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A B S T R A C T

Background & objective: Tendinopathy is a tendon disease with abnormal mechanical loading to induce chronic
repetitive injury. However, lack of a comparable animal model to demonstrate clinical progressions has hindered
the understanding of anatomical and pathological changes. The major extracellular matrix (ECM) in the tendon
consists of abundant type I collagen (COL) and minimal amount of elastin (ELN).
Methods: To study the ECM breakdown and inflammation, rat Achilles tendon was harvested and ex vivo incu-
bated with specific enzymes of elastase (ELNase) or collagenase (COLase).
Results: The ELNase broke down ELN, loosened the tendon structure, and increased the COL composition. In-
creases in cyclooxygenase-2 expression levels in tenocytes were revealed to induce inflammation with either
ELNase or COLase. However, incubation of COLase for 12 hours severely digested the tendon. To create a proper
ELN degradation in rats, the present study used high-frequency ultrasound to guide the injection of ELNase at the
paratendon tissue of the Achilles tendon. The effect of mechanically triggered inflammatory responses was
investigated by applying treadmill exercise (15 m/min for 20 min per day). After ELNase injection for 14 and 28
days, a significant loss of ELN was observed, and exercise further facilitated the pathological transition of COL.
The dynamics of inflammatory cell recruitments was revealed by specific staining of CD-11b (neutrophils) and
CD-68 (macrophage) after in vivo injection of ELNase or COLase for 1, 3, 7, 14, and 28 days. The combination of
ELNase and exercise caused early recruitment of neutrophil on day 1 and sequential expression of macrophage on
day 7 in peritendinous tissue.
Conclusion: These results suggested that ELN degradation with repetitive mechanical loading may present a
suitable model for the pathogenesis of tendinopathy.
The Translational potential of this article: This discover the role of elastin degradation in tendinopathy and the
interaction of exercise in the histological changes. The established the pathological model mimicking the path-
ogenesis to the human disease by injecting the elastase using ultrasound guidance and then applying treadmill
exercise. The loss of elastin and change of collagen composition in clinical tendinopathy samples were observed in
the rats. In addition, the sequential inflammation cascades were observed in the histological outcomes with
combination of elastase injection and treadmill exercise. Thus, this model may be used to test the clinical
treatment of tendinopathy in different stages.
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Introduction

Tendinopathy causes chronic pain with several pathological pro-
cesses that may limit the movement during functional activities or in-
crease the risk of tendon rupture, with unclear mechanism [1]. Tendon,
a dense connective tissue that contains abundant extracellular matrix
(ECM), connects the muscle to bone, thereby assisting the movements of
the skeleton and body segments [2]. The collagen fascicle is wrapped by
endotenon to separate each fascicle [3]. Epitenon is the outermost layer
of the tendon that consists of a smooth surface and vessels for supplying
nutrition to the tendon. A loose connective tissue outside the epitenon,
called paratenon, lubricates and guides the tendon during movements.
In the early phase of tendon healing (3–7 days after injury), in-
flammations are initiated by neutrophils [4]. The following steps to
clean up tissue debris and release inflammatory cytokines are led by
monocytes and macrophages. During the middle phase (5–21 days after
injury), tenocytes produce ECM to repair the injured tendon. The
tendon inflammation during the healing period is characterised as
tendinitis. The usage of corticosteroids and nonsteroidal antiin-
flammatory drugs provided short-term pain relief but did not demon-
strated long-term efficacy. Some other treatment approaches were also
suggested, such as prolotherapy, platelet-rich plasma injections, or
topical nitric oxide patches.

