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Abstract

The suppression of protective Type 2 immunity is a principal factor driving the chronicity of helminth infections, and has
been attributed to a range of Th2 cell-extrinsic immune-regulators. However, the intrinsic fate of parasite-specific Th2 cells
within a chronic immune down-regulatory environment, and the resultant impact such fate changes may have on host
resistance is unknown. We used IL-4gfp reporter mice to demonstrate that during chronic helminth infection with the filarial
nematode Litomosoides sigmodontis, CD4+ Th2 cells are conditioned towards an intrinsically hypo-responsive phenotype,
characterised by a loss of functional ability to proliferate and produce the cytokines IL-4, IL-5 and IL-2. Th2 cell hypo-
responsiveness was a key element determining susceptibility to L. sigmodontis infection, and could be reversed in vivo by
blockade of PD-1 resulting in long-term recovery of Th2 cell functional quality and enhanced resistance. Contrasting with T
cell dysfunction in Type 1 settings, the control of Th2 cell hypo-responsiveness by PD-1 was mediated through PD-L2, and
not PD-L1. Thus, intrinsic changes in Th2 cell quality leading to a functionally hypo-responsive phenotype play a key role in
determining susceptibility to filarial infection, and the therapeutic manipulation of Th2 cell-intrinsic quality provides a
potential avenue for promoting resistance to helminths.
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Introduction

Protective immunity to helminth parasites takes decades to

acquire, if it develops at all, with over 1 billion people harbouring

chronic infections [1]. Protection is mediated by the Th2 arm of

immunity [2], which is also responsible for causing allergic diseases

such as asthma, atopic dermatitis, and allergic rhinitis, and types of

fibrosis. A major reason for the failure in anti-helminth Th2

immunity is that the parasites immunosuppress their host,

exemplified by host PBMC losing the ability to proliferate and

produce Th2 cytokines, such as IL-4 and IL-5, in response to

parasite antigen [3,4,5]. Interestingly, this Th2 down-modulation

has parallels with the modified Th2 response originally described in

association with tolerance to allergens, and characterised by a switch

from an inflammatory IgE response to an anti-inflammatory IgG4

and IL-10 response [6,7]. Thus, the regulatory pathways invoked by

helminths can cross-regulate and protect against allergic diseases in

humans and animal models [8,9]. As such, defining the mechanisms

of immune down-regulation during helminth infections is of

importance for the development of therapeutic strategies or vaccines

to induce long-term protective anti-helminth immunity, and novel

approaches for the treatment of allergies and fibrosis.

Following the observations that neutralisation of IL-10 or TGF-

b can restore the immune-responsiveness of PBMC from

helminth-infected individuals [10,11], studies have focussed on

determining the extrinsic regulators that control Th2 cell function.

From these, a variety of cell types have been shown to inhibit

immunity to helminths and allergens [12], including Foxp3+

regulatory T cells (Tregs) [13,14], alternatively activated macro-

phages (AAM) [15,16], DC [17,18], and B cells [19,20]. However,

the intrinsic fate of parasite-specific CD4+ Th2 cells within a

chronic down-regulatory environment is largely unknown, even

though the idea that helminth-elicited T cells become anergised

during infection was postulated 20 years ago [21]. It is known that

CD8+ T cells develop a functionally hypo-responsive phenotype in

chronic Th1 infections, termed exhaustion [22], and human

helminth studies provide some evidence for the development of a

form of Th2 cell-intrinsic dysfunction. PBMC from filariasis

patients display a gene expression profile characteristic of anergic

T cells [3], and T cells from individuals with chronic nematode

infections show defects in TCR signalling [23]. Recently, a murine

study on the down-modulation of pathogenic Th2 responses

during Schistosoma mansoni infection provided the first formal

demonstration that CD4+ Th2 effector cells can develop an

intrinsically hypo-responsive phenotype [24]. Thus, there is a

question of whether individuals fail to acquire protective immunity

to helminths because their Th2 cells become intrinsically

dysfunctional.
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We previously used a murine model of filariasis, Litomosoides

sigmodontis infection of permissive BALB/c mice, to define the

immune regulatory mechanisms that prevent helminth killing. We

demonstrated that purified CD4+ T cells lose the ability to

proliferate and produce Th2 cytokines to parasite antigen as

infection progresses [25]. This loss of function within the CD4+ T

cell compartment was independent of Foxp3+ Tregs and IL-10

indicating that, alongside extrinsic regulation by Foxp3+ Tregs

[24,25,26], susceptibility to filarial infection is associated with an

intrinsic functional change within the CD4+ Th2 cells. Thus, in

this study we employed IL-4gfp 4get reporter mice [27] to track

and determine the fate of Th2 cells during L. sigmodontis infection.

