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The formation of reactive oxygen species (ROS) by the myeloid cell NADPH oxidase NOX2 is critical for the destruction of
engulfed microorganisms. However, recent studies imply that ROS, formed by NOX2+ myeloid cells in the malignant
microenvironment, exert multiple actions of relevance to the growth and spread of neoplastic cells. By generating ROS, tumor-
infiltrating myeloid cells and NOX2+ leukemic myeloid cells may thus (i) compromise the function and viability of adjacent
cytotoxic lymphocytes, including natural killer (NK) cells and T cells, (ii) oxidize DNA to trigger cancer-promoting somatic
mutations, and (iii) affect the redox balance in cancer cells to control their proliferation and survival. Here, we discuss the
impact of NOX2-derived ROS for tumorigenesis, tumor progression, regulation of antitumor immunity, and metastasis. We
propose that NOX2 may be a targetable immune checkpoint in cancer.

1. Introduction

1.1. Distribution and Function of NOX Enzymes. The NOX
family of enzymes comprises seven structurally conserved
isoforms, i.e., NOX1-5 and DUOX1-2. The only known
function of these transmembrane multicomponent enzymes
is to catalyze the reduction of molecular oxygen to generate
superoxide (O2

-) or hydrogen peroxide (H2O2) [1, 2]. Super-
oxide is spontaneously or enzymatically converted to H2O2
that may be further converted to additional reactive oxygen
species (ROS), including myeloperoxidase- (MPO-) derived
hypochlorous acid and tyrosyl radical [3].

NOX enzymes differ in distribution between cell types in
their subcellular localization and composition of subunits.
NOX1 is mainly expressed in the colon, NOX2 on the lyso-
somal and plasma membranes of myeloid cells where it con-
tributes to phagocyte killing of microbes, NOX3 in the inner
ear and fetal tissues, NOX4 in the kidney, NOX5 in lymphoid
tissue and testis, and DUOX1-2 in thyroid and gastrointesti-
nal tissues [4, 5]. Low expression levels of NOX1 and NOX4
are also detected in myeloid cells [4, 6, 7], and NOX2 is min-
imally expressed by hematopoietic stem cells [8]. NOX2 is

further expressed at low levels by B cells that may take up
and, similar to myeloid cells, degrade microbial pathogens
by generating NOX2-derived ROS [9]. Additionally, within
dendritic cell (DC) phagolysosomes, NOX2 generates ROS
in a process that consumes protons leading to alkalization
of this compartment. This protects engulfed peptides from
complete degradation by lysosomal proteases, which facili-
tates their presentation to cytotoxic T cells [10–12].

1.2. NOX Enzymes in Cancer. ROS formed from NOX
enzymes have been implicated in carcinogenesis [13]. In
addition, several NOX enzymes are expressed in malignant
tissue and may contribute not only to cancer progression
and spread but also to apoptosis of malignant cells. NOX1
is implicated in colon cancer where its ROS-producing
activity may enhance tumor cell proliferation and metastasis
[14, 15]. Myeloid leukemic cells express high levels of NOX2
that compromises destruction of malignant cells by trigger-
ing ROS-induced apoptosis of adjacent antileukemic lym-
phocytes [16–19]. Stem cell expression of NOX2 has been
implicated in leukemogenesis by maintaining survival of
leukemic stem cells [8]. NOX2 is further expressed by EBV-
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infected gastric cancer cells to promote tumor progression
[20] and by non-small-cell lung cancer cell lines, where it
mediates tumor cell apoptosis [21]. NOX4 is overexpressed
in several forms of cancer, including breast cancer, where it
may enhance tumorigenesis [22], and prostate cancer, where
it promotes apoptosis [23]. Table 1 summarizes the proposed
physiological and pathophysiological functions of NOX
enzymes.

Additionally, ROS from all cellular sources, including
NOX-derived ROS, participate in redox signaling by oxidiz-
ing thiol groups on proteins, thus modifying cellular func-
tions and activation status. For example, ROS may oxidize
protein tyrosine phosphatases (PTPs) and protein kinase C
(PKC) with ensuing effects on differentiation, proliferation,
and survival of malignant cells [69–73].

