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Alzheimer’s disease (AD) is a frequently observed, irreversible brain function disorder

among elderly individuals. Resting-state functional magnetic resonance imaging (rs-fMRI)

has been introduced as an alternative approach to assessing brain functional

abnormalities in AD patients. However, alterations in the brain rs-fMRI signal complexities

in mild cognitive impairment (MCI) and AD patients remain unclear. Here, we described

the novel application of permutation entropy (PE) to investigate the abnormal complexity

of rs-fMRI signals in MCI and AD patients. The rs-fMRI signals of 30 normal controls

(NCs), 33 early MCI (EMCI), 32 late MCI (LMCI), and 29 AD patients were obtained from

the Alzheimer’s disease Neuroimaging Initiative (ADNI) database. After preprocessing,

whole-brain entropy maps of the four groups were extracted and subjected to Gaussian

smoothing. We performed a one-way analysis of variance (ANOVA) on the brain entropy

maps of the four groups. The results after adjusting for age and sex differences together

revealed that the patients with AD exhibited lower complexity than did the MCI and

NC controls. We found five clusters that exhibited significant differences and were

distributed primarily in the occipital, frontal, and temporal lobes. The average PE of the five

clusters exhibited a decreasing trend from MCI to AD. The AD group exhibited the least

complexity. Additionally, the average PE of the five clusters was significantly positively

correlated with the Mini-Mental State Examination (MMSE) scores and significantly

negatively correlated with Functional Assessment Questionnaire (FAQ) scores and global

Clinical Dementia Rating (CDR) scores in the patient groups. Significant correlations were

also found between the PE and regional homogeneity (ReHo) in the patient groups.

These results indicated that declines in PE might be related to changes in regional

functional homogeneity in AD. These findings suggested that complexity analyses using

PE in rs-fMRI signals can provide important information about the fMRI characteristics of

cognitive impairments in MCI and AD.
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disease that is
characterized by declines in cognition and memory (Brookmeyer
et al., 2007). The neuropathology of AD is characterized by
neuronal loss and the appearance of neuritic plaques containing
amyloid-β-peptide and neurofibrillary tangles (Haass and Selkoe,
2007). And these changes lead to abnormal brain function in
AD (Cho et al., 2013). Mild cognitive impairment (MCI) is
an intermediate state between normal aging and AD and is
associated with a high risk of progression to AD (Petersen
and Negash, 2008). Several neuroimaging techniques, including
magnetic resonance imaging (MRI), blood oxygenation level-
dependent (BOLD) functional MRI (fMRI), and positron
emission tomography (PET), have been explored to study brain
function in AD (Lebedeva et al., 2017; Li et al., 2017). Usually, the
brain function of AD patients is weakened including problems
storing and retrieving information due to the destruction of
neurons in parts of the patient’s brain. Then, AD affects the
brain areas involved in language and reasoning. Eventually, the
most notable characteristic of AD on MRI is cerebral atrophy
in the medial temporal lobe, hippocampus, right temporal lobe,
precuneus, cingulate gyrus, and inferior frontal cortex (Möller
et al., 2013). The changes in these brain regions suggest that
they are relevant for the loss of functionality in patients with
dementia. A differential diagnosis for the types of dementia
should be attempted. Recently, resting-state fMRI (rs-fMRI) has
been introduced as an alternative approach for studying brain
functional abnormalities in AD (Gusnard and Raichle, 2001; Fox
and Raichle, 2007).

Based on its structure and function, the human brain is
one of the most complex information processing systems.
Complexity can be defined as the difficulties that arise when
describing or predicting a signal. Normal physiology requires
a complex network to effectively control function. Lipsitz
and Goldberger (Lipsitz, 1992, 2004) argued that with aging
and disease, losses of complexity occur in the dynamics of
many integrated physiological processes of an organism. The
development of the concept of complexity has focused on
measuring regularity using various metrics that are based on
non-linear time series analysis. Lyapunov exponents (Wolf et al.,
1985) and correlation dimensions (Broock et al., 1996) have been
used to characterize non-linear dynamics, but they require large
data sets (Eckmann and Ruelle, 1992) and assume that the time
series is stationary (Grassberger and Procaccia, 1983), which
is typically inappropriate for biological data. Entropy measures
the randomness and predictability of a stochastic process and
generally increases with greater randomness; i.e., lower entropy
indicates lower signal complexity.

Previous research has noted decreased complexity in the EEG
and MEG signals of aging and diseased brains. Gomez et al. used
approximate entropy (ApEn) and sample entropy (SampEn) to
analyzeMEG signals and found that the signals were less complex
and more regular in AD patients than in control subjects (Gómez
and Hornero, 2009; Gomez et al., 2010). Recent EEG studies
have explored event-related multiscale entropy (MSE) measures
as features for effectively discriminating between normal aging,

MCI, and AD and found decreasing complexity with the severity
of cognitive decline (McBride et al., 2014a,b). These findings
indicate decreases in the EEG and MEG signal complexities of
AD and MCI patients.