We found that, whilst increasing in number, the IL-4gfp+CD4+

Th2 cells became conditioned towards a functionally hypo-

responsive phenotype as infection progressed denoted by a

progressive loss in their intrinsic ability to produce the cytokines

IL-4, IL-5 and IL-2. The onset of hypo-responsiveness was

accompanied by increased expression of PD-1 by IL-4gfp+ Th2

cells, and in vivo PD-1 blockade led to increased resistance to

infection and a long-term increase in Th2 cell functional quality.

In contrast to viral and protozoan infections [28,29,30], the

control of T cell quality by PD-1 was driven through its

interactions with PD-L2, and not PD-L1. Thus, intrinsic changes

in Th2 cell functional quality play an important role in defining

resistance and susceptibility to filarial nematodes, and it is possible

to enhance resistance to infection by therapeutically manipulating

Th2 cell quality.

Results

Th2 cells are conditioned towards a functionally hypo-
responsive phenotype during chronic infection with
Litomosoides sigmodontis

Susceptibility to L. sigmodontis infection is associated with a loss of

responsiveness by CD4+ T cells at the infection site, the

pleural cavity (PC), such that as infection progresses purified PC

CD4+ T cells show reduced L. sigmodontis antigen (LsAg)-

specific proliferative and cytokine responses in vitro [25,26]. This

down-modulation within the CD4+ T cell population was

independent of extrinsic regulation by CD4+CD25+Foxp3+ Tregs

or IL-10, suggesting that it represented either a contraction in the

number of Th2 cells, or a qualitative change in the intrinsic

function of the responding Th2 cells.

Identifying parasite-specific T cells during helminth infection is

challenging due to the polyclonal nature of the response and a lack

of knowledge of the specific antigens recognised. Thus, to

determine whether changes in Th2 cell quantity or intrinsic

functional quality explain the observed CD4+ T cell down-

modulation during L. sigmodontis infection we employed BALB/c

IL-4gfp 4get reporter mice [27]. IL-4gfp+ T cells elicited during

acute infection with the nematode Nippostrongylus brasiliensis are

parasite specific [31], and so IL-4gfp expression by CD4+ T cells

was used as a tool for tracking L. sigmodontis-specific Th2 cells, with

a caveat that IL-4gfp is a surrogate marker and a small proportion

of IL-4gfp+ T cells may not be L. sigmodontis specific. Importantly,

once committed to the Th2 lineage, T cells store IL-4 mRNA and

the production of IL-4 protein is controlled post-transcriptionally

[32]. IL-4gfp 4get mice report the presence of IL-4 mRNA

independently of IL-4 protein [32,33], meaning that the number

of committed IL-4 mRNA+ Th2 cells can be quantified by GFP

expression, whilst further assays can be used to independently

assess their functional quality.

BALB/c IL-4gfp mice were infected s.c. with L. sigmodontis

larvae. From the skin the larvae migrate via the lymphatics to the

PC by d 4 post-infection (pi) where they undergo a series of moults

reaching the adult stage around d 25 pi, and become sexually

mature with the females releasing transmission stage microfilaria

(Mf) approximately 55 d pi. A patent infection is defined as having

mature adult parasites within the PC, and Mf circulating within

the blood stream [34]. At the infection site there was a gradual

increase in the proportion of IL-4gfp+ Th2 cells as infection

progressed, culminating in 35% of CD4+ T cells expressing GFP

by day 60 (Figure 1A and B). This translated to a significant

elevation of total numbers of IL-4gfp+ Th2 cells by d 20 pi, which

was maintained until d 60 pi (Fig. 1C). Increases in the

proportions of IL-4gfp+ Th2 cells were also seen in the thoracic

LN (tLN) and spleen (Figure 1D and F), albeit to a lesser extent,

and only resulted in significantly increased total numbers of IL-

4gfp+ Th2 cell in the tLN (Figure 1E and G). Thus, the down-

modulation of CD4+ T cell responsiveness within the PC was not

caused by a loss of Th2 cells.