1.3. The Myeloid NADPH Oxidase: NOX2. The first discov-
ered and by far most extensively studied member of the
NOX enzyme family, NOX2, is densely expressed by myeloid
cells such as monocytes, macrophages, and granulocytes [2].
NOX2 is a complex of membrane-bound and cytosolic
subunits that are spatially separated in resting cells. The
membrane-bound subunits, gp91phox (also referred to as
CYBB or NOX2) and p22phox (CYBA), constitute the cata-
lytic core of the oxidase. The subunits p47phox (NCF1),
p67phox (NCF2), and p40phox (NCF4) remain in the cytosol
as a complex. Activation of NOX2 may be induced by
pathogen-associated molecular patterns, danger-associated
molecular patterns, bacterial peptides, growth factors, and
cytokines, which trigger the cytosolic subunits p47phox

(NCF1), p67phox (NCF2), and p40phox (NCF4) to translocate
and assemble at the membrane [5, 74]. Two GTPases, Rac
and Rap, are also critical for NOX2 activation [75, 76]. In
its GTP-bound form, the cytosolic Rac interacts with p67phox

and translocates to the membrane. Rap1 is a membrane
protein with a partly unknown function that is required for
optimal activation of NOX2 components [77] (Figure 1).

Phagocytes are stimulated to generate NOX2-derived
ROS upon encountering microbes in a process referred to
as a “respiratory burst.” When the components of NOX2

assemble at the phagolysosome membrane, NOX2 generates
intracellular ROS, while assembly at the plasma membrane
leads to the formation of extracellular ROS [5, 78]. The
respiratory burst is critical for phagocyte-mediated killing
of microorganisms as highlighted by the susceptibility to bac-
terial and fungal infections in patients with chronic granulo-
matous disease, a rare genetic disorder caused by dysfunction
of NOX2 [79–81], and by studies in mice that are genetically
deprived of NOX2 [82]. NOX2 deficiency is also associated
with hyperactive lymphocytes and autoimmunity in mice
and humans, indicating that NOX2-derived ROS also
participate in controlling lymphocyte reactivity [83–85].
Additionally, monocyte-derived DCs express NOX2, and
the formation of NOX2-derived ROS by pathogen-activated
DCs is proposed to reduce the potential transmission of
pathogens to secondary lymphoid organs [86].

2. Redox Homeostasis

In addition to NOX-mediated formation of ROS, all cells
generate ROS during mitochondrial ATP generation. In the
process of oxidative phosphorylation, electrons pass through
the electron transport chain where the final electron acceptor
is oxygen, most of which is converted to water. Superoxide is
produced as a byproduct in this process due to incomplete
reduction of oxygen to water or premature electron leakage
to oxygen [87, 88]. Intracellular levels of ROS affect cellular
redox signaling and homeostasis, while ROS released into
the surrounding, in particular H2O2 that is relatively stable
and readily crosses cell membranes, may also affect adjacent
cells [19, 89–91]. Under resting conditions, when there is a
balance between ROS and antioxidants, redox signaling is
reversible and regulates physiological processes due to the
ability of ROS to reversibly oxidize cysteine residues to
thus alter protein function [92, 93]. During environmental
stress, infection, and inflammation, including cancer-related
inflammation, the cell and tissue concentrations of ROS may
increase beyond the capacity of the antioxidant defense sys-
tems. Such “oxidative stress”may result in irreversible oxida-
tion and damage to proteins, lipids, and DNA [92]. Details

Table 1: Tissue distribution, function, and cancer relevance of NOX enzymes.

Enzyme Tissue expression (high to low) Function Cancer relevance

NOX1 Colon, uterus, prostate [24–28] Repair of colon mucosa
Colon [14, 15, 29, 30] and

prostate [31] cancers

NOX2 Myeloid cells [8, 32–34]
Host defense against pathogens,
lymphocyte homeostasis, stem cell

maintenance, myeloid cell differentiation

Myeloid leukemia [35, 36], melanoma
[37, 38], lymphoma [32]

NOX3 Inner ear, fetal tissue [39–41] Otoconia synthesis, organogenesis Hepatocellular carcinoma [42]

NOX4 Kidney [43, 44] Oxygen sensing∗ Renal [45, 46] and ovarian [47] cancers,
glioma [48], melanoma [49]

NOX5 Lymphoid tissue, testis [50, 51]
Lymphocyte differentiation,

spermatozoa motility
Prostate cancer [52, 53], Barrett’s
esophageal adenocarcinoma [54]

DUOX1 Thyroid, respiratory tract [55–57]
Hormone synthesis, innate airway

host defense
Thyroid [58, 59] and lung cancer[60, 61]

DUOX2 Thyroid, gastrointestinal tract [55, 62–65]
Hormone synthesis, regulation of gut

microbiota/mucosa interactions
Thyroid [58, 66] and pancreatic

cancer [67, 68]

2 Oxidative Medicine and Cellular Longevity



regarding redox homeostasis and its impact on cancer have
recently and comprehensively been reviewed [94, 95] and is
beyond the major scope of this overview.