Entropy is a commonly used metric for the measurement of
brain complexity. Permutation entropy (PE) is a new method
that is used to measure the irregularity of non-stationary time
series (Bandt and Pompe, 2002). PE considers only the ranks
of the samples and not their metrics. As an ordinal measure,
PE has some advantages over other commonly used entropy
measures, such as ApEn (Pincus, 1991) and SampEn (Richman
and Moorman, 2000), including its simplicity, low complexity in
computation without further model assumptions, and robustness
in the presence of observational and dynamical noise (Zanin
et al., 2012). PE has been used in EEG signal studies of human
absence epilepsy (Ferlazzo et al., 2014), typical absences (Li et al.,
2014), MCI (Timothy et al., 2014), and AD (Morabito et al.,
2012). These studies suggest that PE is a useful tool for the study
of abnormalities of brain complexity.

Few studies have performed complexity analyses of rs-fMRI
signals (Liu et al., 2013; Sokunbi et al., 2013). To the best of
our knowledge, PE has not been applied to the complexity
study of rs-fMRI signals. Some fMRI studies have found that
complexity decreases in gray and white matter and some brain
regions with normal aging (Liu et al., 2013; Sokunbi et al., 2015).
Compared with normal controls (NCs), AD patients exhibit a
greater decrease in cognitive ability and memory. EEG studies
have demonstrated that declining brain function is associated
with decreased complexity in the brains of AD patients (McBride
et al., 2014a,b). Liu et al. found that cognitive impairment was
associated with decreased complexity of the fMRI signals in the
gray matter and brain regions in a familial AD group (Liu et al.,
2013). However, the alterations in the complexities of rs-fMRI
signals in MCI and AD patients remain unclear.

In the present study, an analysis of PE complexity was
performed using rs-fMRI signals of NC, early MCI (EMCI),
late MCI (LMCI), and AD subjects from the Alzheimer’s
disease neuroimaging initiative (ADNI, http://adni.loni.usc.edu/)
database. First, PE brain maps of the four groups were extracted
and subjected to Gaussian smoothing. One-way analysis of
variance (ANOVA) was performed to identify the significantly
different clusters. Then, the average PEs of the selected regions
of interest (ROIs) were analyzed. Finally, Pearson’s correlations
between the average PEs of ROIs for each participant and
each of the Mini-Mental State Examination (MMSE), Functional
Assessment Questionnaire (FAQ) and global Clinical Dementia
Rating (CDR) scores were analyzed. Moreover, we examined
the relationships between regional homogeneity (ReHo) and
PE in AD and MCI patients. ReHo is suitable for exploring
resting-state functional homogeneity (Zang et al., 2004). A larger
ReHo value indicates higher regional synchronization. We also
examined the relationships between glucose metabolism on
FDG-PET and PE in AD andMCI patients. Finally, we examined
the gray matter volumes in the four groups using a voxel-
based morphometry (VBM) method and studied the relationship
between the gray matter volumes and PEs in the patient
groups.
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The objective of our study was to determine the alterations of
complexity in MCI and AD patients from brain entropy maps
based on rs-fMRI data. We also found that these alterations were
related to the changes in regional synchronization present inMCI
and AD compared with NCs.

MATERIALS AND METHODS

Participants
All of the subjects were selected from the ADNI (ADNI-
2) database. The ADNI aims to study the pathogenesis and
prevention of AD by analyzing various medical imaging data.

A total of 124 subjects were selected, and the data from each
subject consisted of 140 functional volumes from the database
according to disease type (AD, LMCI, EMCI, and NC). The
subjects included 29 AD patients (average age of 72.33 years,
18 females), 32 LMCI patients (average age of 72.57 years,
13 females), 33 EMCI patients (average age of 72.01 years,
16 females), and 30 NC subjects (average age of 74.18 years,
19 females; Table 1). The AD patients had MMSE scores of 14–
26, the LMCI patients had MMSE scores of 23–28, the EMCI
patients had MMSE scores of 24–30, and the NC subjects, who
did not exhibit depression or dementia, had MMSE scores of 24–
30. The FAQ is a measure of the ability to perform 10 high-level
skills used in daily tasks (shopping, preparing meals, handling
finances, and understanding current events), each of which is
rated by a knowledgeable informant. The total score ranges
from 0 to 50, and higher scores indicating poorer functional
performance. The AD patients had FAQ scores of 3–28, the LMCI
patients had FAQ scores of 0–18, the EMCI patients had FAQ
scores of 0–12, and the NC subjects had FAQ scores of 0–3. The
global CDR scores are discrete values of 0, 0.5, and 1 that indicate
no dementia, mild dementia, and dementia, respectively. All AD
patients had a global CDR of 0.5 or 1, the LMCI and EMCI
patients had global CDR scores of 0.5, and the NC subjects had a
global CDR score of 0.

Data Acquisition
All subjects were scanned in a three-tesla (3T) scanner. During
the resting-state scans, the subjects were asked to keep their eyes
closed (Jack et al., 2008). Functional and structural MRI data
were collected with the following parameters: field strength =

3.0; manufacturer = Philips Medical Systems; slice thickness =

TABLE 1 | Demographic and clinical information of the participants.

