Supplementary Information file: Use of ctDNA in early breast cancer: analytical validity and clinical potential

Supplementary Table 1: Criteria for ctDNA positivity of tumor-agnostic assays

Author and ref	ctDNA assay technique	Criteria for ctDNA positivity	
Schrag et al ¹	Targeted methylation analysis	Computational algorithm	
	Galleri TM		
Cohen et al ² , Lennon et al ³	Amplicon-based NGS CancerSEEK	 The mutation must be in the COSMIC database or inactivate a tumor suppressor gene Statistical confirmation and control on WBC DNA to exclude CHIPs when a mutation is detected 	
Stecklein et al ⁴	Amplicon-based NGS of 275 genes related to cancer	 Tumoral VAF ≥ 3% Patients with mutations only in <i>DNMT3A</i>, <i>TET2</i>, <i>ASXL1</i>, or <i>JAK2</i> were classified as ctDNA-negative as most likely arising from CHIPs 	
Radovitch et al ^{5,6}	Hybridization-based targeted NGS of cancer-related genes	• Statistical model used for calling a ctDNA sample positive	
	FoundationACT TM or FoundationOneLiquid TM		
Li S. et al ⁷⁻⁹	Hybridization-based NGS of 1021 genes	 CHIPs mutation filtering, excluding mutations in <i>DNMT3A</i>, <i>IDH1</i>, and <i>IDH2</i> and specific alterations within <i>ATM</i>, <i>GNAS</i>, and <i>JAK2</i> No clear criteria for ctDNA positivity were given 	
Lin P.H. et al ¹⁰	Tumor-agnostic Amplicon-based NGS	• Presence of a pathogenic or likely pathogenic mutation according to the American College of Medical Genomics and Genetics (ACMG) guidelines	

		• Tumor-sequencing in some case to confirm the tumoral origin of mutation
Janni et al ^{11,12}	Hybridization-based NGS and methylation analysis GuardantReveal TM	• Bioinformatics pipeline software, trained to detect the presence of ctDNA based on multiple analytic features, including genomic variation (single-nucleotide variants and insertion-deletion alterations) and epigenomic signals, and to exclude common sources of interference such as CHIPs
Elliott et al ^{13,14}	Tumor-agnostic Methylation analysis from GuardantINFINITY TM	Bioinformatics pipeline software trained to detect cancer based on epigenomic signals

Abbreviations: ctDNA: circulating tumor DNA, CHIPs: Clonal hematopoiesis of indeterminate potential, NGS: next-generation sequencing, SNV: single nucleotide variation, VAF: Variant allele frequency WBC: white blood cell

Supplementary Table 2: Criteria for ctDNA positivity of tumor-informed assays

Author and ref	ctDNA assay technique	Number of somatic mutations followed	Criteria for ctDNA positivity
Cavallone et al ¹⁵ , Roseshter et al ¹⁶ , Basik et al ¹⁷	ddPCR	5	Two standard deviations above the control (assay conducted on the plasma of three healthy donors)
Garcia- Murillas et al ^{18,19} , Turner et al (c-TRAK TN) ²⁰	ddPCR	1 or 2	≥ 2 positive droplets. • To confirm a positive result, it was repeated on a 2 nd sample from the same timepoint in the c-TRAK TN trial
Ciriaco et al ²¹	Amplicon- based NGS via Sysmex SafeSEQ	1 to 6	≥ 3 copies/mL and 3 times the value of the background established for each variant (from commercial healthy genomic DNA)

Parsons et al (TBCRC 030 trial) ^{22,23}		319 to 1000 (Median 1000)	Predefined 90% power. If less than 10 mutations were identified, they were reviewed manually
McDonald et al ²⁴	amplicon- based NGS TARDIS	6 to 115 (average 30)	 Minimum 2 read families (RFs) For each mutation: at least 0.5 mutant copies/reaction (mutant RFs / total RFs) If only one variant is present: at least two different RF lengths
			Each sample-level positive ctDNA result was confirmed using the Bonferroni corrected p-value <0.05
Rothé et al ²⁵	ddPCR	1	Statistically higher than the control (mean of 8 assays conducted on mutation-negative cell lines or healthy donors)
Riva et al ²⁶	ddPCR	1	≥ 2 positive droplets • Cut-off established testing their assay on a minimum of 5 control DNA for each variant. Specificity 99.4%
Zhou et al ²⁷	ddPCR	average 2.6 mutations	 Tumoral VAF ≥ 0.1% Established testing their assay on commercial mutated DNA for some variants
Ortolan et al ²⁸ , La Rocca et al ²⁹	ddPCR	1	≥ 3 positive droplets in all replicates
Chen YH. et al ³⁰	Amplicon- based targeted NGS.	Not applicable	Only mutation(s) present(s) in the primary tumor were considered ctDNA-positive
Takahashi et al ³¹	OS-MSP of RASSF1A	1 (methylated gene)	≥ 3.3 copies/mL • Established testing their assay on commercial fully methylated DNA
Magbanua et al ³² , Cailleux et al ³³ , Shaw et al ³⁴ ,	Signatera TM	16	• ≥ 2 variants present with a confidence score above a predefined algorithm threshold (0.97)