To avoid ROS-inflicted cell damage, several cellular sys-
tems that neutralize ROS are induced in an oxidative envi-
ronment. The transcription factor Nrf2 is a key regulator of
production of antioxidative enzymes within cells. In resting
conditions, Nrf2 is bound to Keap1 in the cytoplasm, which
prohibits Nrf2 from inducing gene transcription. Upon oxi-
dation of cysteine residues in Keap1, Nrf2 is released and
translocates to the nucleus where it binds to antioxidant
response elements [96]. This process stimulates the tran-
scription of Nrf2 target genes with cytoprotective functions.
These include NAD(P)H quinone oxidoreductase 1, which
catalyzes the reduction of reactive quinones that otherwise
cause oxidative stress [97], heme oxygenase-1 (HO-1) that
catalyzes the breakdown of heme [98], glutamate-cysteine
ligase catalytic and modifier that catalyzes the rate-limiting

step in synthesis of the endogenous antioxidant glutathione
(GSH) [99], and thioredoxin reductase 1 that reduces perox-
iredoxins of relevance to the detoxification of reactive perox-
ides, including H2O2 and peroxynitrite [100].

Other cellular antioxidant enzymes include superoxide
dismutase, catalase, glutathione peroxidase-1, peroxiredox-
ins, and thioredoxin. Together with the nonenzymatic anti-
oxidant GSH, these antioxidant enzymes are assumed to
provide the most efficient protection from oxidative damage
(Figure 2). Additional nonenzymatic scavengers of ROS
include naturally occurring metabolites, vitamins (such as
vitamins C and E) and iron chelators that prevent formation
of hydroxyl radicals in the Fenton reaction [101, 102].

3. ROS and Cancer

3.1. Cancer-Related Oxidative Stress. Cancer may be associ-
ated with oxidative stress, i.e., an imbalance between the
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Figure 1: NOX2 in its resting and activated states. In its resting state (a), the membrane-bound and cytosolic subunits of NOX2 are spatially
separated. Upon activation (b), the cytosolic subunits assemble with the membrane-bound subunits to generate O2
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Figure 2: Mediators of redox homeostasis during the metabolism of O2
-. Superoxide dismutase (SOD) catalyzes the conversion of O2

- to
H2O2. Catalase (CAT) metabolizes H2O2 into O2 and H2O. Glutathione peroxidase (GPx) detoxifies H2O2 by oxidation of reduced
glutathione (GSH) to its oxidized form, GSSG. Intracellular GSH levels are regulated by glutathione reductase (GR). H2O2 is also
metabolized by peroxiredoxin (Prx) that is recharged by thioredoxin (Trx). Trx is kept in a reduced state by thioredoxin reductase (TrxR).
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production and detoxification of ROS. Rapidly proliferating
cancer cells have a high energy demand and therefore exhibit
enhanced cellular respiration. Consequently, cancer cells
generate enhanced levels of mitochondrial-derived ROS
[89]. Growth factors and integrins, which are often produced
at enhanced levels in cancer tissues, also contribute to
enhanced NOX-derived ROS production [103] and, as
reviewed above, several cancer histiotypes exhibit dysregu-
lated expression of NOX enzymes [8, 14–17, 20–23]. Further-
more, solid and metastatic tumors are often infiltrated by
NOX2+ myeloid cells that may release ROS leading to an
oxidized tumor microenvironment [104–108]. The extracel-
lularly released ROS from myeloid cells affect redox regula-
tion in adjacent tumor cells and may inactivate T cells and
NK cells, thus compromising immune-mediated killing of
malignant cells [19, 90, 91, 109–111]. Hypoxia is a common
feature of the microenvironment of tumors that activates
the hypoxia-inducible factor (HIF) family of transcription
factors. HIFs mediate cellular adaptation to low oxygen levels
and may influence several aspects of cancer such as promot-
ing neovascularization [112], increasing cell survival [113],
stimulating metastasis [114, 115], and conferring resistance
to chemotherapeutics [116]. ROS may induce the activation
of HIF-1α, a member of the HIF family of transcription fac-
tors, and thereby stimulate HIF-related cancer events [117].