Repetitive injuries or abnormal loading to prolong the healing pro-
cess induces chronic tendinopathy [5]. Compared with the surrounding
tissue, the blood supply within the tendon is still relatively poor as a
result of difficulty in healing after tendon injury. Type I collagen (COL)
is the major ECM component of the tendon [6]. The elastin (ELN) is also
found in the endotenon and interfascicle space adjacent to the mature
tenocytes [7–9]. Tendinopathy is also a major clinical problem in sports
medicine and is often difficult to treat [10]. Overuse and overload are
believed to be the major factors of failure of the healing processes in the
tendon [5]. The impaired healing response might be due to the
impropriate mechanical microenvironment in the injured tendon [10].
The inflammatory mechanism of tendinopathy may involve the in-
creases of cell apoptosis [11], inducible nitric oxide synthase, hypoxia
[12], and tumour necrosis factor-α [13]. However, the dynamics of
tendon structure and the changes of ECM composition during patho-
genesis are still unknown.

Collagenase (COLase) injection is the most popular animal model to
induce acute tendinopathy [14], but tendinopathy usually occurs as a
chronic pathological process. The elastase (ELNase) is an ECM diges-
tion enzyme that degrades ELN and its cross-link to COL. The amount
of ELN affects the mechanical properties of connective tissues. ELN
was discovered in tendon [6,8], and ELNase-positive cells were
increased in human specimens with grades II and III tendinopathy
[15]. ELN was also found in the interfascicular matrix of
energy-storing tendons, such as superficial digital flexor tendon, and
becomes disorganised with ageing [16]. ELNase can be released by
neutrophils and macrophages during inflammatory responses [17].
ELNase was applied in an animal model to induce abdominal aortic
aneurysm by degrading the ELN in the arterial wall, which leads to
failure in the baring of blood pressure [18]. The ELNase-treated ten-
dons exhibit significant structural and compositional changes
including crimp undulation and release of glycosaminoglycans. ELNase
treatments also affect the mechanical properties of tendon, including
the ultimate tensile strength and failure strain [6,19]. However, the
pathogenesis and involvement of mechanical loading with ELNase are
still unknown. We hypothesised that the absence of ELN and the
combination of mechanical loading trigger the inflammatory responses
in paratendon tissue to induce chronic tendinopathy. In the present
study, the ex vivo incubation of ELNase in tendon and in vivo ELNase
injection combined with exercise in rats demonstrated the pathogen-
esis of tendinopathy via ELN degradation and inflammatory induction
in paratendon tissue.
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Methods

Ex vivo ECM degradation

The Sprague–Dawley rats (7-weeks-old) were sacrificed by overdose
with CO2, and the Achilles tendon was dissected from both legs and
incubated in normal saline to prevent tissue dry out. To understand the
ECM degradation in tendon structures, the fresh, isolated Achilles tendon
samples were immediately incubated with ELNase (1 U/mL; Sigma-
Aldrich, Inc.) or COLase (COLase type I, Cat# 17018029, 5 mg/mL;
Invitrogen, Thermo Fisher Scientific Co.) in Dulbecco's Modified Eagle's
Medium (DMEM; Invitrogen) at 37 �C for 12 h. After incubating with
ECM enzymes, the tissues were carefully rinsed twice with phosphate-
buffered saline (PBS) and then collected for the following histological
assessments.

Animal model of tendinopathy

Sprague–Dawley rats (7-weeks-old, total 148 rats) were provided by
the Animal Centre at National Cheng Kung University. The experimental
procedures were approved by the Institutional Animal Care and Use
Committee. To study the induction of tendinopathy by different ECM
enzymes, ELNase (1 U/mL; Sigma) or COLase (10 mg/mL; Invitrogen)
was injected in the paratendon area of the Achilles tendon in rats using a
31-G needle, with image guidance using high-frequency ultrasound
(HFU) [20,21]. HFU that consisted of a 50-MHz transducer to provide
subtissue image resolution for identifying the detailed structure in the
posterior compartment of rat legs was used. Briefly, the rats were
anaesthetised by using isoflurane (Panion & BF Biotech Inc., Taiwan
Healthcare Co.), with the hind limbs immersed in a water bath. HFU
images were obtained by scanning along the longitudinal axis of the
Achilles tendon to acquire the full length (about 14 mm) of the tendon
structure. The needle tip was observed under HFU during injection, and
ECM enzymes were applied around the paratendon. The injection of
equal volume of PBS was used as the sham control group.

