of the fatality 
caused by SAH occurs because no medical attention is given, 30% of it occurs 
within 24 hours of onset, and 40–60% of the patients with early brain injury 
(EBI) caused by initial bleeding and delayed cerebral ischemia (DCI) resulting 
from cerebral vasospasm constitute the cause of subsequent mortality within 
a month, although emergency surgery and medication with drugs such as 
mannitol, Nimotop, and neurotrophin were performed after SAH (Hasegawa 
et al., 2011; Korja and Kaprio, 2016; Grasso et al., 2017). For survivors, 
long-term care is required in one-third of patients, and some recovered 
patients still suffer from neurological and/or cognitive deficits (van Dijk et al., 
2016). Although there are marked improvements in microsurgical clipping 
and endovascular coiling treatments, the mortality of SAH is not greatly 
reduced because the residual blood in the subarachnoid space continues 
to stimulate and damage the brain cells. Therefore, the pathophysiological 
mechanism of SAH has been the focus of research in recent years. Previous 
experimental studies have discovered a series of pathological mechanisms 
following SAH, such as inflammation, apoptosis of nerve cells and vascular 
endothelial cells, and oxidative stress (OS) (Lucke-Wold et al., 2016; Mo 
et al., 2019). Many post-SAH responses, such as OS and inflammation, 
eventually lead to the death of neurons, vascular endothelial cells, and glial 

cells (Sekerdag et al., 2018). Recent experimental studies have shown that 
apoptosis is closely associated with cerebral injury after experimental SAH 
(Wu et al., 2020b). Apoptosis refers to the orderly death of cells under the 
autonomous control of genes. It is controlled by multiple genes, such as 
the bcl-2 family, Caspase family, and oncogenes, such as C-myC and tumor 
suppressor gene p53 (Fleisher, 1997). Several molecules and/or pathways, 
such as the phosphatidylinositol-3-kinase/AKT signaling pathway (Endo et al., 
2006), Mas/PKA/CREB/UCP-2 pathway (Mo et al., 2019) and p53 (Ling et al., 
2019), are activated after SAH, which may cause blood-brain barrier (BBB) 
dysfunction and neuronal apoptosis. Some anti-apoptotic proteins or drugs, 
such as Mas, AVE 0991, melatonin, and heat shock protein 22, can greatly 
improve neurological function after SAH (Bader et al., 2014; Shi et al., 2018; 
Mo et al., 2019; Fan et al., 2021). In this review, we aimed to understand 
the mechanism and relevant mediators related to neuronal apoptosis and 
potential therapeutic targets after SAH.

Retrieval Strategy 
Literature review was electronically performed using PubMed database. The 
following combinations of key words were used to initially select the articles 
to be evaluated: apoptosis and subarachnoid hemorrhage, neuronal apoptosis 
and subarachnoid hemorrhage, cell death and subarachnoid hemorrhage, 
apoptosis and stroke, neuronal apoptosis and stroke, cell death and stroke, 
treatment and subarachnoid hemorrhage, targets and subarachnoid 
hemorrhage, stem cells and subarachnoid hemorrhage, stem cells and stroke. 
Most of the selected studies (80% of all references) were published from 
2011 to 2021.

Apoptosis Pathways
Apoptosis can occur through three different pathways, namely, the extrinsic 
pathway, intrinsic pathway, and endoplasmic reticulum (ER) stress-induced 
pathway, depending on the site of apoptosis. In addition, other molecular 
mechanisms such as p53 and oxidative stress pathways are also associated 
with apoptosis after SAH (Hasegawa et al., 2011).
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Extrinsic mechanism
The external apoptosis pathway plays an important role in promoting the 
regulation of cell apoptosis by death receptors on the cell surface without 
passing through the mitochondrial and stress ER-induced pathways. Death 
receptors, such as tumor necrosis factor (TNF) receptor, P2X7R, death 
receptor 4/5, and Fas, mediate the apoptotic pathway in hemorrhagic stroke 
by activating caspase-8 or -10 (Martin-Villalba et al., 1999; Rosenbaum et 
al., 2000). Once activated, caspase-8 can activate the downstream effects 
of caspases to produce tBid through direct proteolytic cleavage or indirectly 
through the cleavage of the BH3-only protein Bid, which is translocated to 
mitochondria and induces Bax activation and mitochondrial outer membrane 
permeability (Zhao et al., 2018a). TNF-α and Fas ligands can induce partial 
neuronal apoptosis during the inflammatory process. The apoptotic pathway 
of motor neurons is Fas-dependent, involving p38 and NO, resulting in 
classic caspase-dependent apoptosis (Haase et al., 2008). For example, the 
stimulation of P2X7R can activate caspase-1, which promotes the maturation 
and release of IL-1β and increases IL-1β concentrations, thus triggering 
the induction of TNF, which also has pro-apoptotic effects causing the 
expansion of cell apoptosis (Lee et al., 2016). Some evidence suggests that 
extrinsic apoptosis may play a causal role in neuronal death after stroke (Li 
et al., 2006b), but these models lack clear evidence that caspase-8 leads to 
death because caspase-8 deficiency (and FADD) is fatal to embryonic mice. 
However, Krajewska et al. (2011) solved this problem by using mice that 
specifically lacked caspase-8 expression in neuronal cell types and showed 
that neuron-specific caspase-8 loss makes neurons resistant to in vitro TNF-
receptor connection-induced apoptosis and leads to increased neuronal 
survival. Many previous experimental studies have shown that TNF-α and IL-
1β expression is upregulated, and neuronal damage and apoptosis occur to 
varying degrees after SAH (Sekerdag et al., 2018; Guo et al., 2019; Lai and Du, 
2019). Therefore, the extracellular apoptotic pathway plays an important role 
in neuronal apoptosis after SAH (Figure 1).