The arguably most established role of ROS in cancer is
its capacity to damage DNA with ensuing mutations and
risk of cancer initiation and progression. Typically, deoxy-
guanosine is oxidized to 8-oxo-2-deoxyguanosine that may
pair with adenine instead of cytosine, which promotes muta-
tions in oxidatively stressed cells [118–121]. Overexpression
of NOX enzymes, including NOX4, DUOX1, and DUOX2,
has been shown to generate excessive H2O2 that may cause
local tissue injury and DNA damage, thus resulting in the
formation of a premalignant niche. NOX-derived ROS may
thus contribute to tumor initiation and to tumor progression
by inducing further DNA damage [122, 123].

Moreover, many cancer-related events, such as cell cycle
proliferation, invasion, epithelial-to-mesenchymal transi-
tion, and metastasis are subject to redox regulation [47, 69–
71, 73, 124–130]. For example, growth factors such as PDGF
and EGF stimulate the PI3-K-AKT and RAS-MEK-ERK
pathways, which are key regulators of cell proliferation and
survival [131, 132]. These growth factors also stimulate
NOX enzymes to produce ROS. The kinases in the PI3-K
and RAS pathways phosphorylate target proteins, while PTPs
serve to remove phosphate groups from proteins. This phos-
phorylation/dephosphorylation circuit alters protein func-
tion and controls cellular functions [133–135]. ROS may
oxidize thiol groups in PTPs resulting in their inactivation.
As a consequence, signaling along these pathways is boosted
in an oxidative environment where PTPs are inactivated, and
cancer cells may thus respond more vigorously to stimulation
by growth factors [134, 135].

An additional example of the effects of ROS on PTPs is
the inactivation of PTPs in pancreatic cancer cells that results
in sustained activation of Janus kinase 2, which in turn acti-
vates signal transducer and activator of transcription (STAT)
and antiapoptotic proteins to enhance tumor cell survival

[72]. ROS may also oxidize and thus activate PKC; thereby,
ROS modulate several PKC-dependent activities within cells
[126, 136]. ROS have been proposed to enhance the tissue-
invasive properties of cancer cells by modulating the function
of mitogen-activated protein kinases via oxidation of PTPs
and PKC [124–126]. However, as overproduction of ROS
by cancer cells may trigger their apoptosis, the clinical effi-
cacy of many therapies relies on induced ROS production
in cancer cells, as further discussed below.

Tumor cells often show enhanced levels of antioxidative
enzymes, presumably to resist the toxicity from the genera-
tion of NOX- and mitochondria-derived ROS [89]. In addi-
tion, tumor cells may acquire mutations that further boost
antioxidative responses, thereby contributing to tumor cell
resistance to oxidative stress. Approximately 30% of human
lung cancers thus carry mutations in either Keap1 or Nrf2,
resulting in Nrf2 stabilization and enhanced production of
endogenous antioxidants [137]. One of the antioxidants con-
trolled by Nrf2 is HO-1 that reduces intracellular levels of
free heme; this, in turn, stabilizes the transcription factor
BACH1 to activate transcription of genes that promote glu-
cose uptake, glycolysis, and lactate secretion in the Warburg
reaction [138]. Accordingly, BACH1 activation was shown
to stimulate glycolysis-dependent metastasis of lung cancer
cells [137, 138]. Thus, an antioxidative response by tumor
cells, or antioxidative treatment strategies such as scavengers
of ROS, may enhance tumorigenesis and metastasis by mod-
ulating tumor metabolism in favour of glycolysis.

3.2. Targeting NOX2 in Experimental Cancer Models. The
development of knockout mice with NOX2 deficiency has
been instrumental in studies on the role of ROS in cancer
from sources other than mitochondria. Mice with deficiency
in the NOX2 subunit Ncf1 show reduced growth or incidence
of melanomas and the Lewis lung carcinoma tumors,
whereas the growth of spontaneously arising prostate
carcinoma or methylcholanthrene-induced sarcoma is not
affected [38, 139].

Studies in knockout mice imply a role for NOX2 in
metastasis. Mice deficient in the NOX2 subunit Cybb thus
show reduced lung metastasis after intravenous inoculation
of melanoma cells and a lower incidence of spontaneously
formed metastases from surgically removed melanomas
[37, 140, 141]. The targeting of NOX2 by systemic treatment
with the NOX2 transduction inhibitor histamine dihy-
drochloride (HDC) reduced the formation of lung melanoma
metastases in wild-type but not in Nox2-deficient mice.
Effects of NOX2 repression on hematogenous metastasis
were absent after the depletion of NK cells in vivo and absent
also in interferon-γ- (IFN-γ-) deficient mice. These results
thus imply that NOX2-derived ROS trigger the formation
of melanoma metastasis by downmodulating NK cell func-
tions, and that genetic or pharmacological inhibition of
NOX2 restores tumor cell clearance exerted by IFN-γ+ NK
cells [37]. These results were confirmed and extended by
Van der Weyden et al. showing that hematogenous metasta-
sis was markedly reduced in mice genetically depleted of any
of the major NOX2 subunits (Cyba, Cybb, Ncf1, Ncf2, and
Ncf4) and that tumor tissues of NOX2-deficient mice showed
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a marked increase of antineoplastic lymphocytes [141]. In
accordance with the latter finding, treatment with the
NOX2 inhibitor HDC resulted in enhanced NK cell counts
in the lungs of wild-type mice with pulmonary melanoma
metastases, but not in corresponding lungs from Nox2-
deficient mice [37].