To induce repetitive mechanical loading in the rats, treadmill exercise
(model T510; Diagnostic & Research Instruments Co., Ltd., Taoyuan,
Taiwan) was applied daily at a speed of 15 m/min for 20 min after in-
jection. After ELNase or COLase injection for 1, 3, 7, 14, and 28 days (D1,
D3, D7, D14, and D28, respectively), the rats with or without exercise
were sacrificed by overdose with carbon dioxide (CO2) to harvest the
whole posterior compartments of the legs. Anatomical changes in the
subcutaneous, peritendinous, and tendon structures were observed by
applying specific histological staining to reveal the structural changes
and inflammatory responses at different healing time points.

Measurement of mRNA

After ex vivo incubation of ECM enzymes, the tendon tissue was rinsed
twice with PBS and then kept in Trizol (Invitrogen) to prevent mRNA
degradation. The tissue was cut into 1 mm� 1 mm pieces and repeatedly
freeze-thawed in liquid nitrogen 3 times. Then, the tissue was homoge-
nised using a tissue homogeniser to isolate the mRNA. The gene
expression levels of COL and ELN were measured by quantitative poly-
merase chain reaction (qPCR) after reverse transcribing into cDNA using
Super Script III (Invitrogen) [22]. The primers for COL are as fol-
lows—forward sequence: TGGTCCTCAAGGTTTCCAAG and reverse
sequence: CCTCTGTGTCCCTTCATTCC. Quantification of the gene ex-
pressions was assessed by fold changes normalised to the DMEM control
and the house-keeping gene GAPDH.

Histological assessments

Several histological stainings were performed to observe the tissue
morphology and protein expressions during the tendon pathogenic
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process. The clinical tendinopathy tissue was obtained from the tendon of
biceps brachii in a patient during surgery with informed consent andwith
the approval of the Review Board of National Cheng Kung University
Hospital. After sample collection, the tissues were rinsed twice with PBS
and fixed with 4% paraformaldehyde (Sigma) at 4 �C for 48 h. Haema-
toxylin–eosin (H&E) staining was performed to reveal the histological
structure after the samples were dehydrated, embedded in paraffin, and
then sectioned at a 5-μm thickness [20]. The tissue sections were stained
with haematoxylin (Leica Biosystems, Leica Microsystems Inc., USA) for
7 min and then with eosin (Leica) for 5 s. The ELN in the tendon was
visualised in black colour using the Verhoeff elastic stain kit (Sigma).
Masson's trichrome staining was performed to present the COL compo-
sition for original high-tensile COL (red colour) and newly synthesised
low-tensile COL (blue colour) [23] in accordance with the staining pro-
tocols of the commercial Masson's trichrome kit (Sigma). Specific CD
Figure 1. (A) Gross images of ex vivo incubation of the Achilles tendon in extracellul
the haematoxylin–eosin (H&E) and immunohistochemistry (IHC) stainings of collage
after COLase incubation (*significant difference from DMEM, p < 0.05; #significant d
and increases the COL expression. (C) Disarrangement of tendon fascicle when treate
showed the tendency of decreased COL expression after COLase incubation (#signifi
Medium; qPCR ¼ quantitative polymerase chain reaction.
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markers were used in immunohistochemistry (IHC) staining to identify
the different inflammatory cells exhibited at different time points.
Briefly, the paraffin sections were dewaxed, rehydrated, activated by
treating with 3% H2O2, and then blocked the nonspecific binding by 5%
bovine serum albumin (Sigma) in 0.02% Tris-buffered saline with Tween
20 (Sigma). The sectioned tissues were then incubated with primary
antibodies at 4 �C overnight. The CD-11b antibody (1:200; Abcam,
Cambridge, UK) was applied to identify the neutrophils, and CD-68
(1:200; Abcam) was used to label the macrophages. The samples
labelled with specific primary antibodies were incubated with secondary
antibodies (1:500; Abcam) and then visualised by using an AB reagent
(Vector, Burlingame, CA, USA) to couple with 3,30-diaminobenzidin.
Tissue sections were counterstained with haematoxylin and then
mounted by using a mounting medium (Leica). The expressions of
different inflammatory cells and histological images were acquired by
ar matrix (ECM) of elastase (ELNase) or collagenase (COLase) for 12 h. (B) Both
n (COL) show severe loss of tendon integrity in the longitudinal tissue sections
ifference from ELNase, p < 0.05). By contrast, ELNase mildly loosens the tendon
d with COLase is further confirmed in the cross-sectioned tissues. (D) The qPCR
cant difference from ELNase, p < 0.05). DMEM ¼ Dulbecco's Modified Eagle's
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tissue scanning microscopy (BX51, Olympus, Olympus Co., Japan). In
Masson's trichrome images, the composition of high- and low (blue
colour)-tensile COL is derived by separating the red and blue colours
from the RBG (Red-Blue-Green) image and quantifying the mean in-
tensity in the same visual field. The whole tissue of the posterior leg was
scanned to demonstrate the gross changes of histological structures in
longitudinal tissue sections. All histological images were randomly ac-
quired for at least 3 repetitions and enlarged to represent a specified
anatomical region in each sample.