To determine whether Th2 cell functional quality declined

during infection, intra-cellular staining was used to define the

proportion of IL-4gfp+ Th2 cells actively producing IL-4 protein

(Figure 2A), as well as IL-5 and IL-2 (Figure S1), in response to

PMA and ionomycin stimulation. Contrasting with the increase in

numbers of IL-4gfp+ Th2 cells within the PC, there was a 69%

reduction in the proportion of IL-4gfp+ Th2 cells making IL-4

protein between d 20 and d 40, which was still apparent at d 60

(Figure 2B). The proportion of IL-4gfp+ Th2 cells producing IL-5

protein also declined by 70%, although with delayed kinetics as the

reduction did not occur until d 60, indicating a staggered loss of

cytokine production (Figure 2C). Similarly, there was a 79%

decrease in the proportion making IL-2 between d 20 and d 60

(Figure 2D). Distal to the PC, the proportion of IL-4gfp+ Th2 cells

capable of producing IL-4 protein within the tLN remained

unaffected (Figure 2E), and despite a transient decrease at d 40 in

the spleen the proportion of IL-4+ IL-4gfp+ Th2 cells at d 60 pi

was equivalent to d 20 (Figure 2H). In contrast, the production of

IL-5 and IL-2 proteins by IL-4gfp+ Th2 cells was impaired at d 60

in both the tLN and spleen (Figure 2 F, G, I and J).

Author Summary

Helminth parasites mount chronic infections in over 1
billion people worldwide, of which filarial nematode
infections account for 120 million. A major barrier to the
development of protective Th2 immunity lies in the
dominant down-regulatory immune responses invoked
during infection. Although this immune suppression is
linked with a range of Th2 cell-extrinsic immune regula-
tors, the fate of CD4+ Th2 cells during chronic infection,
and the role of Th2 cell-intrinsic regulation in defining
protective immunity to infection is largely unknown. In this
study, we use a murine model of filarial nematode
infection to show that as infection progresses the Th2
effector cells responsible for killing helminths become
functionally hypo-responsive, developing a phenotype
similar to adaptive tolerance or exhaustion, and their
ability to clear infection becomes impaired. We further
demonstrate that we can therapeutically manipulate the
intrinsic functional quality of hypo-responsive Th2 cells via
the PD-1/PD-L2 co-inhibitory pathway to reawaken them
and enhance resistance to infection. Thus, our data
provide the first demonstration that Th2 cell-intrinsic
hypo-responsiveness plays a key role in determining
susceptibility to helminth infection.

Helminth-Induced Th2 Cell-Intrinsic Dysfunction
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Thus, the decline in CD4+ T cell responsiveness observed

during chronic L. sigmodontis infection represents a step-wise

intrinsic loss of functional ability of IL-4gfp+ Th2 cells to produce

cytokines, rather than a decrease in the total number or proportion

of Th2 cells. This hypo-responsive Th2 cell phenotype is most

prominent at the infection site, but to a lesser extent radiates out to

the draining LN and spleen.

Hypo-responsive IL-4gfp+ Th2 cells express PD-1
Co-inhibition through the PD-1 pathway leads to the functional

exhaustion of CD8+ T cells during chronic immune challenge

[22,28], and is involved in the inhibition of Th2 responses during

helminth infections [35,36,37,38]. To investigate whether L.

sigmodontis-induced Th2 cell hypo-responsiveness was associated

with PD-1 co-inhibition, the expression of PD-1 by IL-4gfp+ Th2

cells was assessed. At d 20 pi, when the IL-4gfp+ Th2 cells were

still functionally active, there was no change in the proportion of

PC IL-4gfp+ Th2 cells expressing PD-1 (Figure 3A). However,

concomitant with the onset of hypo-responsiveness, there was a

two-fold increase in the proportion of IL-4gfp+ Th2 cells

expressing PD-1 at d 40 pi. PD-1 expression remained elevated

until d 60 (Figure 3A), and the mean fluorescence intensity of PD-1

expression on IL-4gfp+ Th2 cells increased with similar kinetics

(Figure 3B). When PD-1 expression by IL-4gfp+ Th2 cells was

compared to production of IL-4 protein, the majority of IL-4

producing Th2 cells at d 20 were PD-1 negative, and the enhanced

PD-1 expression at d 40 and 60 associated with the loss of IL-4

protein (Figure 3C).

T follicular helper (Tfh) cells are IL-4gfp+ and express PD-1

during helminth infection [39,40,41], and as expected the

increases in tLN IL-4gfp+ T cells observed during L. sigmodontis

infection represented an expansion of both IL-4gfp+CXCR52

Th2 cells and IL-4gfphighCXCR5+ Tfh cells (Figure 3D). IL-

4gfphighCXCR5+ Tfh cells from naı̈ve mice constitutively

expressed high levels of PD-1 and there was no change upon

infection (data not shown). In contrast, infection with L. sigmodontis

significantly increased the percentage of IL-4gfp+CXCR52 Th2

cells expressing PD-1 from d 40 onwards (Figure 3E).