HDC suppresses ROS formation by exerting agonist
activity at histamine type 2 receptors (H2Rs) [18] and thus
inhibits NOX2 signal transduction rather than directly inhi-
biting, e.g., oxidase function or assembly. The detailed mech-
anisms of NOX2 inhibition and the ensuing protection of
antineoplastic lymphocytes are incompletely understood.
Myeloid cells deficient of MPO still exerted immunosuppres-
sion towards NK cells, which was reversible by HDC-treat-
ment, thus suggesting that O2

- and H2O2 are more likely
mediators of NOX2-induced immunosuppression than
MPO-derived ROS such as, e.g., hypochlorous acid or tyrosyl
radicals [142]. Additionally, circumstantial evidence links the
NOX2-inhibitory properties of HDC to the PI3-K pathway.
Activation of PI3-K thus activates Akt and PKC that triggers
the assembly and ROS formation of NOX2 [143]. HDC sup-
presses NOX2-mediated ROS formation induced by fMLF
and other bacterial peptides, but does not affect PMA-
induced respiratory burst [144]. As fMLF activates the
PI3-K pathway [145] whereas PMA directly induces the
activation of PKC, these finding thus suggest that HDC,
by activating H2Rs, targets the PI3-K pathway upstream
of PKC in myeloid cells. In support for this hypothesis,
PI3-K inhibitors share the NOX2 inhibition exerted by
HDC and equally efficiently protect antineoplastic lympho-
cytes from apoptosis and dysfunction induced by adjacent,
ROS-producing myeloid cells [146].

Systemic treatment with HDC in vivo suppresses tumor
growth in several models of experimental cancer [147].
While these antitumor effects of HDC are likely pleiotropic,
it is noteworthy that beneficial effects of treatment with
HDC inmurine melanoma, lymphoma, andmammary cancer
were only observed in NOX2-sufficient mice [32, 35, 37, 148]
and that HDC only inhibited growth of NOX2+ and not
NOX2- leukemic cells in a xenograft setting [35]. Additionally,
the efficacy of HDC in reducing murine tumor growth and
metastasis relied on the presence of NOX2-expressing Gr1+

myeloid cells since the effect was lost upon Gr1+ cell depletion
[37, 148]. Furthermore, experiments using single-cell suspen-
sions from tumors, spleens, and lungs suggested that ROS for-
mation was confined to the Gr1+ cell fraction [37, 148]. These
findings, along with results showing that HDC does not
reduce metastasis after the depletion of NK cells, support the
hypothesis that HDC provides a less immunosuppressive
malignant microenvironment that favors NK cell-mediated
clearance of tumor cells [37, 83]. Additionally, treatment with
HDC was shown to increase the number of tumor-infiltrating
effector CD8+ T cells in murine lymphoma and to improve
the antitumor efficacy of immune checkpoint inhibitors
(anti-PD-1 and anti-PD-L1) [148], thus implying that
HDC may facilitate also T cell-dependent elimination of
tumor cells.

Monocytic leukemic cells recovered from patients with
acute myeloid leukemia (AML) frequently express functional

NOX2, and studies in xenografted mice support that NOX2
is relevant to the survival and expansion of monocytic
AML cells [35, 149]. NOX2-derived ROS have been pro-
posed to stimulate the transfer of prosurvival mitochon-
dria from stromal cells to AML cells [149]. Furthermore,
NOX2 inhibition by HDC reduced the expansion of xeno-
grafted NOX2+ but not of NOX2- human AML cells, pre-
sumably by hindering S-phase entry of leukemic cells [35].
These results illustrate that the targeting of NOX2 may
reduce malignant expansion independently of functional
cellular immunity.