Frozen section samples were prepared for immunofluorescence (IF)
staining to confirm the ECM degradation and tenocyte responses. After
dehydration by 30% (w/v) sucrose in 0.1 M PBS and then embedding in
the frozen tissue matrix (Tissue Freezing Medium, Leica), the ex vivo
tissue samples were sectioned into 20-μm-thick slices. Specific primary
antibodies against ELN (1:250; Abcam), COL (1:250; Abcam),
cyclooxygenase-2 (COX-2, 1:200; Cayman), and tenascin-C (TN-C, 1:100;
Abcam) were used to observe the loss of specific ECM within tendon
tissue and the induction of inflammation in tenocytes. The primary an-
tibodies were labelled by fluorescence-labelled secondary antibodies
(1:200; Invitrogen) and 4',6-diamidino-2-phenylindole, (DAPI, 1:1000;
Figure 2. (A) The expression of elastin (ELN, green) colocalized with the tenocytes
ELNase specifically degrades ELN but does not disrupt the fascicle, as illustrated in th
expressions. (B) The increase in COL production during ELNase incubation is confirm
increased the cyclooxygenase-2 (COX-2) expressions to induce the inflammation in
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Invitrogen) for the cell nucleus. Fluorescent signals were observed at
excitation–emission wavelengths of 470–505 nm and 596–615 nm by
using a �20 objective lens with a tissue scanning fluorescence micro-
scope (BX51; Olympus).

Statistical analysis

The experiments were repeated at least three times, and data were
expressed as mean � standard deviation. Statistical analysis was per-
formed by using one-way analysis of variance and the Scheffe post hoc
test. A p value < 0.05 was considered statistically significant.

Results

Ex vivo ECM degradation–induced tenocyte inflammation

To further understand the influence of ECM degradation by enzyme
digestion and the induction of inflammatory responses in tenocytes,
Achilles tendons were harvested from the age-matched rats. After ex vivo
incubation of the tendon in ELNase or COLase for 12 h, the gross image
as labelled by tenascin-C (TN-C, red) in normal tendon (incubated in DMEM).
e TN-C staining. However, COLase caused severe diffusion of the ELN and TN-C
ed by specific immunofluorescence staining of COL. (C) Both ELNase and COLase
tenocytes. Scale bar ¼ 50 μm. DMEM ¼ Dulbecco's Modified Eagle's Medium.
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was obtained, which showed obvious changes in tendon morphologies,
especially when incubated with COLase (Fig. 1A). The detailed histo-
logical structure of the tendon was observed by H&E staining in longi-
tudinal (Fig. 1B) or transverse sections (Fig. 1C). ELNase slightly
loosened the tendon structure, but COLase resulted in severe degradation
of tissue integrity. The IHC staining of COL further confirmed the tendon
disruption with COLase treatment, especially observed in the transverse
sections (Fig. 1C, COL staining). We also measured the mRNA expression
levels of COL after ELNase and COLase incubation (Fig. 1D). The incu-
bation of COLase showed the tendency to inhibit the COL expression but
did not achieve significant difference owing to high variation and diffi-
culty in isolating tenocytes from tendon tissue.