activates caspase-3 and causes DNA damage (Hasegawa et al., 2011). In 
addition, proteins such as AIF, SmaC, and Endo G are also associated with 
mitochondrial apoptosis. During apoptosis, these proteins are also released 
from the mitochondrial membrane space into the cytosol. SmaC OMI can 
bind to inhibitor of apoptosis proteins (IAPs) and resist the inhibition of IAPs 
on caspase 3 and caspase 9, which is a caspase-dependent protein. AIF and 
EndoG can translocate to the nucleus to cause chromatin condensation and 
large-scale DNA fragmentation, which are noncaspase-dependent proteins 
(Xiong et al., 2014; Figure 2). Cleaved caspase-3 levels have been reported 
to be upregulated in the hippocampus and cortex after SAH (Zhang et al., 
2019b). Mitochondrial dysfunction is a common cause of neuronal apoptosis 
in SAH (Wang et al., 2018), and it is considered to be a crucial therapeutic 
target for EBI after SAH (Mo et al., 2019). The activation of mitochondrial 
aldehyde dehydrogenase 2 (ALDH2) has been reported to markedly preserve 
mitochondrial function via PKCε phosphorylation, which has been shown to 
provide marked protection against apoptosis in the setting of cardiac and 
cerebral ischemia/reperfusion injury (Aldi et al., 2014; Wang et al., 2017b). 
TGR5 combines with INT-777 to attenuate neuronal apoptosis via the cAMP/
PKCε/ALDH2 pathway after SAH (Zuo et al., 2019). The c-Jun N-terminal 
kinase signaling pathway may be independent of the p38 and NF-κB signaling 
pathways and is upregulated to promote apoptosis in the SAH model (Ling 
et al., 2019). Docosahexaenoic acid alleviates apoptosis following SAH by 
improving mitochondrial dynamics in EBI (Zhang et al., 2018).

Figure 1 ｜ Extrinsic apoptosis pathway after SAH.
Death receptors on the cell membrane, such as P2X7R, TNFR, DR4/DR5 and FSAR, can 
be stimulated by apoptotic signals to activate FADD, and then cause caspase-dependent 
apoptosis cascade reaction. AIF: Apoptosis inducing factor; DR4/DR5: death receptor 
4/ death receptor 5; FADD: Fas-associating protein with a novel death domain; SAH: 
subarachnoid hemorrhage; TNF: tumor necrosis factor.

Mitochondrial (intrinsic) pathway
The mitochondrial pathway (also known as the intrinsic pathway) is mainly 
regulated by B-cell lymphoma-2 (Bcl-2) family proteins, which contain 
proapoptotic (e.g., Bax, Bak, Bad, Bid, Bim, and Noxa) and antiapoptotic (e.g., 
Bcl-2 and Bcl-xL) proteins (D’Orsi et al., 2017). Under normal circumstances, 
Bcl-2 and Bcl-xL, Bax and Bak form heterodimers, which jointly maintain the 
integrity of the mitochondrial outer membrane and prevent mitochondrial 
apoptosis (Edlich et al., 2011; Todt et al., 2015). Under apoptotic conditions, 
Bax and Bak are activated and aggregate at the mitochondrial outer 
membrane, where they are oligomerized and mediate mitochondrial 
outer membrane permeabilization, leading to the release of pro-apoptotic 
factors, such as cytopigment C (Lovell et al., 2008). In addition, Bax and 
BH3 proteins increase in expression and then combined with Bcl-2 and Bcl-
xL to release Bax/Bak. Free Bax and Bak form oligomers and are embedded 
in the outer membrane of mitochondria (Dlugosz et al., 2006; Youle and 
Strasser, 2008). Once the outer mitochondrial membrane permeability 
increases, mitochondrial proteins, such as cytochrome c, are released 
into the cytoplasm. Cytochrome c can interact with apoptotic protease 
activating factor-1 (Apaf1) to form apoptosomes and cause caspase-9 
activation. Caspase-9, as an initiator of the cytochrome-dependent cascade, 

Figure 2 ｜ Mitochondrial pathway of neuronal apoptosis after subarachnoid 
hemorrhage.
After stimulation of apoptosis signal, Bax and BH3 protein expression increased and 
Bax and BH3 combined with Bcl-2 and Bcl-XL to release Bax/Bak. Free Bax and Bak form 
polymeride and penetrate into the mitochondrial membrane to form ion channels and 
increase the permeability of the membrane, thus releasing Cyt C. Cyt C binds to Apaf-
1 to recruit caspase-9 progenase to form apoptotic bodies and initiate downstream 
caspase cascade reactions. SMAC can combine with inhibitor of apoptosis proteins 
(IAPs) to resist the inhibition of caspase-3 and -9 by IAPs and promote apoptosis. AIF and 
Endo G released by mitochondria can be transposed to the nucleus, causing chromatin 
condensation and DNA fragmentation. AIF: Apoptosis inducing factor; Cyt C: cytochrome 
C; SMAC: second mitochondria-derived activator of caspases.