Group NC EMCI LMCI AD P-value

Age (years)a 74.18 ± 5.96 72.01 ± 5.87 72.57 ± 8.16 72.33 ± 7.26 0.505

Sex (M/F) 11/19 17/16 19/13 11/18 0.732

MMSEb 28.9 ± 1.7 27.59 ± 2.02 26.96 ± 2.69 21.0 ± 3.5 <0.001

FAQc 0.14 ± 0.44 3.03 ± 4.50 4.07 ± 4.70 15 ± 7.47 <0.001

CDRd 0 0.5 0.5 0.84 ± 0.23 <0.001

a,b,c,dValues represent the mean ± standard deviation.

MMSE, Mini-Mental State Examination; FAQ, Functional Assessment Questionnaire; CDR,

Clinical Dementia Rating.

3.3; repetition time (TR) = 3,000ms; echo time (TE) = 30ms;
flip angle= 80◦; and slice number= 48.

FDG-PET images were acquired at a variety of scanners
nationwide using either a 30-min six-frame scan or a static 30-
min single-frame scan acquired 30–60min post-injection (details
are available at https://adni.loni.usc.edu/wp-content/uploads/
2010/05/ADNI2_PET_Tech_Manual_0142011.pdf).

Data Preprocessing
The preprocessing of rs-fMRI data was performed using the Data
Processing Assistant for Resting-State fMRI (DPARSF) toolbox
(Chao-Gan and Yu-Feng, 2010) and the SPM8 package (http://
www.fil.ion.ucl.ac.uk/spm). Briefly, the preprocessing steps were
as follows: the first 10 volumes of the functional images during
the participant’s adaptation to the circumstances were discarded;
slice-timing correction was performed according to the last slice;
the images were realigned for head movement compensation
using a six-parameter rigid-body spatial transformation because
excessive head motion may induce large artifacts in fMRI time
series; the images were normalized to the Montreal Neurological
Institute (MNI) space; and finally, the signal drift was removed
using a linear model. Additionally, spatial smoothing of the
brain PE maps was performed to reduce the white noise and
suppress the effects due to residual differences during inter-
subject averaging using an 8-mm full-width at half maximum
(FWHM) smoothing kernel (Sokunbi et al., 2015). Notably, PE
complexity was accomplished by voxel-based analysis to explore
regional differences, and smoothing before a PE calculation
will greatly increase the regional similarity (Chao-Gan and
Yu-Feng, 2010). A recent study involving fuzzy approximate
entropy analysis of rs-fMRI signals performed the smoothing
after the entropy calculation (Sokunbi et al., 2015). Moreover,
the ReHo explores the functional homogeneity of resting-
state fMRI data (Zang et al., 2004), which might provide
convenience in the potential explanation of PE. Thus, we
calculated the ReHo after preprocessing. Then, the ReHo of
the brain was smoothed with an 8-mm FWHM smoothing
kernel.

Some studies have shown that the removal of nuisance signals
had influence on the results (Chao-Gan and Yu-Feng, 2010;
Wang et al., 2014). We also tried to remove the effect of nuisance
covariates, including the global signal, the motion parameters,
the cerebrospinal fluid (CSF), and the white matter signals. The
detailed data processing, statistical analyses, and results were
presented in Presentation 1 (Supplementary Material).

The analysis of the gray matter volume was performed
according to the VBM protocol using DPARSF (Chao-Gan
and Yu-Feng, 2010). This process primarily consisted of
segmentation and normalization. First, each subject’s MRI data
were segmented into gray matter, white matter and cerebrospinal
fluid (CSF). Subsequently, diffeomorphic anatomical registration
using exponential lie algebra (DARTEL) was applied to normalize
the gray matter images and iteratively create the template. The
subjects’ gray matter images were registered to new templates
for each iteration. Then, the normalized gray matter images were
multiplied to preserve the absolute volume of the gray matter in
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the subjects’ native spaces. Finally, all gray matter images were
smoothed with an 8-mm FWHMGaussian kernel.

Preprocessing of the FDG-PET scans was performed using
the SPM8 package (http://www.fil.ion.ucl.ac.uk/spm). Dynamic
scans were registered to the mean frame and averaged to create
a single average image. Then, the images were normalized to the
MNI space (voxel size: 3 × 3 × 3). Next, spatial smoothing was
performed using a Gaussian smoothing kernel with FWHM of
[8 8 8]. Therefore, each voxel time series was standardized to a
mean of zero and a standard deviation of unity to allow the data
sets to be compared. The scans were intensity-normalized using a
whole-cerebellum reference region to create standardized uptake
value ratio (SUVR) images.

PE Algorithm
The basic principle of PE is that it does not consider the specific
values of the data; rather, PE is based on the comparison of
adjacent data points in the time domain. The algorithm is
described below.

Given a time series x(i), i = 1, 2, .....,N, a vector composed of
the m-th subsequent values is constructed as follows:

X(1) = {x(1), x(1+ l), · · · , x(1+ (m− 1)l)}
...

X(i) = {x(i), x(i+ l), · · · , x(i+ (m− 1)l)}
...