In addition, results obtained in a mouse model of Kras-
induced myeloid leukemia showed that Kras+ NOX2-
deficient myeloid cells (Nox2-/-M-KrasG12D) expanded slower
than their NOX2-sufficient counterparts. In this model, treat-
ment of mice withN-methyl-histamine (an H2R-selective ana-
logue of HDC that shares the NOX2-inhibitory properties of
HDC) reduced leukemic expansion and prolonged the sur-
vival of NOX2-sufficient but not of NOX2-deficient mice. N-
Methyl-histamine-treated mice harbored leukemic cells with
reduced intracellular ROS levels, reduced DNA oxidation,
and reduced double-strandedDNA breaks [150]. These results
thus imply that NOX2-derived ROS may promote genomic
instability and malignant expansion in Kras-induced leuke-
mia. NOX2 may also support myeloid expansion of murine
Bcr-Abl1+ cells as transplantation of NOX2+Bcr-Abl1+ cells
into irradiated mice causes a more rapidly expanding and
severe leukemia than the transfer of NOX2-deficient Bcr-
Abl1+ cells [8, 151].

4. Myeloid-Derived Suppressor Cells and NOX2

4.1. Myeloid Cells within the Tumor Microenvironment. The
presence of cytotoxic lymphocytes, including CD8+ T cells
and/or NK cells, in the microenvironment of human cancer
tumors is typically prognostically favorable, while the pres-
ence of infiltrating myeloid cells often, although not invari-
ably, predicts poor survival [104–107, 152–159]. Hence, a
high ratio of tumor-infiltrating T cells to myeloid cells entails
favorable prognosis in several cancer forms including lung
cancer, bladder cancer, glioblastoma, prostate cancer, and
renal cell carcinoma [160–166]. In recent years, the neutro-
phil to lymphocyte ratio and the monocyte to lymphocyte
ratio in peripheral blood have emerged as readily available
and independent predictors of poor survival in several forms
of solid cancer [167], thus underscoring that myeloid cell-
induced immunosuppression may impact adversely on
cancer prognosis.

Myeloid-derived suppressor cells (MDSCs) are immature
and immunosuppressive myeloid cells that accumulate in the
tumor microenvironment and in the periphery in patients
with cancer. MDSCs comprise pathologically induced mye-
loid cells of the monocytic (M-MDSCs) and granulocytic
(G-MDSC) linages that suppress T cells and NK cells by sev-
eral mechanisms, including enhanced production of immu-
nosuppressive NOX2-derived ROS, arginase, nitric oxide
(NO), TGF-beta, and IL-10 [168]. MDSCs are thus assumed
to favor immune escape in cancer [169, 170]. MDSCs and
other myeloid cells are attracted to tumors in response to
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cytokines such as CCL2 and CSF1 for M-MDSCs and CXCL1
and CXCL8 for G-MDSCs [171]. Once in the tumor micro-
environment, M-MDSCs may differentiate into tumor-
associated macrophages (TAMs) or DCs. TAMs may also
originate from infiltrating monocytes and tissue-resident
macrophages [172]. MDSCs and TAMs may release soluble
molecules such as cytokines, prostaglandins, chemokines,
interleukins, and growth factors into the tumor microenvi-
ronment that may contribute to the formation of premeta-
static niches, promote angiogenesis, promote tumor cell
survival, and enhance tumor cell invasion [173, 174]. These
properties of MDSCs and TAMs may, in part, account for
the unfavorable association between myeloid cell tumor infil-
tration and prognosis.

TAMs exhibit either M1 or M2 polarization. The M1-
polarized TAMs express iNOS and TNF and are denoted
proinflammatory, whereas the M2-polarized TAMs produce
the L-arginine-depleting enzyme arginase and secrete IL-10
to compromise immune activation [171, 175]. M1 and M2
macrophages both express NOX2, although the expression
level is higher in M1 macrophages [176]. Mice lacking
NOX1 and NOX2 showed reduced M2macrophage polariza-
tion, while single knockout of NOX1 or NOX2 did not [6].
Hence, in the Lewis lung carcinoma model, wild-type and
NOX1/NOX2 double-knockout mice showed a similar
degree of TAM infiltration, while the content of M2-TAMs
was reduced in the double-knockout mice along with
reduced tumor growth [6]. These results imply that inhibi-
tion of NOX enzymes may favor M1 polarization in cancer;
however, studies of nonmalignant inflammation (spinal cord
inflammation in mice) suggest that inhibition of NOX2
instead reduces M1 polarization [177], and further studies
are required to define the impact of NOX enzymes onmacro-
phage polarization.