Endoplasmic reticulum pathway
The endoplasmic reticulum (ER) is the site in which secreted proteins and 
membrane proteins are synthesized and folded. Properly folded and modified 
proteins can be transported to the Golgi apparatus for further processing. In 
addition, the ER also stores Ca2+ and regulates Ca2+ metabolism. The imbalance 
of Ca2+ ions in the endoplasmic reticulum and the increase in misfolded or 
unfolded proteins will cause endoplasmic reticulum stress (ERS) (Zeeshan et 
al., 2016). A moderate ERS response can reduce protein synthesis, ensure 
that proteins are folded correctly, and maintain intracellular Ca2+ homeostasis, 
but an excessive stress response can trigger apoptosis signals and promote 
apoptosis. The unfolded protein response (UPR) is an important self-
protection mechanism of cells against ERS (Sun et al., 2017). There are three 
ER transmembrane proteins (Irel, ATF6, and PERK) in mammalian cells, all of 
which play a role in the aggregation of the UPR in the cavity (Ghemrawi and 
Khair, 2020). They regulate the quality and quantity of basic leucine zippers 
and produce different responses to different UPRs through interaction. If this 
response does not sufficiently reduce ERS, apoptosis may occur (Oslowski 
and Urano, 2011). The UPR response is a cellular protective response. 
However, whether this response can restore ER homeostasis depends on 
the intensity and duration of the stimulus. If the stimulation is too strong or 
lasts too long and these responses are not enough to restore and maintain 
ER homeostasis, programmed death will be initiated, leading to apoptosis 
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(Sprenkle et al., 2017). The three apoptotic pathways are named IRE1α/c-Jun 
N-terminal kinase (JNK), PERK/eukaryotic promoter-2 (eIF2α)-CHOP, and 
ATF6-CHOP (Doyle et al., 2011; Xu et al., 2018a). Under normal cell operation, 
the ER mainly releases Ca2+ from the ER lumen into the cytoplasm through 
RyR and IP3R channels, and intracellular Ca2+ is pumped into the ER through 
a calcium pump, thus maintaining the ER Ca2+ homeostatic state. When 
the ER receives the stress signal, Ca2+ homeostasis in the ER is unbalanced, 
and a large amount of Ca2+ enters the cells and mitochondria. It affects the 
activity of mitochondria and Bcl-2 family proteins, leading to apoptosis. 
It also activates the caspase cascade and affects apoptosis (Burton et al., 
2017; Marchi et al., 2018; Figure 3). In recent years, an increasing number of 
experimental studies have supported the view that ERS plays an important 
role in neuronal apoptosis after SAH (Li et al., 2016a; Zhao et al., 2017). SAH 
activates ERS in a variety of ways to induce apoptosis. Upregulated expression 
of caspase-12, a proteolytic enzyme specific to the ER, was observed in the 
ER after experimental SAH, and its activation can be considered a marker of 
neuronal apoptosis mediated by ERS (Datta et al., 2018). The downstream 
molecule of ASK1, JNK, is a member of the signal transduction protein family, 
which regulates the expression of antiapoptotic genes by activating MAPKS, 
JNKs, and p38MAPKS, thereby inducing apoptosis (Li et al., 2006a). CHOP 
can mediate apoptosis by up-regulating the sensitivity to OS of cells and 
downregulating the secretion of the anti-apoptotic B-cell lymphoma-2 (Bcl-2) 
protein (Hetz, 2013; Qi et al., 2018). ERS can lead to calcium disorder in the 
ER, and inhibition of ER stress can restore the homeostasis of the ER (Han et 
al., 2019). ER-mediated apoptosis can exist in neurons and endothelial cells, 
resulting in the destruction of the BBB and irreversible apoptosis of neurons. 
A recent study has reported that the morphology of the coarser ER changed 
within 6 hours after SAH, the swelling of cortical neurons was the most severe 
at 24 hours and subsequently subsided within 24–48 hours (Tian et al., 2020). 
There was no marked difference between the SAH and normal groups at 72 
hours, which was consistent with the expression of stress-related apoptotic 
protein cleavage of ER, caspase-12 ASK1, p-JNK in a rat model (Tian et al., 
2020). PERK/eIF2/ATF4/CHOP signaling is activated after SAH and promotes 
apoptosis. Tauroursodeoxycholic acid inhibits this signaling pathway, reducing 
ER stress-induced apoptosis and SAH-associated cerebrovascular dysfunction 
(Chen et al., 2020b). The persistence of the UPR indicated that ERS was 
not relieved, and homeostasis was not restored. The severity and duration 
of ERS are related to the survival of neurons (Hetz and Saxena, 2017). 
Tauroursodeoxycholic acid inhibits the PERK/eIF2α/ATF4/CHOP signaling 
pathway and reduces ERS-mediated apoptosis, thereby improving SAH-
related cerebrovascular dysfunction (increased cerebral cortical perfusion and 
decreased BBB permeability) and neurological function (Chen et al., 2020b). 
Apelin-13 plays a neuroprotective role in EBI following SAH by inhibiting the 
ERS response pathway ATF6/CHOP (Xu et al., 2018a).

modifications such as phosphorylation, ubiquitination, and acetylation (Zhou 
et al., 2005). Activation of p53 can cause a variety of responses, including 
cell cycle arrest or apoptosis (Wang et al., 2015b). p53 is one of the crucial 
factors in neuronal cell death. For example, it was upregulated at both 24 
and 72 hours after SAH, and an inhibitor of p53 decreased brain injury and 
neuronal cell death (Gao et al., 2009). The Bcl-2 family is well known to 
participate in cell apoptosis and is mediated by p53 on the mitochondria, 
leading to apoptosis (Li et al., 2010). Moreover, the expression levels of p53 
were markedly increased in basilar artery endothelial cells of rats post-SAH, 
and apoptosis was detected (Li et al., 2016b). In addition, it was also reported 
that pifithrin-α, a p53 inhibitor, suppresses p53 protein expression, decreases 
microRNA-22 expression and inhibits Bax protein expression in a SAH mouse 
model (Yu et al., 2018a). p53 mediates apoptosis mainly by activating 
mitochondrial and death receptor-induced apoptotic pathways, which induce 
caspase signaling and apoptosis (Yu and Zhang, 2005).

Oxidative stress
OS refers to a state of imbalance between oxidation and antioxidation in the 
body. The balance tilts toward oxidation, resulting in increased secretion of 
protease and the production of a large number of oxidative intermediates 
(Deng et al., 2021). OS is a type of negative effect produced by free radicals 
in the body that can induce cell apoptosis and has an extensive association 
with apoptosis (Mo et al., 2019). It has been shown that hemoglobin (Hb) 
activates the caspase pathway and induces the apoptosis of cultured cortical 
neurons and microvascular endothelial cells (Katsu et al., 2010). After SAH, 
the central nervous system is exposed to high levels of Hb and Hb degradation 
products in the subarachnoid space. This pathological process produces 
excessive ROS and RNS and promotes cerebral vasospasm, cerebral stenosis, 
and DCI (Vergouwen et al., 2010). In addition, a number of harmful events 
occur in SAH survivors, including altered ion homeostasis, excitatory toxicity, 
disruption of vascular integrity, OS, inflammation, apoptosis, autophagy, and 
the activation of NOS pathways (Fan et al., 2017; Han et al., 2017a; Shi et al., 
2017c; Zhang et al., 2017).

