Supplementary Information file: Use of ctDNA in early breast cancer:
analytical validity and clinical potential

Supplementary Table 1: Criteria for ctDNA positivity of tumor-agnostic assays

Author  and | ctDNA assay technique | Criteria for ctDNA positivity
ref
Schrag et al' | Targeted  methylation | « Computational algorithm
analysis
Galleri™
Cohen et al?, | Amplicon-based NGS *The mutation must be in the COSMIC
Lennon et al® database or inactivate a tumor suppressor
CancerSEEK

gene

e Statistical confirmation and control on
WBC DNA to exclude CHIPs when a
mutation is detected

Stecklein et
al*

Amplicon-based NGS of
275 genes related to
cancer

* Tumoral VAF > 3%

*Patients with mutations only in DNMT3A4,
TET2, ASXLI, or JAK2 were classified as
ctDNA-negative as most likely arising
from CHIPs

Radovitch et
al5-6

Hybridization-based
targeted NGS of cancer-
related genes

FoundationACT™  or
FoundationOneLiquid™

» Statistical model used for calling a ctDNA
sample positive

Li S.etal”®

Hybridization-based
NGS of 1021 genes

*CHIPs mutation filtering, excluding
mutations in DNMT3A, IDHI, and [DH?2
and specific alterations within ATM, GNAS,
and JAK2

*No clear criteria for ctDNA positivity were
given

Lin PH. et
a]10

Tumor-agnostic

Amplicon-based NGS

*Presence of a pathogenic or likely
pathogenic mutation according to the
American College of Medical Genomics
and Genetics (ACMG) guidelines




* Tumor-sequencing in some case to confirm
the tumoral origin of mutation

Janni et al''!? | Hybridization-based * Bioinformatics pipeline software, trained to
NGS and methylation | detect the presence of ctDNA based on
analysis multiple analytic features, including
GuardantReveal™ genomic  variation  (single-nucleotide

variants and insertion-deletion alterations)
and epigenomic signals, and to exclude
common sources of interference such as

CHIPs
Elliott et | Tumor-agnostic * Bioinformatics pipeline software trained to
13,14 . .
al Methylation  analysis detect cancer based on epigenomic signals
from
GuardantINFINITY™

Abbreviations:  ctDNA: circulating tumor DNA, CHIPs: Clonal hematopoiesis of
indeterminate potential, NGS: next-generation sequencing, SNV: single nucleotide
variation, VAF: Variant allele frequency WBC: white blood cell

Supplementary Table 2: Criteria for ctDNA positivity of tumor-informed assays

Author and ref | ctDNA assay | Number of | Criteria for ctDNA positivity

technique somatic
mutations
followed
Cavallone et | ddPCR 5 Two standard deviations above the
al'>, Roseshter control (assay conducted on the plasma
et al's, Basik et of three healthy donors)
a117
Garcia- ddPCR lor2 > 2 positive droplets.

Murillas et .. .
* To confirm a positive result, it
al'®1°  Turner p 5

was repeated on a 2™ sample
et al (c-TRAK from the same timepoint in the

20

™) c-TRAK TN trial

Ciriaco et al’! | Amplicon- 1to6 > 3 copies/mL and 3 times the value of
based NGS via the background established for each
Sysmex variant (from commercial healthy
SafeSEQ genomic DNA)




Parsons et al | hybridization- | 319 to 1000 | Predefined 90% power. If less than 10
(TBCRC 030 | based NGS (Median mutations were identified, they were
trial)?223 MAESTRO 1000) reviewed manually
McDonald et | amplicon- 6 to 115 *  Minimum 2 read families (RFs)
al?* based NGS (average * For each mutation: at least 0.5
30) mutant copies/reaction (mutant
TARDI
5 RFs / total RFs)
* Ifonly one variant is present: at
least two different RF lengths
Each sample-level positive ctDNA
result was confirmed using the
Bonferroni corrected p-value <0.05
Rothé etal®*® | ddPCR 1 Statistically higher than the control
(mean of 8 assays conducted on
mutation-negative cell lines or healthy
donors)
Riva et al?¢ ddPCR 1 > 2 positive droplets
* Cut-off established testing their
assay on a minimum of 5
control DNA for each variant.
Specificity 99.4%
Zhou et al*’ ddPCR average 2.6 | Tumoral VAF > 0.1%
mutations » Established testing their assay
on commercial mutated DNA
for some variants
Ortolan et al*®, | ddPCR 1 > 3 positive droplets in all replicates
La Rocca et
a2
Chen Y.-H. et | Amplicon- Not Only mutation(s) present(s) in the
al® based targeted | applicable | primary tumor were considered
NGS. ctDNA-positive
Takahashi et | OS-MSP  of | 1 > 3.3 copies/mL
31
al RASSF1A (methylated » Established testing their assay
gene) ;
on commercial fully
methylated DNA
Magbanua et | Signatera™ 16 e > 2 variants present with a

al’?, Cailleux
et al*3, Shaw et
al®,

confidence score above a
predefined algorithm threshold
(0.97)




* Exclude mutations from CHIPs
(from sequencing the buffy
coat and bioinformatic
pipeline)

Lipsyc-Sharf | RaDaR™ Up to 48 * A statistical model is used to

assess the statistical
significance of the observed
mutant counts for each variant
to consider a sample positive or
negative

* Exclude mutations from CHIPs
(from sequencing the buffy
coat and bioinformatic
pipeline)

Abbreviations: 2": second, CHIPs: Clonal hematopoiesis of indeterminate potential,
ctDNA: circulating tumor DNA, ddPCR: digital drop polymerase chain reaction, mL:
milliliter, NGS: next-generation sequencing, RF: read family, VAF: Variant allele
frequency
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