In contrast to MDSCs and M2-TAMs, the intratumoral
accumulation of other myeloid cells, such as DCs and M1-
polarized TAMs, may indicate favorable cancer prognosis
[178–181]. Tumor-infiltrating DCs initiate the induction of
tumor-specific T cell responses and are thus critical to evoke
antitumor immunity, and M1 polarized macrophages may
contribute in the killing of tumor cells [182]. While the favor-
able impact of the presence of M1-polarized macrophages in
cancer tumors is well established, the subdivision of macro-
phages into distinct populations is challenged by reports
showing that TAMs often display features of both M1 and
M2 subsets [183, 184].

4.2. Immunosuppression by MDSC-Derived ROS. Early stud-
ies showed that MDSCs displayed enhanced expression of
NOX2 as a result of the activation of the transcription factor
STAT3 [185, 186]. The formation of NOX2-derived ROS is
considered a major immunosuppressive action mediated by
MDSCs, in particular by G-MDSCs [148, 186, 187], and
ROS-producing MDSCs or other immunosuppressive mye-
loid cells thus induce apoptosis or dysfunction in adjacent
lymphocytes such as NK cells and T cells [19, 91, 188–190].
ROS induce activation of ERK1/2 in lymphocytes, which
results in PARP-1-dependent accumulation of poly-ADP-
ribose (PAR) and parthatanosis (a form of apoptosis) [191].

In addition, MDSC-derived ROS inhibit antigen-specific
CD8+ T cell responses and may thus selectively eradicate
antitumor T cell clones [188]. The immunosuppression
exerted by ROS towards T cells has been linked to nitration
of the T cell receptor (TCR) and occurs when ROS react with
NO to form peroxynitrite during MDSC-T cell interactions.
Nitration was proposed to induce a conformational change
of the TCR, and T cells thus display reduced affinity for
MHC-peptide complexes [192]. This effect was linked to
ROS as MDSCs with dysfunctional NOX2 did not suppress
antigen-specific T cell responses [186]. On a similar note,
MDSCs isolated from mice systemically treated with the
NOX2 inhibitor HDC produced lower levels of ROS and
were less prone to suppress T cells ex vivo [148].

4.3. ROS as Inhibitors of Myeloid Cell Differentiation.MDSCs
isolated from mice with myeloid cells that cannot generate
NOX2-derived ROS, i.e., Stat3 or Nox2 knockout mice, are
prone to differentiate towards mature macrophages and
DCs [186, 193] suggesting that NOX2-derived ROS inhibit
myeloid cell maturation and thus promote the accumulation
of immature MDSCs. Furthermore, the antioxidant N-acetyl
cysteine (NAC) was found to trigger differentiation of
MDSCs [194]. Similarly, all-trans-retinoic acid (ATRA),
which upregulates the antioxidant glutathione synthase and
thus reduces intracellular ROS, stimulates the differentiation
of MDSCs in murine tumor models and of MDSCs isolated
from cancer patients [195–198]. In agreement with these
reports, treatment with the NOX2 inhibitor HDC reduces
the accumulation of tumor-infiltrating MDSCs in EL-4
thymoma-bearing mice. The reduction of tumor-infiltrating
MDSCs was accompanied by augmented levels of intratu-
moral DCs and by improved maturation of human DCs from
monocytes [32, 148]. Figure 3 summarizes aspects of NOX2-
mediated regulation of myeloid cell differentiation in cancer.

5. Targeting ROS in Human Cancer

While low ROS levels in cells are reportedly mitogenic due to
the activation of the PI3-K-AKT and RAS-MEK-ERK path-
ways [131, 132], high ROS levels are toxic to numerous cell
types including cancer cells [92, 118–121]. Several chemo-
therapies, as well as radiotherapy and photodynamic therapy,
trigger excessive ROS production within cells. Oxidants may
thus contribute to the elimination of tumor cells and to the
toxicity of chemotherapeutics [199]. In addition, several
antitumor agents, including erlotinib and silibinin, trigger
overproduction of ROS via NOX enzymes, which contributes
to killing tumor cells [21, 23].

Despite that increased intracellular ROS levels may
induce killing of malignant cells, ROS have also been ascribed
protumorigenic properties. Antioxidative strategies have
thus been evaluated for human cancer therapy and preven-
tion. Such strategies include ROS scavengers such as NAC,
vitamin E, and beta-carotene that are aimed at reducing
oxidative stress [200–202]. These studies, as well as animal
experiments comprising the administration of ROS scaven-
gers in cancer treatment, have shown partly divergent results.
Whereas some studies support that antioxidants reduce the
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risk of cancer [200–202], other studies, in particular those
involving the administration of antioxidants to smokers to
prevent lung cancer, imply enhanced cancer risk by the
administration of antioxidants[203].