Apoptosis in Early Brain Injury
EBI occurs within 72 hours of IA rupture and is considered to be a major 
factor leading to adverse outcomes (Shi et al., 2017b). EBI emphasizes 
immediate global brain injury caused by temporarily increased intracranial 
pressure and reduced cerebral blood flow after SAH (Conzen et al., 2019). 
The initial blood load causes an increase in the intracranial pressure, 
which has been demonstrated by endovascular filament perforated animal 
models. Intracranial pressure increased to 40 mmHg immediately after 
SAH in this model and then dropped to a plateau (15–25 mmHg), while 
cerebral perfusion pressure dropped from 70 mmHg to 35–40 mmHg, and 
cerebral blood flow decreased by 20–30% from baseline before SAH (Török 
et al., 2009). The potential mechanisms of EBI include neuronal apoptosis, 
neuroinflammation, OS, and BBB destruction (Zhu et al., 2018). Transient 
systemic ischemia and local blood infiltration after SAH can inhibit oxidative 
phosphorylation and cause mitochondrial homeostasis disorder and reactive 
oxygen species storms, which are harmful to the vitality and development 
of neurons. Over the past few decades, mitochondria have been recognized 
as major regulators of neural function and neuronal activity under SAH, 
especially EBI (Mo et al., 2019; Zhang et al., 2019a). Mitochondria are not 
only the main sites of ATP production but are also involved in the formation 
of reactive oxygen species and cell apoptosis. Importantly, there is growing 
evidence that mitochondrial biogenesis and fusion/fission play a critical role in 
maintaining mitochondrial function and homeostasis (Sekerdag et al., 2018). 
Excessive mitochondrial division will disrupt mitochondrial homeostasis, 
leading to the production of pan-ROS (Wang et al., 2017a) and the transfer 
of cytochrome C to the cytoplasm, thereby triggering apoptosis (Du et al., 
2019). In addition, an increasing number of experimental studies support 
the view that ERS plays an important role in the pathophysiological process 
after SAH (Yan et al., 2014; Zhao et al., 2017). Overactivation of ERS causes 
calcium release and OS, which further triggers downstream cascades that 
lead to inflammation and apoptosis (Sprenkle et al., 2017). Li et al. (2015a, 
b) showed that activation of the inflammatory proteome containing the 
three proteins (NLRP3) in the thioredoxin interacting protein (TXNIP)/NOD-
like receptor pyrin domain can link ER stress to brain tissue inflammation and 
apoptosis. One of the main pathophysiological mechanisms contributing to 
EBI development is the activation of the apoptotic pathway, and antiapoptotic 
treatments are effective therapeutic strategies against EBI (Shi et al., 2017a; 
Zhao et al., 2018b). Apoptosis may be seen in cortical, subcortical, or 
hippocampal neurons and the endothelium after SAH (Yuksel et al., 2012). 
After SAH, a large amount of blood enters the subarachnoid space, and 
erythrocyte lysates release Hb and other cell contents covering the surface of 
neuronal cells, glial cells, and other brain cells. Iron released from Hb induces 
apoptosis through lipid peroxidation, which then induces extensive apoptosis 
in cortical, subcortical, and hippocampal neurons and leads to high mortality 
and disability rates (Sekerdag et al., 2018).

Apoptosis in Delayed Cerebral Ischemia and 
Cerebral Vasospasm
Once past the EBI stage of SAH, prognosis often depends on the occurrence 
of DCI, which is detected in approximately 40% of patients by cerebral 
tomodensitometry and 80% of patients with brain magnetic resonance 
imaging (El Amki et al., 2018). Finally, the prognosis of patients with SAH is 

Figure 3 ｜ ER apoptotic pathway in neuronal apoptosis after subarachnoid 
hemorrhage.
ER stress induced by subarachnoid hemorrhage activates three transmembrane proteins 
on the ER, and induces apoptosis through PEAK/EIF-2α/ATF4/CHOP, IER1 and ATF6/
CHOP, respectively. Meanwhile, Ca2+ imbalance leads to a large amount of Ca2+ entering 
cytoplasm and mitochondria, which affects the activity of bcl-2 family proteins in 
mitochondria and leads to cell apoptosis. ER: Endoplasmic reticulum; UPR: unfolded 
protein response.

p53
p53, as a tumor suppressor gene, is also the most important factor in 
generating the apoptosis process in response to ischemia, hemorrhage, 
hypoxia, and severe DNA damage (Culmsee and Mattson, 2005; Chai et al., 
2022). Under normal conditions, p53 levels are low and even undetectable. 
However, stress signals such as DNA damage and hypoxia can stabilize the 
p53 protein and induce cellular p53 levels to increase by post-translational 
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usually unfavorable, with mortality estimated in clinical investigation ranging 
from 20% to 60% (Bogason et al., 2014) and neuropsychological disorders 
observed in 50–60% of patients who survived (Mayer et al., 2002). Recent 
clinical studies have confirmed that cerebral vasospasm is one of the factors 
contributing to DCI (Francoeur et al., 2022; Labak et al., 2022). It may occur 
3–14 days after SAH and is visible by computed tomography angiography 
in up to 70% of patients (Yuksel et al., 2012). In SAH animal experiments, 
by reducing basilar artery apoptosis at 24 and 72 hours, we were able to 
greatly prevent severe vasospasm by measuring the diameter of the basilar 
artery. Although the time course of apoptosis in this model was 24 hours, 
we found that the apoptosis mechanism was significantly upregulated at 72 
hours by western blotting (Cahill et al., 2006). In addition, microcirculation 
spasm, microthrombogenesis, extensive cortical depolarization, and brain 
dysfunction are also considered to be important reasons for the development 
of DCI (Geraghty and Testai, 2017). Many pathological processes have been 
suggested as possible mechanisms for delayed cerebral vasospasm after SAH, 
including endothelial injury, smooth muscle contraction, vascular reactivity 
changes, and inflammation and/or immune responses to vascular walls. 
Apoptosis exists in vascular tissues with different degrees of necrosis after 
SAH, which is involved in the proliferation of spasmodic arterial smooth 
muscle cells (Tsai et al., 2020). The cascade of apoptosis may be the cause of 
vasospasm (El Amki et al., 2018). Large vessel vasospasm leads to cerebral 
ischemia after SAH. Blood cell contents are released into the subarachnoid 
space, inducing the production of a large number of inflammatory factors, 
leading to neuroinflammation and loss of BBB function and causing apoptosis 
of neurons and endothelial cells. Persistent and irreversible damage ultimately 
leads to DCI and a poor prognosis. Apoptosis is considered to be one of 
the most critical factors that may be connected with delayed neurological 
deterioration and poor long-term prognosis (Chen et al., 2014).