The detailed arrangement of ELN was detected through IF staining of
the frozen transverse-sectioned tendon (Fig. 2A). In the normal tendon
incubated with DMEM, ELN was observed at the outer layer of tendon
fascicles (green). The tenocyte was identified by tenascin-C staining (TN-
C, red) and found adjacent to the ELN fibres (yellow colour in the merged
image). ELN in the tendon was also digested by ex vivo incubation of
ELNase, as indicated by decreasing ELN (green). The degradation of ELN
by ELNase did not affect the arrangement of TN-C (intact red colour in
ELNase treatment). Instead, the application of COLase caused the un-
confined tendon fascicles and diffused staining in both ELN and TN-C. It
is interesting that both the IHC and IF stainings showed increases in COL
when treated with ELNase, suggesting that ELNase may induce COL
synthesis after ELN degradation (Fig. 2B). The increase of inflammation
in tenocytes was demonstrated by COX-2 staining with ELNase and
COLase treatments (Fig. 2C). This ex vivo evidence discloses the inter-
action of ECM structure when applying different ECM enzymes to tendon
tissue. The inflammation of tenocytes was induced when disrupting
either ELN or COL by ELNase or COLase, respectively.
Exhibition of tendinopathy pattern in rats with combination of ELNase
injection and exercise

To understand the loss of ECM in the pathogenesis of tendinopathy,
ECM enzymes were precisely injected in the paratendon tissue of rat
Achilles tendon under living-animal image guidance by using a 50-MHz
HFU system in the rats with age matching to the ex vivo ECM digestion
model (Fig. 3A). The needle tip was clearly observed under HFU and can
be guided to the paratendon tissue for ELNase or COLase injection,
Figure 3. (A) High-frequency ultrasound (HFU) guiding the injection of ECM enzym
detailed histological structures, as illustrated by the H&E staining in the same rat. (C)
or without treadmill exercise (Ex) were also monitored by using HFU. H&E ¼ haem
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without touching or injuring the tendon. To demonstrate the high reso-
lution of the HFU system, the rat was immediately sacrificed to perform
the histological staining after HFU scanning. High agreements of tissue
structures on ultrasonic images (HFU) were observed in the longitudinal
sections, and the same histological structures for the posterior compart-
ment of rat legs was shown in H&E images (Fig. 3B). The echo images of
the same rats were monitored and acquired by HFU before and after
ELNase injection on D1, D3, D7, D14, and D28 with or without exercise
(Fig. 3C).