			Exclude mutations from CHIPs (from sequencing the buffy coat and bioinformatic pipeline)
Lipsyc-Sharf et al ³⁵	RaDaR TM	Up to 48	 A statistical model is used to assess the statistical significance of the observed mutant counts for each variant to consider a sample positive or negative Exclude mutations from CHIPs (from sequencing the buffy coat and bioinformatic pipeline)

Abbreviations: 2nd: second, CHIPs: Clonal hematopoiesis of indeterminate potential, ctDNA: circulating tumor DNA, ddPCR: digital drop polymerase chain reaction, mL: milliliter, NGS: next-generation sequencing, RF: read family, VAF: Variant allele frequency

References

- Schrag, D. *et al.* Blood-based tests for multicancer early detection (PATHFINDER): a prospective cohort study. *The Lancet* **402**, 1251-1260 (2023).
- 2 Cohen, J. D. *et al.* Detection and localization of surgically resectable cancers with a multi-analyte blood test. *Science* **359**, 926-930 (2018).
- Lennon, A. M. *et al.* Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention. *Science* **369**, eabb9601 (2020).
- 4 Stecklein, S. R. *et al.* ctDNA and residual cancer burden are prognostic in triplenegative breast cancer patients with residual disease. *NPJ Breast Cancer* **9**, 10 (2023).
- Radovich, M. *et al.* Association of circulating tumor DNA and circulating tumor cells after neoadjuvant chemotherapy with disease recurrence in patients with triple-negative breast cancer: preplanned secondary analysis of the BRE12-158 randomized clinical trial. *JAMA oncology* **6**, 1410-1415 (2020).
- 6 Clark, T. A. *et al.* Analytical validation of a hybrid capture—based next-generation sequencing clinical assay for genomic profiling of cell-free circulating tumor DNA. *The Journal of Molecular Diagnostics* **20**, 686-702 (2018).

- Li, S. et al. Circulating tumor DNA predicts the response and prognosis in patients with early breast cancer receiving neoadjuvant chemotherapy. *JCO Precision Oncology* **4**, 244-257 (2020).
- 8 Hu, Z.-Y. *et al.* Identifying circulating tumor DNA mutation profiles in metastatic breast cancer patients with multiline resistance. *EBioMedicine* **32**, 111-118 (2018).
- 9 Yang, X. et al. Technical validation of a next-generation sequencing assay for detecting clinically relevant levels of breast cancer—related single-nucleotide variants and copy number variants using simulated cell-free DNA. The Journal of Molecular Diagnostics 19, 525-536 (2017).
- Lin, P.-H. *et al.* Circulating tumor DNA as a predictive marker of recurrence for patients with stage II-III breast cancer treated with neoadjuvant therapy. *Frontiers in Oncology* **11**, 736769 (2021).
- Janni, W. *et al.* Multiomic, plasma-only circulating tumor DNA (ctDNA) assay identifies breast cancer patients with minimal residual disease (MRD) and predicts distant recurrence. *Cancer Research* **82**, 3403-3403 (2022).
- Janni, W. et al. PS06-06: Analysis of ctDNA for the detection of minimal residual disease (MRD) using a tissue-free, multiomic assay in patients with early-stage breast cancer. San Antonio Breast Cancer Symposium 2023, San Antonio, USA (2023).
- Elliott, M. *et al.* 310P Longitudinal evaluation of circulating tumour DNA in early breast cancer using a plasma-only methylation-based assay. *Annals of Oncology* **34**, S308 (2023).
- Greenwald, W. W. Y. *et al.* Accurate epigenomic estimates of circulating tumor fraction in large-scale clinical data. *Lung* **276**, 203 (2022).
- 15 Cavallone, L. *et al.* Prognostic and predictive value of circulating tumor DNA during neoadjuvant chemotherapy for triple negative breast cancer. *Scientific Reports* **10**, 1-13 (2020).
- Roseshter, T. *et al.* Abstract P2-11-26: The prognostic role of circulating tumor DNA after neoadjuvant chemotherapy in triple negative breast cancer with residual tumor. *Cancer Research* **83**, P2-11-26-P12-11-26 (2023).
- Basik, M. *et al.* Circulating tumor DNA after neoadjuvant chemotherapy is a better prognostic test than Residual Cancer Burden in patients with triple negative breast cancer and residual tumor. *San Antonio Breast Cancer Symposium, San Antonio, USA* (2023).
- Garcia-Murillas, I. *et al.* Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. *Science translational medicine* **7**, 302ra133-302ra133 (2015).
- 19 Garcia-Murillas, I. *et al.* Assessment of molecular relapse detection in early-stage breast cancer. *JAMA oncology* **5**, 1473-1478 (2019).