X(N − (m− 1)l) = {x(N − (m− 1)l),
x(N − (m− 2)l), · · · , x(N)}







































(1)

wherem is the embedding dimension, and l is the delay time.
The vector X(i) can be rearranged in an ascending order as

follows:

X(i) = {x(i+ (j1 − 1)l) ≤ x(i+ (j2 − 1)l) ≤ · · · ≤

x(i+ (jm − 1)l)} (2)

where j = 1, 2, · · · ,m. Note that if two values are equal (here,
x(i+ (j1 − 1)l) = x(i+ (j2 − 1)l)), they are ordered according to
the size of the j1, j2 value, such that x(i+(j1−1)l) ≤ x(i+(j2−1)l)
when j1 < j2. Then we can obtain a set of symbol sequences by
each raw of it that the reconstructed matrix of any time series,
where the symbol sequences just like S(g) = {j1, j2, · · · , jm}, (g =

1, 2, · · · k, k ≤ m!), where the k means the objectively quantity
of {j1, j2, · · · , jm}. So, any vector X(i) is uniquely mapped into
(1, 2, · · · ,m) or (2, 1, · · · ,m) · · · or (m,m − 1, · · · , 1) in total
m! possible symbol sequences and S(g) is one of them. Then, let
the probability distribution of the distinct symbols be Pg(g =

1, 2, · · · k). The PE is defined as the Shannon entropy for the k
distinct symbols:

PE = −

k
∑

g=1

Pg ln Pg (3)

Be aware, PE reaches its maximum ln(m!) when pg = 1/m!.
Therefore, PE is standardized by ln(m!):

PEs = PE/ ln(m!) (4)

Obviously, the range of PEs is 0 ≤ PEs ≤ 1.
PEs is the local order structure of the time series. A large PE

value indicates a more random time series, whereas a small PE
value indicates that the time series is regular.

Computation of PE
In the calculation of PE, three parameter values must be
considered and set, including the length of the time series N, the
embedding dimensionm and the time delay l. Bandt et al. (Bandt
and Pompe, 2002) suggested that the embedding dimension
should range from 3 to 7 because if the value is too small, the
reconstructed sequence contains too few states; therefore, the
algorithm loses its meaning and validity and cannot detect the
dynamic mutation of the time series. However, if the value is too
large, the phase space reconstruction will homogenize the time
series, the calculation will be time consuming, and subtle changes
in the sequence will not be reflected. The time delay l has little
influence on the entropy of the time series (Mateos et al., 2014).
To allow every possible order pattern of dimensionm to occur in
a time series of length N, the conditionm! ≤ N − (m− 1)lmust
hold. Moreover, to avoid undersampling, N ≥ m! + (m − 1)l is
required. Therefore, we need to choose N ≥ (m + 1)!. For N =

130, an obviously unsatisfying complexity estimation is obtained
when m ≥ 5. To satisfy this condition, we therefore chose a
low dimension, i.e., m = 4, when calculating the permutation
entropy. In the present study, we chose m = 4, l = 1 for
calculation and analysis (Li et al., 2014).

Statistical Analyses
The first statistical tests were performed using the rs-fMRI Data
Analysis Toolkit (REST 1.8) (Song et al., 2011). One-way ANOVA
was performed to examine differences among the four groups
(NC, EMCI, LMCI, and AD). Clusters that were significantly
different after adjusting for age and sex differences were selected
by setting P < 0.005 with a Gaussian random fields (GRF)
correction.

The DPARSF toolbox was used to define the ROIs to extract
the average PE, ReHo, and PDG-PET values according to the
peak MNI coordinates (XYZ), and the radius of the spheres was
8mm.

The subsequent statistical tests were performed using
Statistical Package for Social Sciences (SPSS 20.0; New York, NY,
USA) software. The averages PEs of the ROIs of each subject were
obtained and one-way ANOVA was performed to examine the
differences among the four groups. The relationships between the
PE and the clinical measurements ofMMSE, FAQ, and CDRwere
analyzed using Pearson’s correlations in the patient groups.

Pearson’s correlation analyses of the PE with the ReHo and
FDG-PET data were performed in the patient groups using SPSS.
Moreover, we also performed correlation analyses between the
PEs and the gray matter volumes in the patient groups.
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RESULTS

Demographic and Clinical Data
The demographic and clinical data for each group were
summarized in Table 1. The means (±SD) were presented for the
baseline clinical tests. The results of one-way ANOVAs revealed
significant effects of group on theMMSE (F= 40.924, P< 0.001),
FAQ (F = 61.810, P < 0.001), and the CDR (F = 238.31, P
< 0.001) scores but not sex (F = 0.431; P = 0.732) or age (F
= 0.785; P = 0.505). Note that a higher FAQ score represents
greater impairment, whereas a lower MMSE represents greater
impairment. The MMSE scores were significantly lower in the
MCI (t = −3.302, P = 0.002) and AD (t = −9.333, P < 0.001)
groups than in the NC group. The FAQ scores were significantly
higher in the MCI (t = 5.642, P < 0.001) and AD groups (t =
12.625, P < 0.001) than in the NC group. The CDR scores were
significantly higher in the MCI (t = 7.687, P < 0.001) and AD
groups (t = 28.436, P < 0.001) than in the NC group.

rs-fMRI PE Brain Maps
We extracted themean PEs of the whole brain, graymatter (GM),
white matter (WM), and cerebral spinal fluid (CSF). There were
differences in the GM (F = 2.711, P = 0.048) and WM (F =

2.792, P = 0.043) but no differences in the whole brain (F =

1.713, P = 0.168) or CSF (F = 1.183, P = 0.319) among the
four groups. The results of the one-way ANOVAs were presented
in Figure 1. At the regional levels, five clusters were found to
exhibit significant differences in PE among the four groups, as
illustrated in Figure 2. The complexity differences among the
four groups were mainly observed in the temporal, occipital, and
frontal lobes. The results after removing the effect of nuisance
covariates showed the complexity differences were mainly
observed in the frontal lobes (Presentation 1 in Supplementary
Material).