Blood-Brain Barrier Dysfunction and Cerebral 
Edema Facilitate Apoptosis
The BBB is made up of endothelial cells, pericytes, basement membranes, 
and astrocyte end feet. The properties of the BBB are largely manifested 
within ECs but are induced and maintained by critical interactions with 
mural cells, immune cells, glial cells, and neural cells, which interact in the 
neurovascular unit (Daneman and Prat, 2015). The BBB, with low vascular 
permeability, limits the entry of potentially neurotoxic plasma components, 
blood cells, and pathogens into the central nervous system (Won et al., 2011). 
Many factors are unique to VCECs forming the BBB, including endothelial tight 
junctions and adherens junction proteins, bulk-flow transcytosis, pinocytosis, 
nonselective fenestrae, and the suppression of leukocyte adhesion molecules 
(Obermeier et al., 2013). Many diseases, such as hemorrhagic stroke and 
ischemic stroke, cause BBB dysfunction. It has been reported that BBB 
disruption occurs as early as 10 minutes after ictus and can persist up to 
7 days (Tso and Macdonald, 2014). In addition, a great amount of blood 
flowing into the subarachnoid space leads to acute intracranial hypertension, 
and subsequent release of blood content promotes apoptosis of brain cells 
(neurons, microglia, astrocytes, endothelial cells, and pericytes; Figure 4).

that of peripheral blood vessels, are necessary for the formation of the BBB 
during development, and their coverage rate affects BBB permeability. Under 
pathological conditions, TNF, one of the mediators of neuroinflammation, 
can stimulate the secretion of matrix metalloproteinase 9 by pericytes, which 
leads to basement membrane rupture, pericyte cell migration, and BBB injury 
(Takata et al., 2011). Currently, pericyte markers include platelet-derived 
growth factor receptor β, NG2 proteoglycan, and α-smooth muscle actin. A 
recent study has reported that inflammatory mediators can alter pericyte 
function, and exposure of pericytes to TNF or IL-1β leads to downregulation of 
pericyte markers (platelet-derived growth factor receptor, NG2 proteoglycan, 
and α-smooth muscle actin), loss of basic pericyte function, and BBB damage 
(Persidsky et al., 2016). Moreover, soluble platelet-derived growth factor 
receptor β was elevated in the cerebrospinal fluid after SAH and subsequently 
promoted BBB injury (Liu et al., 2018a).

Cerebral vascular endothelial cells damage
Under physiological conditions, cerebral vascular endothelial cells (CVECs) 
maintain the integrity of the BBB, regulate the formation of thromboses, 
and regulate vascular tones. However, early events after aSAH trigger CVEC 
dysfunction and apoptosis. A large number of erythrocytes, white blood 
cells and other blood contents enter the brain. Cytolysis products, especially 
oxyhemoglobin, induce apoptosis of CVECs via caspase-8 or -9 (Peeyush Kumar 
et al., 2019). In 2000, Zubkov et al. first discovered that typical endothelial 
cell apoptosis secondary to cerebral vasospasm was induced by SAH. CVEC 
apoptosis is reported to occur 24 hours after aSAH (Friedrich et al., 2012). 
Apoptosis markers, such as cleaved caspase-3 and TUNEL staining, colocalized 
with endothelial staining 10 minutes after aSAH in rat models. The endothelia 
of parenchymal vessels were destroyed and detached from the basal lamina 
within 10 minutes (Friedrich et al., 2010, 2012). Furthermore, postmortem 
human studies reported that CVEC death after aSAH was mediated via OxyHb, 
which elevates intracellular Ca2+ and matrix metalloproteinase 9 levels (Guo et 
al., 2015; Peeyush Kumar et al., 2019).

Vasogenic and cytotoxic edema lead to cerebral edema
Early cytotoxicity and vasogenic edema occurred within 72 hours after SAH 
(Weimer et al., 2017). To confirm the presence of edema after SAH injury, 
magnetic resonance imaging (MRI), particularly T2WI imaging (T2WI), 
was used to provide visual information on BBB rupture and tissue edema 
(Jadhav et al., 2008). Generally, the T2 relaxation time in T2WI sequences 
is considered to be a valuable parameter reflecting hydrodynamics and is 
sensitive to water binding, and the T2 time is longer in the SAH group than 
in the normal group, suggesting the presence of vasogenic edema. Further 
Evans blue tests and IgG staining also confirmed the destruction of BBB 
integrity. Therefore, we can conclude that the development of vasogenic 
edema increases BBB destruction and the subsequent accumulation of 
cerebral edema. Cytotoxic edema is another type of brain edema in addition 
to vasogenic edema. Diffusion weighted imaging and apparent diffusion 
coefficient imaging are more sensitive and noninvasive tools for detecting 
intracerebral cytotoxic edema (Jadhav et al., 2008). A large amount of blood 
flows from the blood vessels to the subarachnoid space after SAH, which 
leads to a sharp increase in intracranial pressure, reducing cerebral blood 
flow and cerebral perfusion pressure and thereby causing cerebral cytotoxic 
edema (Weimer et al., 2017). The pathogenesis of cytotoxic brain edema 
is mainly related to the decline in sodium pump function. After SAH, acute 
hypoxia and anoxia may reduce the production of ATP, resulting in decreased 
activity of the sodium pump, which depends on ATP to provide energy, so 
Na+ cannot be transported actively to the outside of the cell, and water 
enters the cell to restore the balance, resulting in excessive Na+ and water 
accumulation in brain cells (Bano et al., 2005). In addition, the imbalance of 
Ca2+ homeostasis is also an important reason for brain edema. Under normal 
conditions, the extracellular Ca2+ concentration is 10,000 times higher than 
the intracellular Ca2+ concentration, and such a large concentration difference 
is completely maintained by the Ca2+ pump. Cerebral edema after SAH causes 
ischemia and hypoxia, the Ca2+ pump is imbalanced, and Ca2+ enter the cells, 
further aggravating cerebral edema (Azad et al., 2016; Boyacı et al., 2019).