To test the hypothesis that blocking PD-1 signalling on the

hypo-responsive Th2 cells in vitro could re-activate their

functional responsiveness, IL-4gfp+ Th2 cells were purified from

the PC 60 d post-L. sigmodontis infection and restimulated with

Figure 1. The proportion and total number of IL-4gfp+ Th2 cells increase as infection progresses. PC, tLN, and splenic CD4+ T cells from
naı̈ve (open symbols) and L. sigmodontis infected (closed symbols) BALB/c IL-4gfp mice were analyzed at d20, d40 and d60 pi for expression of GFP.
(A) Representative flow plots showing expression of CD4 versus GFP by PC CD4+ T cells. (B–G) Percentage of CD4+ T cells expressing GFP (B, D, F) and
total numbers of IL-4gfp+ Th2 cells (C, E, G) within the PC (B & C), tLN (D & E) and spleen (F & G). Symbols represent individual mice and lines represent
means. Panels show pooled data from two independent experiments, with 4–6 mice per group. *** Significant increase over time (p,0.001, ANOVA
using combined data from two experiments), " significant pair-wise comparison (p,0.05, Tukey’s HSD).
doi:10.1371/journal.ppat.1003215.g001

Helminth-Induced Th2 Cell-Intrinsic Dysfunction
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LsAg in the presence of an anti-PD-1 blocking mAb [42] using

irradiated naı̈ve splenocytes as APC. Due to the low number of IL-

4gfp+ T cells present within the PC it was necessary to pool cells

from 10–15 mice to obtain sufficient cell numbers. Significantly

increased LsAg-specific proliferation and elevated IL-5 production

was seen upon addition of the anti-PD-1 mAb (Figure 3F and G),

indicating that PD-1 blockade can restore the function of

committed Th2 cells. Thus, Th2 cell hypo-responsiveness is

associated with increased expression of PD-1 by IL-4gfp+ Th2 cells

in both the PC and tLN, and blocking PD-1 in vitro increases the

antigen-specific capacity of PC IL-4gfp+ Th2 cells to proliferate

and produce IL-5.

Figure 2. CD4+ Th2 cells are conditioned towards a functionally hypo-responsive phenotype during L. sigmodontis infection. PC, tLN,
and splenic CD4+ T cells from naı̈ve (open symbols) and L. sigmodontis infected (closed symbols) BALB/c IL-4gfp mice were analyzed at d20, d40 and
d60 pi for expression of GFP, IL-4, IL-5 and IL-2. (A) Representative flow plots showing expression of IL-4 protein by PC IL-4gfp+CD4+ T cells. (B–J)
Percentage of PC (B–D), tLN (E–G), and splenic (H–J) IL-4gfp+CD4+ Th2 cells producing IL-4 (B, E, H), IL-5 (C, F, I), and IL-2 (D, G, J) protein upon
stimulation with PMA and ionomycin. Symbols represent individual animals and lines represent means. Panels show one representative experiment
of two with 4–6 mice per group. ***p,0.001, ** p,0.05, significant change over time (ANOVA performed using combined data from infected mice
from two experiments), " significant pair-wise comparison (p,0.05, Tukey’s HSD).
doi:10.1371/journal.ppat.1003215.g002

Helminth-Induced Th2 Cell-Intrinsic Dysfunction
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PD-1 blockade during established infection enhances
host resistance to L. sigmodontis

To directly test whether co-inhibition through the PD-1

pathway inhibits protective immunity, L. sigmodontis infection was

allowed to establish within susceptible BALB/c mice and PD-1

activity blocked from d 28–43 pi using a neutralising anti-PD-1

mAb (Figure 4A). PD-1 blockade impaired the ability of L.

sigmodontis to develop a fully patent infection as the incidence and

levels of blood Mf were significantly reduced in anti-PD-1 treated

mice compared to control mice at d 68 pi (Figure 4B and Table 1).

As there was no effect of treatment on the number of adult

parasites recovered at d 60 pi (Figure 4C), we scored the uterine

egg and Mf contents of female parasites to determine whether PD-

1 blockade reduced blood Mf by inhibiting fecundity. Changes in

helminth fecundity are often a sensitive and quantitative measure

of the efficacy of host immunity, even when it is insufficient to kill

adult parasites [43]. There was a significant reduction in the

number of healthy uterine eggs within female parasites from PD-1

treated mice at d 60 pi (Figure 4D). In addition, the number of

female parasites with Mf within their uteri was reduced three-fold

following PD-1 treatment (Table 1), although those with uterine

Mf tended to have similar levels as female parasites from the IgG

controls (Figure S2A). Thus, in vivo PD-1 blockade promotes host

resistance to established L. sigmodontis infection resulting in

impaired fitness and fecundity in a proportion of the female

parasites, and reduced levels and incidence of circulating

transmission stage Mf within the host’s blood.