An increased number of ELNase-positive cells in pathological lesion
sites in human tendon tissue were discovered in our previous study [15,
24]. To illustrate the histological findings for the pathogenesis of the
tendon, changes in ELN and COL expressions in clinical tendinopathy
tissue were stained with Verhoeff's and the Masson's trichrome stains,
respectively (Fig. 4A). Normal human tendon tissue contains a small
amount of ELN (green arrows, Verhoeff's stain) and high-tension COL
(red colour, Masson's trichrome stain). The ELN was lost, and COL was
turned into blue colour to indicate the remodelling of newly synthesised
COL in the pathological site. In the rat model, the gross images of Mas-
son's trichrome staining demonstrated the success of creating a patho-
logical rat model of tendinopathy induced by injecting ELNase into the
paratendon tissue for 14 and 28 days, especially with the combination of
treadmill exercise (Ex) (Fig. 4B). The gross images of Masson's trichrome
staining demonstrated significant COL changes in the posterior com-
partments of legs. Similar to normal human tendon, the Achilles tendon
of healthy rats showed high-tensile COL (red colour) in Masson's tri-
chrome staining (Fig. 4B, zoomed-in image). ELNase increases the new
synthesis of low-tension COL (blue colour) after injection for 14 and 28
days. The ELN (green arrows in normal tendon) also exhibited a similar
degradation pattern as that in the pathological clinical sample of ten-
dinopathy (Fig. 4B, Verhoeff's staining). By specific extraction and
quantification of the red and blue colour on Masson's trichrome images,
the decreases in high-tension COL and increases in low-tension COL were
observed in the rats after ELNase injection (Fig. 4C). The ratio of COL
composition was further derived by dividing the low-tension COL by the
high-tension COL (low/high ratio) per image field. As compared with the
ELNase injection without exercise for 14 and 28 days, the subject of daily
treadmill running further facilitated the changes in COL composition and
the transition from high-tension to low-tension COL (Fig. 4D). These
results highlighted the importance of mechanical loading to promote
es to the Achilles tendon of rats. (B) HFU provides subtissue resolution to detect
The pathological progresses in echo image dynamics after ELNase injection with
atoxylin–eosin.



Figure 4. (A) Pathological changes in ELN and COL composition in human tendon tissue with tendinopathy as shown in Masson's trichrome and Verhoeff's stainings.
(B) After the ELNase injection for 14 (D14) and 28 (D28) days, significant loss of ELN was observed by Verhoeff's staining (green arrows). Masson's trichrome staining
demonstrated the compositional changes of high (red) and low (blue) tensile COL in the Achilles tendon with or without Ex. (C) The red and blue colours are separated
to indicate the high- and low-tensile COL. (D) The ratio of COL (low/high COL) was significantly increased in rats after ELNase injections for 28 days or the com-
bination of ELNase and Ex for 14 and 28 days (*significant difference from normal tendon, p < 0.05). The exercise facilitated the pathological transition of COL after
ELNase digestion (#significant difference from normal tendon, p < 0.05).

Y.-T. Wu et al. Journal of Orthopaedic Translation 23 (2020) 113–121
tendon pathogenesis after ELN degradation.

Dynamics of inflammatory cell infiltration during tendon pathogenesis

To understand the inflammatory cell recruitment during ECM
degradation, the rats were injected with ELNase or COLase by using the
HFU guidance system as aforementioned. The influence of mechanical
loading during tendon healing processes was studied by assigning daily
treadmill exercise. The H&E staining demonstrated the increases of in-
flammatory cells in paratendon tissue after ECM enzyme injection
(Fig. 5A). The COLase injections more significantly increased the in-
flammatory cells than ELNase did at all different time points of D1, D3,
D7, D14, and D28 (Supplementary Fig. 1A). The application of exercise in
both ELNase and COLase also has the tendency to increase the number of
inflammatory cells at different time points. The specific stainings of
neutrophils and macrophages by CD-11b and CD-68 validated the dy-
namics of inflammatory cell infiltration. The neutrophils played a major
role in the accumulation around the paratendon tissue to induce
inflammation at the early stage (D1 and D3). The CD-11b staining
showed the application of exercise further boosted the number of neu-
trophils (red arrows) in both ELNase and COLase groups (Fig. 5B and
quantification in Supplementary Fig. 1B). Unlike the prolonged inflam-
mation in COLase-injected rats, the combination of ELNase and exercise
transiently increased the CD-11b–positive cells at D1 and then decreased
at D3. The quantification results showed significant difference between
static and exercise of ELNase injection at D1, but not at D3 (Supple-
mentary Fig. 1B). We further used the CD-68 staining to observe the
prolonged expression profiles of macrophage at D1, D3, D7, and D14
(Fig. 5C). Macrophages were also expressed at the early phase (D1) in the
ELNase and exercise combination (ELNase þ Ex) (Fig. 5C and
118
quantification in Supplementary Fig. 1C). The addition of exercise in the
ELNase-injected rats increased the number of macrophages at D3 and D7
(Fig. 5C, red arrows). Regardless of exercise, the COLase injection
showed increases of inflammatory cells. Taken together, this in vivo ev-
idence demonstrated a successful animal model by combining ELNase
and exercise to present the dynamic infiltrations of neutrophils at the
early phase and then switched to macrophages at the middle phase of
tendon pathogenesis.