Treatment 
Novel molecular and cellular treatment strategies
SAH in 85% cases is caused by ruptured intracranial aneurysms (Macdonald 
and Schweizer, 2017). Therefore, once SAH is detected by examination, 
treatment should first identify the cause of hemorrhage. If SAH is caused 
by ruptured IAs, the ruptured IAs should be treated first. Cerebral edema 
and cerebral vasospasm caused by SAH should be alleviated at the same 
time (Maher et al., 2020). In the long term, current approaches seek to 
minimize damage to neurons while maximizing the repair potential of the 
lost neurons (Yuksel et al., 2012). Because damaged neurons are difficult 
to regenerate, treatment is often insufficient to restore physiological 
function. To inhibit the components of post-SAH apoptosis cascade, some 
potential molecular therapies may include mitochondrial apoptosis pathway 
inhibitors, ERS inhibitors, ROS inhibitors, p53 inhibitors, Ca2+ antagonists, 
and apoptosis pathway inhibitors (Cahill et al., 2006; Wang et al., 2015b; 
He et al., 2016; Figure 5). In recent years, therapies targeting potential 
receptors, signaling pathways, and miRNAs have received increasing scientific 
attention. The AKT signaling pathway has been widely reported to be 
involved in the pathophysiological mechanism after SAH, and the activation 
of AKT contributes to the reduction of EBI and neuronal apoptosis after SAH 
(Hasegawa et al., 2011). For example, KP54 can reduce neuronal apoptosis 
and oxidative stress after SAH and improve neurobehavioral deficits in rats 

Figure 4 ｜ Blood enters the subarachnoid space after SAH.
A large number of blood contents (erythrocyte, leucocyte, platelet) enter the 
subarachnoid space after SAH. Erythrocytes decompose into oxygenated hemoglobin, 
leading to deterioration of BBB (endothelial cell, pericyte, astrocyte, basement 
membrane) and neuronal apoptosis. BBB: Blood-brain barrier; SAH: subarachnoid 
hemorrhage.

Destruction of pericyte cells results in increased BBB permeability
Pericytes surround endothelial cells and are located in the basement 
membrane. Under physiological conditions, pericytes can regulate BBB 
integrity, microvascular remodeling and cerebral blood flow, maintain 
vascular structure stability, remove toxic metabolites in the central nervous 
system, and mediate neuroinflammation (Liebner et al., 2011). Peripheral 
brain cells, whose coverage rate in the central nervous system is higher than 
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Figure 5 ｜ Potential targets for drug therapy after SAH.
Several apoptosis pathways are activated after SAH, including extrinsic, mitochondrial, 
ER, p53 and ROS pathways. SAH can be treated with a variety of apoptosis inhibitors 
including death receptor inhibitors, mitochondrial apoptosis pathway inhibitors, ERS 
inhibitors, ROS inhibitors, p53 inhibitors, and Ca2+ antagonists. ER/ERS: Endoplasmic 
reticulum/endoplasmic reticulum stress; ROS: reactive oxygen species; SAH: subarachnoid 
hemorrhage.

by activating the AKT signaling pathway (Huang et al., 2021). 5-Lipoxygenase 
inhibitors attenuate neuronal apoptosis and inflammation through the AKT 
signaling pathway after SAH (Liu et al., 2021). C-Abl tyrosine kinase mediates 
neuronal apoptosis after SAH by activating the Akt/GSK3β pathway (Yan et 
al., 2021). AKT activation (phosphorylation) can be activated by recombinant 
OX40. Silencing of tenascin-C, FGF-2, and apelin-13 can markedly reduce 
neuronal apoptosis and neuroinflammation induced by SAH (Liu et al., 
2019; Okada et al., 2019; Tong et al., 2020; Wu et al., 2020b). Caspase 3 
inhibitors, such as liraglutide (Tu et al., 2021), calpeptin (Zhou and Cai, 
2019), and methazolamide (Li et al., 2016c), can inhibit the expression of 
caspase-3, thereby reducing the cascade of apoptosis induced by caspase 3 
and ultimately reducing neuronal apoptosis. Table 1 lists several potential 
targets for SAH recovery. Next to targeting apoptosis inhibitors, focus can be 
led on the antioxidant drugs. Nanomaterials loaded with antioxidant drugs 
are emerging in recent years. Astaxanthin, for example, is an antioxidant 
that has been hampered by its easy degradation and low bioavailability as 
a therapeutic agent for clinical advancement. The stability and solubility of 
astaxanthin are greatly increased by nanomaterial encapsulation. In vitro and 
in vivo studies have confirmed that it can inhibit neuronal apoptosis after 
SAH through an antioxidant effect (You et al., 2019; Cai et al., 2021). NLRP3 
inflammasomes are involved in neuroinflammation and apoptosis after 
SAH (Xu et al., 2021). Regulation of NLRP3 inflammasome activation at the 
molecular level may contribute to development of potential new therapeutic 
approaches (Bai et al., 2021). The inflammasome inhibitor has revealed a 
neuroprotective effect. In addition, miRNAs, as endogenous noncoding short 
single-stranded RNAs that regulate gene expression at the post-transcriptional 
level, are also gradually becoming new molecular targets after SAH. While 
therapies targeting individual genes have not been successful due to complex 
overlapping pathways, miRNAs are particularly useful for their ability to 
simultaneously regulate multiple target genes. Mice overexpressing miR-132 
were less likely to develop nervous system defects (Sekerdag et al., 2018). 
Lentiviral overexpression of miR-126 has a protective effect against ICH and 
exerts an antiapoptotic effect by downregulating caspase-3 levels (Kong et al., 
2017). Moreover, miR-103-3p was significantly upregulated in experimental 
models of SAH. MiR-103-3p plays a neuroprotective role in reducing neuronal 
death by reducing caveolin-1 (Xu et al., 2018b). Experimental models of SAH 
showed that use of apoptosis-related inhibitors provided some protection, 
but apoptosis still occurred (Yuksel et al., 2012). This may be due to a series 
of complex reactions after SAH, including apoptosis, inflammation, oxidative 
stress, autophagy, and coke death (Castro et al., 2018; Sekerdag et al., 2018; 
Wu et al., 2021). The efficacy of a single inhibitor is very limited, and the 
search for multi-target drugs will be a new direction of future research.