PD-1 blockade results in the long-term re-activation of
Th2 cells at the infection site

PD-1 blockade could enhance protective immunity to L.

sigmodontis by restoring the functional quality of hypo-responsive

Th2 cells and/or by increasing the overall quantity of Th2 cells.

To address this we treated L. sigmodontis infected BALB/c IL-4gfp

reporter mice with an anti-PD-1 blocking mAb from d 28–43 pi

and quantified the number and antigen-responsiveness of IL-4gfp+

Th2 cells at d 60 pi (Figure 4A). No differences were found in the

proportion or total number of IL-4gfp+ Th2 cells within the PC or

tLN at d 60 pi (Figure 5A–D), indicating that PD-1 blockade does

not result in a long-term elevation in Th2 cell numbers.

To examine if PD-1 blockade increased the antigen-specific

functional quality of the hypo-responsive Th2 cells, IL-4gfp+ Th2

cells were purified from the PC and tLN of control and PD-1

treated mice 60 d pi and equal numbers of Th2 cells were

restimulated in vitro with LsAg using naı̈ve irradiated splenocytes

as APC. Due to the low number of IL-4gfp+ T cells present within

Figure 3. Th2 cell hypo-responsiveness is associated with PD-1. (A–D) PC and tLN CD4+ T cells from naı̈ve (open symbols) and L. sigmodontis
infected (closed symbols) BALB/c IL-4gfp mice were analyzed at d20, d40 and d60 pi for expression of GFP, PD-1, CXCR5, and IL-4. (A–B) Percentage
(A) and fluorescence intensity (B) of PD-1 expression by PC IL-4gfp+CD4+ Th2 cells. (C) Representative plots showing expression of PD-1 versus intra-
cellular IL-4 by PC IL-4gfp+ Th2 cells. (D) Representative staining for GFP and CXCR5 on tLN CD4+ T cells. (E) Percentage of tLN CD4+GFP+CXCR52 Th2
cells expressing PD-1. Symbols represent individual mice, and lines represent means. Panels show one representative experiment out of two. ***
Significant increase over time (p,0.001, ANOVA performed using combined data from two experiments), " significant pair-wise comparison,
(p,0.05, Tukey’s HSD). (F & G) In vitro proliferation minus medium controls (F) and IL-5 production (G) by PC IL-4gfp+ Th2 cells purified from L.
sigmodontis infected mice 60 d pi and restimulated with LsAg in presence of anti-PD-1 mAb or control rat IgG. IL-4gfp+ Th2 cells were pooled from
10–15 mice, and panels show one representative experiment of two. Bars represent means. Due to the necessity for pooling samples, error bars show
SD of triplicate cultures for proliferation (F), and it was not possible to calculate error bars or statistics for IL-5 (G). DDD p,0.025, (ANOVA performed
using combined data from two experiments).
doi:10.1371/journal.ppat.1003215.g003

Helminth-Induced Th2 Cell-Intrinsic Dysfunction
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the PC it was necessary to perform the assays on pooled cells from

6–10 mice. PC IL-4gfp+ Th2 cells purified from anti-PD-1 treated

mice showed significantly increased antigen-specific proliferation

and elevated IL-5 production compared to IL-4gfp+ Th2 cells

from control mice (Figure 5E and F). PD-1 blockade also increased

the capacity of purified tLN IL-4gfp+ Th2 cells to secrete IL-5 in

response to LsAg at d 60 (Figure 5G). LsAg-specific production of

IL-4, IL-10 and IFN-c by tLN and PC IL-4gfp+ Th2 cells was not

consistently detectable (data not shown). Thus, PD-1 blockade

results in a long-term enhancement of Th2 immunity by

augmenting the functional quality of parasite-specific Th2 cells,

rather than increasing the overall number of Th2 cells.

Reprogramming of Th2 cell hypo-responsiveness is
preceded by a temporary expansion of IL-4gfp+ Th2 cells
within the draining LN

During chronic viral infections PD-1 blockade acts directly on

exhausted CD8+ T cells to restore their function [28]. Similarly,

our data showed that in vitro PD-1 blockade directly enhanced the

functional quality of L. sigmodontis-specific hypo-responsive IL-

4gfp+ Th2 cells (Figure 3F and G), and in vivo blockade led to

increased antigen-specific responsiveness of IL-4gfp+ Th2 cells

20 d after treatment had finished. This predicts that in vivo PD-1

blockade during L. sigmodontis infection would initially enhance the

functional quality of existing IL-4gfp+ Th2 effector cells within the

PC. However, when PC Th2 cell responses were assayed

immediately following treatment (d 40 pi, Figure 4A) there were

no increases in the proportion or total numbers of IL-4gfp+ Th2

cells within the PC (Figure 6A and B). There was also no increase

in the proportion of IL-4gfp+ Th2 cells capable of producing IL-4

or IL-5 protein following stimulation with PMA and ionomycin

(Figure 6C and D).