ROI Analysis
In addition to the brain regions at the peak points, other
significant brain regions that accounted for a large proportion
were also extracted.We obtained eight ROIs from five clusters for
the next analysis as presented in Table 2. The average PE values
were extracted according to the peak MNI coordinates of the

ROIs, and the sphere radius was 8mm. Specifically, as presented
in Table 2, the following regions exhibited significant differences:
the right inferior temporal gyrus (ITG.R), the left middle frontal
gyrus (MFG.L), the left superior frontal gyrus (SFGdor.L), the
left anterior cingulate and paracingulate gyri (ACG.L), the right
cuneus (CUN.R) and left cuneus (CUN.L), the right middle
occipital gyrus (MOG.R), and the right superior occipital gyrus
(SOG.R). In particular, five peakMNI coordinate regions (ITG.R,
MFG.L, ACG.L, CUN.R, and MOG.R) exhibited statistically
significant differences (F > 8.13, p < 0.005, corrected). The
results of one-way ANOVAs revealed significant effects of group
in eight brain regions that exhibited significantly decreased
complexity in the AD group compared with the MCI groups
and the NC group (t > 2.909, P < 0.01). Compared with the
NC, decreased complexity was also found in the left cuneus
in the MCI group (P = 0.04, one-tailed uncorrected). Figure 3
illustrated that the PE values were lowest in the AD patients
in all of the clusters. Specifically, four brain regions (ITG.R,
MFG.L, ACG.L, and MOG.R) exhibited significant differences
between the AD patients and the other groups. After removing
the effect of nuisance covariates, five clusters were also found
decreased complexity in the AD group compared with the MCI
groups and the NC group (Presentation 1 in Supplementary
Material).

Relationships between PE and Clinical
Measurements
TheMMSE score is the most widely used brief screening measure
of cognition. First, we performed correlation analyses of the
MMSE scores with the mean PEs of the whole brain, WM, GM,
and CSF in the patient groups (EMCI+LMCI+AD) and found
that only the GM (r = 0.227, P= 0.032) andWM (r = 0.210, P=

0.049) PEs exhibited positive correlations. We also examined the
correlations of the MMSE scores with the PEs of the eight ROIs
in the pooled patient groups (EMCI+LMCI+AD). The results
were presented in Table 3. The eight ROIs exhibited significant
positive correlations between the PEs and MMSE scores (r >

0.212, P < 0.046) with the MFG.L and MOG.R showing strong
positive correlations (r > 0.414, P < 0.001). A higher MMSE
score indicates higher cognitive ability.

FIGURE 1 | Mean PE values of the gray matter (GM) and white matter (WM) in the NC, EMCI, LMCI, and AD subjects. Significant differences between pairs of groups

after Bonferroni correction (P < 0.05) are indicated. *P < 0.05. The error bars indicate the SDs.
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FIGURE 2 | Surface-rendered images showed the differences between the control and patient groups after adjusting for age and sex. The regions showed exhibited

different complexities among the four groups. See Table 2 for a complete list of these regions (threshold P < 0.005, GRF corrected).

TABLE 2 | Characteristics of the brain regions that were significantly different

among the four groups.

Brain region AAL.Abbr Peak MNI Cluster Voxel F

(X, Y, Z) voxels value

Inferior temporal gyrus ITG.R (51, 63, 15) 117 8.15

Middle frontal gyrus MFG.L (−33, 41, 24) 278 10.82

Superior frontal gyrus SFGdor.L

Anterior cingulate gyrus ACG.L (−12, 44, 15) 59 8.13

Right cuneus CUN.R (12, 78, 30) 126 8.61

Left cuneus CUN.L

Middle occipital gyrus MOG.R (45, 78, 21) 201 8.42

Superior occipital gyrus SOG.R

The location coordinates are those of the peak significance in each region (P < 0.005,

GRF corrected).

The FAQ is more closely tied to functionally relevant abilities,
such as accomplishing everyday tasks required for independent
living. There were no correlations of the FAQ scores with the
mean PEs of the whole brain,WM, GM, or CSF in patient groups.
The PEs of seven ROIs exhibited strong negative correlations
with the FAQ scores (r <−0.213, P < 0.045), whereas the CUN.L
ROI did not (Table 3). A higher FAQ score indicates poorer
functional performance.

The CDR has been validated neuropathologically particularly
in terms of the presence or absence of dementia. There were no
correlations of the CDR scores with the mean PE of the whole
brain or the PEs of the WM, GM, or CSF in the patient groups.
The PEs of six ROIs exhibited strong negative correlations with
the CDR scores (r < −0.211, P < 0.047), whereas the PEs of
the CUN.L and CUN.R did not (Table 3). A higher CDR score
indicates the presence of dementia.