Stem cell therapies
There was a study on nerve regeneration in mice after SAH treatment with 
stem cells as early as 2003 (Mino et al., 2003). The proliferation of neural 
progenitor cells after SAH was detected by adding 5-bromodeoxyuridine, 
a specific marker of cell proliferation. Mino et al. (2003) found that most 
5-bromodeoxyuridine-positive cells became NeuN positive cells 30 days 
after SAH, indicating that the precursor cells had differentiated into mature 

neurons and promoted neurogenesis in the hippocampus. In addition, 
activation of neural progenitor cells after SAH may also occur in the adult 
brain. Sgubin et al. (2007) collected and analyzed brain tissue samples of 
patients with SAH and found SOX2 and Musashi mRNAs, two markers of 
proliferation of neural progenitor cells. Previous experimental studies have 
found that formation of new brain cells from neural stem cells can occur 
throughout life (Kumar et al., 2019). Neural stem cells, mainly located in 
the subventricular region and the subgranular region of the dentate gyrus, 
can proliferate and/or migrate to the damaged site to compensate and/
or replace the lost neurons (Sekerdag et al., 2018; Li et al., 2022). Because 
there is no BBB, endogenous neurogenic stimulators released from the brain 
after SAH can be detected in cerebrospinal fluid, indirectly confirming the 
presence of neurogenesis (Kumar et al., 2019). Neurogenesis is characterized 
by the release of various neurotrophic factors, such as vascular endothelial 
growth factor, erythropoietin, and brain-derived neurotrophic factor (Wang 
et al., 2015a). However, generating sufficient numbers of neural stem cells 
for transplantation is a huge challenge. Therefore, many experimental 
studies have been forced to shift from neural stem cells to other stem cell 
sources. Mesenchymal stem cells can be derived from adipose tissue, bone 
marrow, dental pulp, and human umbilical cords. At the same time, it has 
the ability of multidirectional differentiation, which can induce nerve cells, 
muscle, adipose, and liver cells. Most importantly, it can penetrate the BBB, 
migrate, proliferate, and differentiate into nerve cells and is an ideal seed 
cell for nerve repair after SAH (Mukai et al., 2018; Song and Zhang, 2020). 
By injecting labeled mesenchymal stem cells into mice with SAH through the 
caudal vein, it was found that mesenchymal stem cells differentiated into 
nerve cells, reduced neuronal apoptosis, and improved nerve function in 14 
days (Khalili et al., 2012). Stem cell therapy should be performed as early 
as possible, which can help reduce the subsequent damage caused by EBI. 
In recent years, treatment of subarachnoid hemorrhage with stem cells has 
developed rapidly. However, stem cell therapy for SAH has its limitations and 
challenges. First of all, mammalian brains may not be sufficiently or efficiently 
able to produce functional neurons. Secondly, the specific mechanisms 
of action and activation principle of stem cells are not clear, and research 
efforts are still needed. Moreover, most of the current researches are limited 
to preclinical studies, and the safety and reliability of stem cell therapy are 
not clear, especially the risk of tumor formation. Finally, detailed treatment 
strategies, including the optimal time window for treatment, stem cell types 
and numbers, delivery sites and pathways, need to be further explored.

Conclusion 
In recent years, many pathophysiological mechanisms have been proposed for 
brain injury after SAH. Apoptosis is a very important link, including damage to 
neurovascular units, which leads to destruction of the BBB and the occurrence 
of cerebral edema. The stimulation of blood contents and secondary cerebral 
ischemia increase the apoptosis of brain cells and aggravate the neurological 
deficit of patients with SAH. Fortunately, a number of anti-apoptosis drugs 
and stem cell therapies are being developed and have been shown to be 
effective in vivo and in vitro. However, many aspects need to be perfected 
before these approaches can be translated into clinical research. In this 
study, the pathophysiological mechanism and treatment methods related 
to apoptosis after SAH are discussed, which will provide direction for clinical 
treatment and development of targeted drugs in the future.
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Table 1 ｜ Potential neuroprotective targets for brain injury and neuron loss after subarachnoid hemorrhage

Methods Drug/hormone/protein Cell category Pathways
Activity or 
inhibition Attenuate Reference