In contrast, PD-1 blockade caused a 2-fold increase in the

proportion and total numbers of IL-4gfp+ T cells within the tLN

(Figure 6E and F), although again had no impact on the

proportion of IL-4gfp+ Th2 cells producing IL-4 or IL-5 protein

(Figure 6G and H). Consistent with the expression pattern of PD-

1, the increase in tLN IL-4gfp+ T cells was caused by an expansion

of both IL-4gfp+CXCR52 Th2 cells and IL-4gfphighCXCR5+ Tfh

cells, with IL-4gfp+CXCR52 Th2 cells accounting for 44% of the

expansion (data not shown). These data suggest that, although in

Figure 4. In vivo PD-1 blockade increases resistance to L. sigmodontis. (A) Timeline of L. sigmodontis infection showing approximate timings
of the molts from larval (L3/L4) to adult stages and the development of patency in relation to in vivo antibody treatments and autopsies. (B–D) L.
sigmodontis-infected BALB/c IL-4gfp reporter mice were treated with a blocking anti-PD-1 mAb (triangles) or rat IgG (squares) from d28–d43 and their
adult parasite burdens assessed at d 60 pi, and their blood Mf levels at d 68 pi. (B) Mf counts per ml of peripheral blood. (C) Number of adult parasites
within the PC. (D) Number of live eggs within the uteri of individual female parasites recovered from IgG and anti-PD-1 treated hosts. Panels show
one representative experiment of two (B) or pooled data from four independent experiments (C & D). Symbols represent individual mice (B & C) or
female parasites (D), and lines represent means (B & C) or medians (D). *** p,0.001 (ANOVA performed on combined data from two (B) or four (C &
D) independent experiments).
doi:10.1371/journal.ppat.1003215.g004

Table 1. In vivo PD-1 blockade results in a reduced incidence
of hosts with blood MF and of parasites with uterine Mf.

Incidence of blood Mf 68 d
pi Incidence of uterine Mf 60 d pi

IgG Anti-PD-1 IgG Anti-PD-1

Exp 1 4/6 0/6 10/46 3/35

Exp 2 6/6 2/5 7/12 0/18

Exp 3 13/32 5/28

Total 10/12 (83%) 2/11 (18%) * 30/90 (33%) 8/82 (10%)*

*Significant difference in incidence compared to IgG controls, p,0.001 (GLM
using combined data from two or three experiments).
doi:10.1371/journal.ppat.1003215.t001

Helminth-Induced Th2 Cell-Intrinsic Dysfunction
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the long-term PD-1 blockade increased the antigen-specific

functional quality of IL-4gfp+ Th2 cells at the infection site, anti-

PD-1 treatment did not recover the responsiveness of IL-4gfp+

Th2 cells to PMA and ionomycin. Instead it initially enhanced

Type 2 responses within the tLN resulting in a temporary increase

in the number of IL-4gfp+ Th2 and Tfh cells.

Figure 5. In vivo PD-1 blockade results in a long-term restoration of Th2 cell functional quality. L. sigmodontis-infected IL-4gfp reporter
mice were treated with a blocking anti-PD-1 mAb (closed triangles) or rat IgG (closed squares) from d 28–d43 and Th2 cell quantity and functional
quality assessed at d 60. Open symbols represent naı̈ve untreated controls. (A–D) The proportion (A & C) and total number of IL-4gfp+ Th2 cells (B &
D) in the PC (A & B) and tLN (C & D). Panels show one out of two representative experiments with 4–6 mice per group. Symbols denote individual
mice and lines represent means. *** Significant effect of infection independent of treatment (p,0.001, ANOVA performed on combined data from
two independent experiments). (E–G) IL-4gfp+ Th2 cells were purified from the PC (E & F) and tLN (G) and their ability to proliferate (E) and produce IL-
5 (F & G) following in vitro restimulation with LsAg was assessed. Panels show one representative experiment of two. Within each experiment IL-4gfp+

Th2 cells were pooled from 6–10 mice per group. Bars show means (E–G). Due to the pooled samples error bars show SD of triplicate cultures for
proliferation (E), and there are no error bars or statistics for IL-5 (F & G). ** Significant effect of treatment upon restimulation with LsAg (p,0.01,
ANOVA performed using combined data from two independent experiments).
doi:10.1371/journal.ppat.1003215.g005