Discussion

The importance of ELN in the tendon was discovered by conducting
both in vivo and ex vivo experiments in the present study. The parallel
alignment of COL fascicles and other composition of ECM is required to
form sufficient tension-bearing structure for the force to transmit from
muscle to bone [8,25]. The distribution of ELN in the intrafascicle tissue
was identified in both the present results and previous research studies
[15,24]. The location of ELN was first revealed in flexor digitorum longus
tendon [8] and recently discovered with higher amount in the anterior
cruciate ligament than other knee periarticular tendons and ligaments
[7]. The elastic property of ELN helps the tissue to return back to its
original length after release frommechanical deformation [26]. ELNmay
provide the elastic recoil to prevent the damage of nerves and vessels in
the tendon [27]. The specific digestion of ECM in ex vivo tendon tissue,
especially by administrating the ELNase (Figs. 1 and 2), may provide a
rapid platform to understand the cellular responses and tissue structural
changes in the comprehensive healthy tendon. Although the ELN
degradation by ELNase did not severely damage the tendon structure and
alignments, the transmission of mechanical stimuli and the mechanical
force applied to tenocytes may be changed as implicated from the tissue



Figure 5. (A) Dynamic histological changes in paratendon tissue can be observed in the H&E staining after different ECM enzyme injections for 1, 3, 7, 14, and 28
days. Exercise promoted the pathological progressions of tendinopathy. (B) The IHC staining of CD-11b shows the increases of neutrophil recruitment at D1 when
ELNase was combined with exercise. COLase injections severely damaged the tendon structure and induced large amounts of inflammatory cell accumulation at
different time points. (C) The combination of ELNase and exercise shows prolonged inflammation that may have contributed by increasing the number of CD-
68–positive macrophages. ECM ¼ extracellular matrix; IHC ¼ immunohistochemistry; H&E ¼ haematoxylin–eosin.

Y.-T. Wu et al. Journal of Orthopaedic Translation 23 (2020) 113–121
morphology and mechanical property by losing ELN in tendon. We also
try to isolate the mRNA from ex vivo tissue and perform the quantitative
polymerase chain reaction to detect the mRNA expression levels of
tenocytes during COLase and ELNase incubation. However, the varia-
tions are high and difficult to isolate good quality of RNA from dense COL
tissue in tendon. The potential alternative approach may use in situ
hybridisation to observe the gene expression of tenocytes in the future.
However, the tenocytes and ELN fibres showed three-dimensional
consistent connections with the long axis of tendon [9]. The inflamma-
tory responses in tenocytes after ELN degradation (Fig. 2) may also
provide a good ex vivo platform to test the potential treatment strategies,
such as pharmacological drugs, platelet-rich plasma (PRP), and physical
therapies, for tendinopathy prevention [10].