The mechanisms explaining the partly opposing results
in studies of broad antioxidants in cancer remain to be eluci-
dated. Recent studies imply that antioxidants trigger the acti-
vation of the transcription factor BACH1 that stimulates a
metabolic reprogramming of cancer cells in favor of glycoly-
sis, which enhances their capacity to metastasize [137, 138].
These findings may appear counterintuitive in light of the
abovereferenced reduction of metastasis induced by HDC
and other NOX2 inhibitors that act by reducing ROS levels.
However, a noticeable difference between global antioxidants
and HDC is that HDC targets NOX2-derived ROS formation
only in myeloid cells that coexpress H2R and NOX2. HDC or
other NOX2-inhibitory strategies are hence unlikely to alter
metabolically generated ROS.

ATRA is used in the treatment of acute promyelocytic
leukemia where the leukemic cells carry a PML-RARA trans-
location giving rise to a block in myeloid cell differentiation
and development of leukemia. ATRA releases this block
and allows the differentiation of immature leukemic promye-
locytes into mature granulocytes [204]. ATRA may also
promote the differentiation of MDSCs by neutralizing intra-
cellular ROS [195–198]. ATRA exerts antitumoral effects in

several murine models [205, 206] and has been investigated
in combination with immunotherapies such as IL-2 and
DC vaccines in renal cell carcinoma and non-small-cell lung
cancer [205–207]. The efficacy of ATRA combined with
ipilimumab is currently assessed in stage IV melanoma
(ClinicalTrials.gov identifier: NCT02403778).

The NOX2-inhibitor HDC is used in conjunction with
low-dose IL-2 within the EU to prevent relapse of AML in
the postchemotherapy phase [208]. HDC acts on H2Rs
expressed on the surface of normal and leukemic mye-
loid cells to inhibit production of NOX2-derived ROS
[208, 209]. In vitro studies support that HDC promotes
cellular immunity by protecting subsets of cytotoxic lympho-
cytes against ROS-induced inactivation [19, 91] and that
these effects of HDC are markedly enhanced by the coadmin-
istration of NK and T cell activators such as IL-2 [111];
however, complementary or alternative mechanisms are
conceivable, including HDC-induced differentiation of
AML cells [19, 35, 208]. While the side-effects of HDC/IL-2
were typically mild and transient with minimal impact on
global health [208, 210], the incidence of grade 1/2 arthralgia
and myalgia was slightly but significantly higher in treated
patients. It may thus be speculated that HDC/IL-2 induces
autoimmunity similar to that observed in NOX2-deficient
CGD patients and in experimental animals that are devoid
of functional NOX2 [83].
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Figure 3: Myeloid cell differentiation in healthy individuals and in cancer patients. Hematopoietic stem cells (SC) differentiate into immature
myeloid cells (IMCs) in bone marrow. In healthy individuals, IMCs rapidly differentiate into mature myeloid cell populations in the
periphery. In cancer, however, myeloid cell differentiation is often impaired, and the IMCs may be activated to become monocytic or
granulocytic myeloid-derived suppressor cells (M- and G-MDSCs, respectively) within tumors and in the periphery. MDSCs show
upregulated NOX2 expression and increased production of reactive oxygen species (ROS), in particular in the G-MDSCs. The M-MDSCs
may differentiate into tumor-associated macrophages (TAM) or dendritic cells (DC), and the differentiation may be inhibited by excessive
intracellular ROS levels.
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6. Conclusion

While details regarding the contribution by NOX2-derived
ROS for the induction and progression of cancer remain to
be elucidated, it seems likely that the impact of NOX2 is con-
fined mainly to primary and metastatic tumors that are infil-
trated by immunosuppressive NOX2+ myeloid cells and to
myeloid leukemias, where the malignant clone comprises
NOX2+ cells. In cancer, NOX2 may contribute to the immu-
nosuppression exerted by myeloid cells, in part by producing
extracellular ROS that trigger dysfunction in adjacent lym-
phocytes. Recent studies show that NOX2 promotes tumor
growth and metastasis and that intact NOX2 is crucial for
self-tolerance, thus fulfilling the criteria of an immune check-
point [83]. Inhibition of NOX2-derived ROS may thus
relieve immunosuppression in cancer and may act in synergy
with cancer immunotherapies such NK and T cell-activating
cytokines or checkpoint inhibitors.
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