Figure 6. In vivo PD-1 blockade increases the expansion of IL-4gfp+ T cells within the tLN immediately post-treatment. L. sigmodontis-
infected BALB/c IL-4gfp reporter mice were treated with a blocking anti-PD-1 mAb (closed triangles) or rat IgG (closed squares) from d 28–37 and IL-
4gfp+ T cells from the PC (A–D) and tLN (E–H) analysed at d 40. The proportion (A & E) and total number (B & F) of CD4+ T cells expressing GFP,
as well as the percentage of IL-4gfp+ Th2 cells producing IL-4 (C & G) and IL-5 (D & H) protein following simulation with PMA and ionomycin was
assessed. Panels show one representative experiment of three with 4–6 mice per group. Symbols denote individual mice and lines represent means.
*** Significant effect of infection independent of treatment (p,0.001, ANOVA performed on combined data from three independent experiments).
" Significant pair-wise comparison (p,0.05, Tukey’s HSD).
doi:10.1371/journal.ppat.1003215.g006
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PD-L2, but not PD-L1, inhibits protective immunity to L.
sigmodontis

PD-1 interacts with two ligands, PD-L1 and PD-L2 [44], and to

identify through which ligand PD-1 was acting L. sigmodontis infected

BALB/c mice were treated with blocking anti-PD-L1 and/or anti-

PD-L2 mAbs [45] from d 28–43 pi (Figure 4A). At d 40 pi, when PD-

1 blockade results in an expansion of IL-4gfp+ Th2 cells within the

tLN (Figure 6E and F), significantly increased numbers of IL-4 and IL-

5 producing CD4+ T cells were found following combined blockade of

PD-L1 and PD-L2 (Figure 7A and B). Blockade of PD-L1 or PD-L2

alone had no effect on the numbers of IL-4 and IL-5 producing CD4+

T cells, indicating that PD-L1 and PD-L2 synergise to regulate the

expansion of IL-4 and IL-5 secreting T cells within the tLN.

In contrast, blockade of PD-L2 alone was sufficient to enhance

resistance and impair the development of patent infections,

demonstrated by a significant two-fold reduction in the incidence

of mice with Mf within their blood at d 68 pi compared to IgG

controls (Table 2). This was associated with a significantly reduced

incidence of Mf in the pleural cavity, suggesting a lower release of

Mf by female parasites. Interestingly, although mice treated with

both anti-PD-L1 and anti-PD-L2 had a lower incidence of blood

Mf, PD-L1 neutralisation alone resulted in a trend towards an

increased number of mice harbouring blood Mf. This suggests that

PD-L1 may promote rather than inhibit protective immunity to L.

sigmodontis, but that the inhibitory role of PD-L2 is dominant. Whilst

anti-PD-L2 treatment significantly reduced the number of mice

developing patent infections, those that presented with circulating

Mf had similar levels within the blood and pleural cavity to the IgG

control group (Figure S2B and C). The increased resistance

resulting from blockade of PD-L2 was associated with significantly

elevated production of IL-5 protein (Figure 7C), as well as IL-4

(Figure 7D), by tLN cells restimulated in vitro with LsAg. Thus,

while PD-L1 and PD-L2 act synergistically to control Th2 cell

expansion in the tLN, PD-L2 plays the dominant role in dampening

IL-4 and IL-5 production and resistance towards L. sigmodontis.

L. sigmodontis-elicited alternatively activated
macrophages do not inhibit Th2 cells via the PD-1
pathway

Alternatively activated macrophages can inhibit Th2 responses

to helminths through PD-L1 and PD-L2 [37] or PD-L2 alone

[35]. Expression of PD-L1 on macrophages, independent of

alternate activation, also inhibits T cell responses to S. mansoni [36].

AAM are elicited during L. sigmodontis infection resulting in T cell

Figure 7. PD-L1 and PD-L2 synergise to regulate Th2 cell immunity during L. sigmodontis infection. L. sigmodontis-infected BALB/c mice
were treated with blocking anti-PD-L1 and anti-PD-L2 mAb alone (up-facing and down-facing triangles respectively) or in combination (diamonds), or
with rat IgG (squares) from d 28–37/43 and Th2 responses assessed at d 40 (A & B) and d 68 (C & D). Open symbols represent naı̈ve untreated
controls. Symbols denote individual mice and lines represent means. (A & B) Total number of tLN CD4+ T cells expressing IL-4 (A) and IL-5 (B) protein
at d 40 pi following ex vivo stimulation with PMA and ionomycin. Panels show pooled data from three independent experiments. *** Significant
effect of infection and treatment (p,0.001, ANOVA performed on combined data from three independent experiments). " Significant pair-wise
comparison (p,0.05, Tukey’s HSD). (C & D) Production of IL-5 (C) and IL-4 (D) by tLN cells following in vitro stimulation with LsAg. Panels show pooled
data from three independent experiments. 111 Significant treatment effect in the presence of anti-PD-L2 Ab (p,0.001, ANOVA performed on
combined data from three independent experiments).
doi:10.1371/journal.ppat.1003215.g007
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suppression [16], suggesting that they could drive the hypo-