In addition, the correlation analyses were performed between
the PE and the clinical measurements in the four groups and
consistent significant correlations were found (Table S1). We also
found the significant correlations between the PE and the clinical
measurements in the patient groups and in the four groups after
removing the effect of nuisance covariates (Presentation 1 in
Supplementary Material).

Relationships between PE and ReHo
We extracted the ReHos of 8 ROIs according to the peak
MNI coordinates (Table 2), and the sphere radius was 8mm.
We explored the relationship between PE and ReHo in the
pooled groups (EMCI+LMCI+AD). The results were presented
in Table 4. The GM (r=−0.347, P= 0.001), WM (r=−0.537, P
< 0.001) and three ROIs (ITG.R, MFG.L, and MOG.R) exhibited
significant negative correlations between the PE and ReHo in
the patients groups. And the results after removing the effect of
nuisance covariates showed that the inferior and middle frontal
gyrus exhibited negative correlations between the PE and ReHo
in the patient groups (Presentation 1 in SupplementaryMaterial).
The results illustrated that high regional spontaneous activities
may be associated with a decrease in complexity.

Correlation analyses in the four groups
(NC+EMCI+LMCI+AD) were also performed between
the PE and ReHo (Table S2). Consistent significant correlations
were found.

Relationships between PE and the Gray
Matter Volume, FDG-PET
We extracted the gray matter volumes of eight ROIs according
to the peak MNI coordinates, and the sphere radius was 8mm.
Then, we explored the relationships between the PEs and the
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FIGURE 3 | The PE values of the NC, EMCI, LMCI, and AD subjects. Significant differences between pairs of groups after Bonferroni correction (P < 0.05) are

indicated. *P < 0.05, **P < 0.01, ***P < 0.001. The error bars indicate the SDs.

gray matter volumes in the patient groups. The results were
presented in Table 4. The SOG.R exhibited a positive correlation
(r= 0.200, P= 0.053) between the PE and the graymatter volume
in the patient groups. Correlation analyses in the four groups
(NC+EMCI+LMCI+AD) were also performed between the PE
and gray matter volume, and the SOG.R exhibited a significant
positive correlation (r = 0.210, P = 0.010) between the PE and
the gray matter volume (Table S2). And the right middle frontal
gyrus exhibited a positive correlation (r = 0.270, P = 0.008)
between the PE and the gray matter volume after removing the
effect of nuisance covariates (Presentation 1 in Supplementary
Material).

Finally, the FDG-PET data of the eight ROIs from the same
group of subjects were extracted. Pearson’s correlation analyses
of the PE and FDG-PET data were performed in the pooled
groups (EMCI+LMCI+AD). Two significant correlations were
detected (Table 4). TheMOG.R (r= 0.419, P< 0.001) and ITG.R
(r = 0.273, P = 0.019) exhibited significant positive correlations
between the PE and FDG-PET data. The correlation analyses in
the four groups (NC+EMCI+LMCI+AD) produced consistent
results (Table S2).

DISCUSSION

This study reported the global and regional differences in PE
between patients and controls. The significant differences were
mainly distributed in the occipital, frontal, and temporal lobes.
In the ROI analysis, the AD patients exhibited significantly
lower values (lower complexities) than the healthy controls and
MCI groups. To identify the continuous distribution of the AD
symptoms, we conducted correlation analyses of the PE values
and the clinical MMSE, FAQ and CDR scores, all of which
revealed an increasing symptom load with decreasing brain
activity complexity.We also extracted the regional homogeneities
(ReHos) of eight ROIs and performed correlation analyses
between the PEs and ReHos, and significant correlations were
observed. Additionally, we extracted the FDG-PET data from
eight ROIs and performed correlation analyses between the PE
and the FDG-PET data. Significant positive correlations between
the PE and FDG-PET data were observed in the ITG.R and
MOG.R in the patient groups. A positive correlation was found
between the PE and the gray matter volume in the patient groups.
To summarize, we found significantly decreased complexity in
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TABLE 3 | Results of the correlation analyses between the PE maps and the

MMSE, FAQ, and CDR scores in the patient groups (EMCI+LMCI+AD).

Brain region Abbr. MMSE (r, P) FAQ (r, P) CDR(r, P)

ITG.R 0.312, 0.003** −0.223, 0.036* −0.259, 0.014*

MFG.L 0.429, <0.001*** −0.290, 0.006** −0.345, 0.001***

SFGdor.L 0.294, 0.005** −0.337, 0.001*** −0.365, <0.001***

ACG.L 0.317, 0.002** −0.216, 0.042* −0.355, 0.001***

CUN.R 0.349, 0.001*** −0.213, 0.045* −0.144, 0.177

CUN.L 0.212, 0.046* −0.125, 0.243 −0.120, 0.262

MOG.R 0.414, <0.001*** −0.326, 0.002** −0.339, 0.001**

SOG.R 0.349, 0.001*** −0.288, 0.006** −0.211, 0.047*

GM 0.227, 0.032* −0.139, 0.193 −0.159, 0.137

WM 0.210, 0.049* −0.112, 0.298 −0.111, 0.302

In the table, r is the Pearson correlation coefficient, and P indicates the level of statistical

significance. *P < 0.05, **P < 0.01, ***P < 0.001. GM, Gray Matter; WM, White Matter.