There were many inflammatory molecular targets and cytokines
identified in overuse tendinopathy [5,28]. Other inflammatory cells may
also participate during the pathogenesis of tendon. Lubrication of para-
tendon tissue for tendon gliding and sliding was disturbed after injury
[29] and gradually results in tendinopathy [30]. The inflammation of
tenocytes induced by ECM enzymes was triggered by COX-2 signals
(Fig. 2C). The pathological process of the tendon in the clinical samples
showed increases in prostaglandin E2 levels [31]. The loss of tension in
the tendon also increased the inflammatory genes in the tendon [32].
Prostaglandin E2 is synthesised by prostaglandin-endoperoxide synthase,
which can be regulated by COX, particularly COX-2 [33]. We also per-
formed IF staining of other cytokines such as interleukin-1β and tumour
necrosis factor-α, but did not observe significant changes after ex vivo
incubation under static condition with ELNase or COLase for 12 h (data
not shown). The addition of mechanical stimuli by daily exercise caused
the malfunction of tissue remodelling and led to pathological progression
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to increase the messenger RNA in MMP1, COX-2, and interleukin-1β
genes [34]. The present study demonstrated the neutrophil expression in
the rats with only ELNase injection showed a mild immune response,
which usually declines to basal level after 48 h (Fig. 5A). On the other
hand, the combination of ELNase with exercise (ELNase þ Ex) in a rat
model triggered the pathogenesis in regards to the anatomical and his-
tological changes in the Achilles tendon. Thus, prevention of mechanical
stimuli after ELN degradation may be required for tendon tissue to
complete the healing process.

The direct intratendinous injection of COLase is the common animal
model for tendinopathy. However, there are several concerns about
COLase injection [35]. First, direct injection inside the tendon can
damage the tendon structure. Tendon calcification was simply induced at
the location of needle penetration. Second, the COLase degraded a large
amount of COL in the tendon, triggering a huge and quick neutrophil
infiltration between 1 and 3 days and switched to macrophages after
COLase injection for 3 days [14]. The need for alternative approaches to
study tendinopathy from direct COLase injection has been proposed [36].
Both of our ex vivo and in vivo models confirmed the rapid tendon
digestion as early as 12 h after COLase application (Fig. 1A) and pro-
longed inflammatory responses (Fig. 5). In clinic settings, tendinopathy is
a chronic pathological process with positive staining of tissue inflam-
mation but rare inflammatory cell infiltration [37]. Macrophages were
only identified in the early pathogenesis of paratendon tissue in clinical
patients [4]. Although we modified the COLase injection at paratendon
tissue in rats, COLase still caused severe tendon damage and large
amount of inflammatory cell clustering (Fig. 5). Severe neutrophil infil-
tration may induce excessive tissue inflammation and further damage the
injured tissue [38]. Therefore, COLase should be used with care in a
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pathological model of tendon injury.
Ultrasonography is usually used in the diagnosis of the pathological

changes of soft tissue in clinical practice, but ultrasonography systems
usually have a low frequency (5–15 MHz), which can only provide global
changes in musculoskeletal structures. HFU uses a transducer with a
frequency higher than 15 MHz to provide better image resolution for
detecting the remodelling of detailed tissue structures [39]. HFU was
used to detect the pathological changes of adenomyomatosis in the
gallbladder and showed similar image sensitivity and high accuracy as
compared with magnetic resonance cholangiopancreatography [40].
Tissue inflammation in mice after fracture injury was monitored by HFU,
and high agreement with ultrasonic signals was shown [20]. In the pre-
sent study, we used HFU to guide the injection of ECM enzyme without
damaging the tendon tissue (Fig. 3A), which showed high accuracy in
terms of tissue resolution for rat Achilles tendon (Fig. 3B). Using the HFU
to provide a dynamic monitoring system for the inflammation and his-
tological remodelling was very useful in muscle [41] and may correlate
the echo image with inflammatory responses for tendon in future studies.

Taken together, this study demonstrated the tissue responses in
different ECM enzymes by ex vivo incubation of COLase or ELNase. The
ELNase broke down the elastin and loosened the tendon structure,
whereas COLase severely digested the tendon. Good agreements of the
pathological model for mimicking the pathogenesis to human tendin-
opathy were established by injecting the ELNase with ultrasound guid-
ance and then applying treadmill exercise. The sequential inflammation
cascades were discovered in the histological outcomes in rats to
demonstrate the mechanical induction of tendinopathy after ELN
degradation.
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