EP M617 Neuron ERK/GSK-3β/TIP60 I NA Shi et al., 2021
EP Kisspeptin-54 Neuron GPR54/ARRB2/AKT/GSK3β I OS, NA Huang et al., 2021
EP 5-Lipoxygenase inhibition Neuron AKT I NI, NA Liu et al., 2021
EP c-Abl Tyrosine kinase Neuron LRP-1-dependent Akt/GSK3β A NA Yan et al., 2021
EP Heat shock protein 22 Neuron AMPK-PGC1α I OS, MA Fan et al., 2021
EP TRAF3 Neuron TAK1-dependent MAPKs and NF-κB I NA Zhou et al., 2021
EP Tauroursodeoxycholic acid Neuron TGR5/SIRT3 I NA Wu et al., 2020a
EP Tim-3 Neuron Nrf2/HMGB1 A NI, NA Guo et al., 2020
EP Liraglutide Neuron Bcl-2/Bax and cleaved caspase-3 I NI, NA Tu et al., 2021
EP Melatonin Oligodendrocyte Bim and Bcl-2 I OA Liu et al., 2020
EP TT01001 Neuron Mitoneet I OS, NA Shi et al., 2020
EP HLY78 Neuron LRP6/GSK3β/β-catenin I NA Luo et al., 2020
EP Paeoniflorin Neuron Nrf2/HO-1 I OS, NA Wang et al., 2020
OxyHb CDKN1B Neuron miR-502-5p and PPARγ/NF-κB I OS, NA Chen et al., 2020a
EP Recombinant OX40 Neuron OX40-OX40L/PI3K/AKT I NA Wu et al., 2020b
EP Intranasal wnt-3a Neuron Frz-1/aldolase C/PPAN I NA Ruan et al., 2020
BSI SS31 Neuron, BBB Mitochondrial I OS, NA Shen et al., 2020
EP Tauroursodeoxycholic acid BBB PERK/eIF2α/ATF4/CHOP I ERSA Chen et al., 2020b
EP Inhibition of HDAC4 Neuron JNK/c-Jun-dependent I NA Wu et al., 2019
OxyHb Silencing of tenascin-C Neuron PI3K/Akt/NF-κB I NI, NA Tong et al., 2020
EP Exogenous brain-derived neurotrophic factor Neuron TrkB I NA Chen et al., 2019
EP TGR5 with INT-777 Neuron, astrocytes, microglia cAMP/PKCε/ALDH2 I OS, NA Zuo et al., 2019
EP Osteopontin Neuron Autophagy I AA Sun et al., 2019
EP GPR30 with G1 Neuron src/EGFR/stat3 I NA Peng et al., 2019
EP FGF-2 Neuron FGFR3/PI3k/Akt I NA Okada et al., 2019
EP Apelin-13 Neuron GLP-1R/PI3K/Akt A NA Liu et al., 2019
BSI Sodium/hydrogen exchanger 1 Neuron CHP1 A NA Song et al., 2019
EP Annexin A7 Neuron Glutamate release I NA Lin et al., 2019
BSI c‑Jun N‑terminal kinase inhibition Neuron p53 phosphorylation I PAA Ling et al., 2019
BSI Peroxiredoxin 1/2 Neuron H2O2/ASK1/p38 I NA Lu et al., 2019
EP TAT-mGluR1 Neuron MgluR1α truncation I NA Wang et al., 2019
EP Calpeptin Neuron caspase 3 I NA Zhou and Cai, 2019
EP AVE 0991 Neuron Mas/PKA/CREB/UCP-2 I OS, NA Mo et al., 2019
EP Standardized ginkgo biloba extract Egb 761 Neuron Akt I NA Yu et al., 2018b
EP Docosahexaenoic Acid Neuron Mitochondrial dynamics I OS, NA Zhang et al., 2018
EP Apelin-13 Neuron ATF6/CHOP I ERSA, BBBD Xu et al., 2018a
BSI Biochanin A Neuron TLRs/TIRAP/MyD88/NF-κB I NI, NA Wu et al., 2018
EP Thioredoxin-interacting protein Neuron Mitochondria-dependent pathway I NA Liang et al., 2019
EP Phosphodiesterase-4 inhibition Neuron SIRT1/Akt pathway I NA Li et al., 2018
EP Melatonin Neuron ROS-MST1 I NA Shi et al., 2018
EP Atorvastatin All cells CHOP/caspase 3 I ERSA Qi et al., 2018
EP Deficiency of tenascin-C Neuron TLR4/NF-κB/IL-1β and IL-6 I NI, NA Liu et al., 2018b
BSI Anti-TNF-alpha antibody modified to TNF-α Hypothalamus Erk I NA Ma et al., 2018
EP Resveratrol All cells Akt/mTOR pathway I NA Guo et al., 2018
BSI p53/microRNA‑22 HEB cell IL-6 (A) andcaspase-3/Bax (I) NI, NA Yu et al., 2018a
EP CHOP Neuron ERS-CHOP-C/EBPα-hepcidin I NF Zhao et al., 2018b
EP Hydrogen sulfide Neuron ROS-MST1 I NA Shi et al., 2017b
EP Resveratrol Neuron SIRT1/p53 I NA Qian et al., 2017
EP Mangiferin Neuron Nrf2/HO-1 I NI, NA Wang et al., 2017c
BSI Mitogen-and stress-activated protein kinase Neuron and astrocytes caspase-3 I NI, NA Ning et al., 2017
EP Mdivi-1 Neuron PERK/eIF2α/ CHOP I NI, BBBD, ERSA Fan et al., 2017
EP ErbB4 Neuron YAP/PIK3CB A NA Yan et al., 2017
EP PCMT1 Neuron PCMT1/MST1 I NA Shi et al., 2017a
Hemolysate RHBDNF Neuron Caspase-9, caspase-8, and caspase-3 I NA Li et al., 2017
EP Recombinant Netrin-1 Neuron DCC/APPL-1/AKT I NA Xie et al., 2017
EP Apigenin Neuron Caspase-3 I OS, NA Han et al., 2017b
BSI X-linked inhibitor of apoptosis Neuron Caspase-dependent apoptosis I BBBD Gao et al., 2017
EP Naringin Neuron Caspase-3 I OS, NA Han et al., 2017a
EP Methazolamide Neuron Caspase-3 I NA Li et al., 2016c
EP Valproic acid Neuron HSP70/MMPs and HSP70/Akt I BBBD, NA Ying et al., 2016
EP COG1410 Neuron P-AKT/P-JNK I NA, NN Wu et al., 2016
BSI Insulin Neuron Akt/nur-77 I Apoptosis Dai et al., 2015
BSI Melatonin Neuron NLRP3 I NIII, NA Dong et al., 2016
BSI Phosphorylation of p53 Neuron Ras/Raf/Erk I NA Feng et al., 2016
BSI Rhinacanthin-C Neuron NLRP3 I NI, NA Chang et al., 2016
BSI A purine antimetabolite Neuron and glia TLR2, TLR4 I NA, GA Chang et al., 2015
BSI SENP3 Neuron Caspase-3 A NA Yang et al., 2015
EP Minocycline Neuron Inflammation and p53 I NIII, PAA Li et al., 2016b

A: Activity; AA: autophagy apoptosis; BBBD: blood-brain barrier disruption; BSI: blood single injection; CVS: cerebral vasospasm; EP: endovascular perforation; ERS: endoplasmic 
reticulum stress; ERSA: ERS apoptosis; I: inhibition; MA: mitochondrial apoptosis; NA : neuro-apoptosis; NF: neuron ferroptosis; NF-κB: nuclear factor-κB; NI: neuro-inflammation; 
NIII: NLRP3 inflammasome-induce inflammation; NLRP3: NOD-like receptor thermal protein domain associated protein 3; OA: oligodendrocyte apoptosis; OS: oxidative stress; Oxyhb: 
oxyhemoglobin; PAA: p53-associated apoptosis; RHBDNF: recombinant human brain-derived neurotrophic factor; ROS: reactive oxygen species; TLR: Toll-like receptor.
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