TABLE 4 | Results of the correlation analyses between the PE maps and the

ReHo, gray matter volume, and FDG-PET values in the patient groups

(EMCI+LMCI+AD).

Brain region Abbr. ReHo (r, P) GMV (r, P) FDG-PET (r, P)

ITG.R −0.414, <0.001*** −0.020, 0.845 0.273, 0.019*

MFG.L −0.369, <0.001*** 0.081, 0.440 0.027, 0.819

SFGdor.L −0.179, 0.084 0.074, 0.480 0.043, 0.716

ACG.L −0.012, 0.909 0.089, 0.391 0.096, 0.417

CUN.R −0.032, 0.757 0.046, 0.661 0.009, 0.939

CUN.L −0.020, 0.847 −0.141, 0.175 0.113, 0.341

MOG.R −0.195, 0.049* 0.040, 0.705 0.419, <0.001***

SOG.R −0.068, 0.515 0.200, 0.053* 0.118, 0.320

GM −0.347, 0.001*** 0.039, 0.736 0.092, 0.438

WM −0.537, <0.001*** – 0.078, 0.509

In the table, r is the Pearson correlation coefficient, and P indicates the level of statistical

significance. *P < 0.05, ***P < 0.001. GMV, Gray Matter Volume; GM, Gray Matter;

WM, White Matter.

the AD patients, and the results were related to the results of the
ReHo analysis.

Applications of PE for Analyzing the
Complexity of Neural Signals in the Brain
The PE method measures the irregularity of non-stationary time
series, and there have been a number of practical applications
of complexity measures using EEG data (Li et al., 2007, 2014;
Bruzzo et al., 2008). A study demonstrated that the PE can track
the dynamical changes of EEG data (Li et al., 2007). Li et al.
utilized PE to predict the changes in EEG signals during absence
seizures and provided evidence that the three different seizure
phases in absence epilepsy can be effectively distinguished (Li
et al., 2014). Mammone et al. evaluated PE data extracted from
different electrodes in patients with typical absences and healthy
subjects (Mammone et al., 2012). Another study used PE as
a feature for effectively discriminating between normal aging,
MCI, and AD participants (McBride et al., 2014a). In this study,
using the PE method, we found decreased complexity in the

MCI and AD patients. These findings demonstrated that PE can
measure the complexity of neural signals in the brain and disclose
abnormalities of the brain in disease states.

In addition to PE, other entropy methods have been used
to explore the complexity of fMRI signals. For example, Liu
et al. explored the complexity of normal aging using approximate
entropy and found that gray and white matter decreased in
complexity with normal aging (Liu et al., 2013). Sokunbi MO
and co-workers applied approximate entropy, sample entropy,
and fuzzy entropy to complexity analyses of the fMRI data in
diseases (i.e., schizophrenia and ADHD) and found alterations
in complexity compared with normal people (Sokunbi et al.,
2013, 2014).We found significantly decreased complexity inMCI
and AD patients using the PE analysis that revealed increasing
symptom load with decreasing complexity of the brain. We
also applied these entropy methods to ADNI datasets, but the
differences among the four groups were not significant (results
not shown). Compared with other entropy methods, we thought
the PE method had the advantages of placing a continuous time
series into a symbolic sequence, entailing a faster calculation
speed and being more accurate for complexity estimations
(Unakafova et al., 2013). Therefore, PE seems to be a useful tool
for identifying abnormalities in brain function.

Decreased Complexity in AD
From our results, decreases in complexity were associated with
AD. We found decreased complexity in the mean whole-brain
PEs of the gray matter and white matter in AD compared with
EMCI (Figure 1). One study of the complexity of rs-fMRI data
found cognitive impairment was associated with decreases in the
gray matter of a familial AD group (Liu et al., 2013). At the
regional level, five clusters were found to exhibit significantly
decreased complexity in the AD group compared with the MCI
and NC groups, and these clusters were mainly distributed in
the occipital, frontal, and temporal lobes. Compared with the
NCs, decreased complexity was also found in the CUN.L in
the MCI group (P = 0.08). These regions are mainly involved
in short-term memory processing, visual recognition memory,
rational thought processes and higher-level functions, basic
visual processing, and motion perception (Goldman, 2013; de
Schotten et al., 2014). The complexities of these brain regions
in the patient groups decreased, and the brain function may also
have been damaged. Liu et al. reported decreased complexities in
some brain regions (i.e., the STG, ACG, CUN) in a complexity
study of rs-fMRI signals in familial AD (Liu et al., 2013).
Studies of EEG signals in AD and MCI patients also have
reported results similar to ours. For example, Labate et al. (2012).
measured dynamic EEG signal complexity in AD subjects using
PE and found that the severity of disease was reflected in the
dynamic complexity, and complexity reductions were present
in the frontal and occipital areas (Labate et al., 2012). Timothy
et al. found that in the frontal and temporal regions, the PEs of
EEG recordings in an MCI group were significantly lower than
those of controls (Timothy et al., 2014). The MMSE score has
been demonstrated to be effective for the cognitive screening of
the elderly and might help differentiate between AD and MCI,
and the FAQ and CDR are frequently used indices of cognitive
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decline. Table 3 presents the positive correlations between of the
PE with the MMSE in patients and the negative correlations of
the PE with the FAQ and CDR. These findings indicated that
lower MMSE and higher FAQ and CDR scores were observed in
MCI and AD patient groups who exhibited lower complexity and
cognitive decline.