- Turner, N. C. *et al.* Results of the c-TRAK TN trial: a clinical trial utilising ctDNA mutation tracking to detect molecular residual disease and trigger intervention in patients with moderate and high-risk early stage triple negative breast cancer. *Annals of Oncology* (2022).
- Ciriaco, N. *et al.* Clearance of ctDNA in triple-negative and HER2-positive breast cancer patients during neoadjuvant treatment is correlated with pathologic complete response. *Therapeutic Advances in Medical Oncology* **14**, 17588359221139601 (2022).
- Parsons, H. A. *et al.* Circulating tumor DNA association with residual cancer burden after neoadjuvant chemotherapy in triple-negative breast cancer in TBCRC 030. *medRxiv*, 2023.2003. 2006.23286772 (2023).
- Parsons, H. A. *et al.* Sensitive detection of minimal residual disease in patients treated for early-stage breast cancer. *Clinical Cancer Research* **26**, 2556-2564 (2020).
- 24 McDonald, B. R. *et al.* Personalized circulating tumor DNA analysis to detect residual disease after neoadjuvant therapy in breast cancer. *Science translational medicine* **11**, eaax7392 (2019).
- 25 Rothé, F. *et al.* Circulating Tumor DNA in HER2-Amplified Breast Cancer: A Translational Research Substudy of the NeoALTTO Phase III TrialctDNA as a Predictive Biomarker in HER2+ Breast Cancer. *Clinical cancer research* **25**, 3581-3588 (2019).
- Riva, F. *et al.* Patient-specific circulating tumor DNA detection during neoadjuvant chemotherapy in triple-negative breast cancer. *Clinical chemistry* **63**, 691-699 (2017).
- Zhou, Q. et al. Persistence of ctDNA in Patients with Breast Cancer During Neoadjuvant Treatment Is a Significant Predictor of Poor Tumor Response. *Clinical Cancer Research* **28**, 697-707 (2022).
- Ortolan, E. et al. Blood-based genomics of triple-negative breast cancer progression in patients treated with neoadjuvant chemotherapy. *ESMO open* **6**, 100086 (2021).
- 29 La Rocca, E. *et al.* Early stage breast cancer follow-up in real-world clinical practice: the added value of cell free circulating tumor DNA. *Journal of Cancer Research and Clinical Oncology* **148**, 1543-1550 (2022).
- Chen, Y.-H. *et al.* Next-generation sequencing of circulating tumor DNA to predict recurrence in triple-negative breast cancer patients with residual disease after neoadjuvant chemotherapy. *NPJ breast cancer* **3**, 24 (2017).
- Takahashi, H. *et al.* Correlation of methylated circulating tumor DNA with response to neoadjuvant chemotherapy in breast cancer patients. *Clinical breast cancer* **17**, 61-69. e63 (2017).

- Magbanua, M. J. M. *et al.* Clinical significance and biology of circulating tumor DNA in high-risk early-stage HER2-negative breast cancer receiving neoadjuvant chemotherapy. *Cancer Cell* (2023).
- Cailleux, F. et al. Circulating Tumor DNA After Neoadjuvant Chemotherapy in Breast Cancer Is Associated With Disease Relapse. *JCO Precision Oncology* **6**, e2200148 (2022).
- Shaw, J. *et al.* Serial postoperative ctDNA monitoring of breast cancer recurrence. *Journal of Clinical Oncology* **40**, 562-562 (2022). https://doi.org/10.1200/JCO.2022.40.16 suppl.562
- Lipsyc-Sharf, M. *et al.* Circulating tumor DNA (ctDNA) and late recurrence in highrisk, hormone receptor—positive, HER2-negative breast cancer (CHiRP). *Journal of Clinical Oncology* **40**, 103-103 (2022). https://doi.org/10.1200/JCO.2022.40.16 suppl.103