These findings were supported by the decrease-in-complexity
hypothesis of Lipsitz and Goldberger, which suggested that
physiological diseases were associated with a generalized loss of
complexity in the dynamics of healthy systems and hypothesizes
that such a loss of complexity led to an impaired ability to adapt
to physiological stress, that in turn results in functional loss
and deficits (Lipsitz, 1992, 2004). These results indicated that
AD patients demonstrated decreased complex behavioral output
and suggested that AD patients had decreased brain complexity,
resulting in cognitive decline.

Potential Explanations for the Decreased
Complexity in AD
AD is characterized by the presence of neuritic plaques and
neurofibrillary tangles and is accompanied by the loss of
cortical neurons and synapses. These changes lead to cognitive
and behavioral disturbances. Brain atrophy and the loss of
cells are major changes in the AD brain. We examined the
relationships between PE and the gray matter volume and
glucose metabolism in patient groups. We found that the
SOG exhibited a positive correlation between the PE and
the gray matter volume, and two ROIs (i.e., the ITG and
MOG) exhibited significant positive correlations between glucose
metabolism and complexity. The SOG has been indicated in
the gray matter atrophy in AD (Guo et al., 2010; Ouyang
et al., 2015). Many studies have also found low cerebral
glucose metabolism in some brain regions (i.e., the ITG and
MOG) in AD and MCI (Castellano et al., 2015; Firbank et al.,
2016). Because the related areas we found were few and
not particularly significant, gray matter atrophy and decreased
glucose metabolism may be indirect evidence for decreased
complexity in AD.

A reliable explanation has been found for the decreased
complexity of fMRI signals in AD. High regional functional
homogeneity led to lower complexity. Functional homogeneity
was measured by ReHo, which calculates the coherence of the
BOLD signal in a given voxel with those of its nearest neighbors.
In this study, we found significant negative correlations in
the gray matter, white matter and some brain regions (i.e.,
the ITG, MFG, and MOG) between the PE and ReHo in the
patient groups. He et al. investigated the pattern of regional
coherence in AD patients using the ReHo index and found that
the ReHo indices increased in the occipital (MOG and SOG)
and temporal lobes (ITG), and significant negative correlations
with the MMSE scores were presented in the MFG and CUN
(He et al., 2007). These findings reflected the high homogeneity
and low complexity in some brain areas in MCI and AD
patients and may be helpful in the development of disease
diagnoses.

Limitations
There were several limitations to our research. A limitation
of this study was that the nuisance covariates had influence
on PE of fMRI signals. We found that differences between
groups became smaller, after removing the effect of nuisance
covariates. However, similar to the main result, significantly
decreased complexities were found in frontal lobe in the AD
group compared with the MCI groups and the NC group with
weak statistical threshold (P < 0.01, uncorrected). According to
these results, we speculated that the PE of fMRI signals might
reflect the changes in complexity of brain activity and a fraction
of nuisance signals. In addition, we also found the significant
correlations between the PE and clinical measurements ReHo,
gray matter volume, showing that the PE could reflect the
abnormal brain activity of AD to a certain extent. The weak
statistical threshold may be associated with the small sample size
and unfavorable results after removing the nuisance signal. In the
future research, we will take full account of the nuisance signals
and improving the PE algorithm to measure the alterations in the
complexity of brain activity more effectively.

Moreover, a limitation of the study was about the detailed
information of subjects. Recent studies have demonstrated that
age, sex, years of education, lifestyle, cardiovascular diseases, and
risk factors (e.g., smoking and hypertension) were associated with
cognitive decline and AD (Santos et al., 2014; Wirth et al., 2014).
In this study, the data selected from the ADNI database, which
did not publicly provide data about the risk factors related to
AD. Another limitation was the number of time points of the
fMRI data. According the PE algorithm, larger values of the
embedding dimension contain more states of the reconstructed
sequence. In this study, we chose m = 4, and there were 24
states. One hundred thirty time points might be inadequate
for evaluating the abnormal complexity of fMRI signals
in AD.

CONCLUSIONS

Our analysis represents a novel implementation of temporal
signal entropy (PE) to investigate the changes in the complexity
of 4D fMRI brain signals in MCI and AD patients compared
with healthy controls. We found decreased complexity in the AD
group and found that the decreased complexity was significantly
correlated with clinical measurements (i.e., the FAQ, MMSE,
and CDR) in the patient groups. Furthermore, we also found a
significant correlation between the PE and ReHo in the patient
groups. These findings suggest that the complexity analysis of
fMRI data using PE can provide important information about the
fMRI characteristics of cognitively impaired conditions that can
lead to AD. We suggest that PE is a useful and easily obtainable
measure for identifying changes in AD brain dynamics. Future
efforts will focus on increasing the fMRI database and applying
the PE approach to other neurodegenerative diseases.
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