responsive Th2 cell phenotype via PD-L1 or PD-L2. To test this,

the expression of PD-L1 and PD-L2 on F4/80high pleural cavity

AAM was assessed during L. sigmodontis infection. Analysis was

performed at d 60 pi when PC derived F4/80high macrophages are

known to be alternatively activated [16]. Although F4/80high

macrophages from naı̈ve mice did not express PD-L1 or PD-L2

constitutively, levels of both were up-regulated 11-fold following

infection (Figure 8A and B). To determine whether AAM inhibit

Th2 cells via PD-L1 and/or PD-L2, we purified and restimulated

d 60 PC IL-4gfp+CD4+ Th2 cells with LsAg in the presence of d

60 PC AAM or naı̈ve control macrophages. Irradiated naı̈ve

splenocytes were used as APC. The ability of the hypo-responsive

IL-4gfp+ Th2 cells to proliferate in response to LsAg was then

assessed following the addition of neutralising antibodies to PD-1,

PD-L1 and PD-L2. In the presence of AAM, the LsAg-specific

proliferation of IL-4gfp+CD4+ Th2 cells was significantly reduced

compared to culture with naı̈ve control macrophages confirming

that the AAM were suppressive (Figure 8C). However, blocking

PD-1, PD-L1, PD-L2, or a combination of PD-L1 and PD-L2,

failed to restore LsAg-specific proliferation (Fig. 8C), indicating

that AAM-mediated suppression of proliferation was not via the

PD-1 pathway. Similarly, L. sigmodontis-elicited AAM inhibited the

OVA-specific proliferation of naı̈ve DO11.10 T cells indepen-

dently of PD-1, PD-L1 and PD-L2 (Figure 8D). Consistent with

our previous work showing that AAM only inhibit T cell

proliferation and not cytokine production [16], the addition of

AAM did not reduce Th2 cell production of IL-5 or IL-4 (data not

shown). Thus, L. sigmodontis-elicited AAM do not suppress the

antigen-specific proliferation of committed Th2 cells or naı̈ve T

cells via the PD-1 pathway.

Discussion

Suppression of protective immunity during helminth infections

is known to involve a wide range of Th2 cell extrinsic immune

regulators [2,12]. However, the intrinsic fate of parasite-specific

Th2 cells within a chronic immune down-regulatory environment,

and the resultant impact such fate changes may have on host

resistance is unknown. In this study we used IL-4gfp reporter mice

to demonstrate that during chronic filarial nematode infection

CD4+ Th2 cells are conditioned towards an intrinsically hypo-

responsive phenotype, characterised by a loss of functional ability

to proliferate and produce IL-4, IL-5 and IL-2 cytokines. The

development of Th2 cell hypo-responsiveness was a key element in

determining susceptibility to L. sigmodontis infection, and could be

reversed in vivo by blockade of the PD-1/PD-L2 pathway

resulting in the long-term recovery of Th2 cell functional quality

and enhanced resistance.

The hypo-responsive Th2 cell phenotype during L. sigmodontis

infection had some parallels with T cell exhaustion, which leads to

impaired Th1 immunity towards viruses [28] and protozoan

parasites [29,30]. Similar to exhaustion, Th2 cell hypo-respon-

siveness was mediated through PD-1 co-inhibition, and was

characterised by a sequential loss of cytokine production with IL-4

being lost prior to IL-5. In the future it will be important to

confirm whether Th2 cell hypo-responsiveness also extends to

other Th2 cytokines, such as IL-13, as limited cell numbers

restricted the cytokines we could measure in this study. Alongside

the similarities to exhaustion there were also notable differences.

PD-1 predominantly mediates CD8+ T cell exhaustion via

interactions with PD-L1 [28,30], whereas Th2 hypo-responsive-

ness was driven through interactions with PD-L2. This preferential

regulation of Type 2 immunity by PD-L2 is consistent with its

expression being specifically induced by IL-4 and STAT-6

signalling, contrasting with PD-L1, which is preferentially

regulated by Type 1 stimuli [46,47]. Also, PD-1 interactions with

PD-L1 are actively required for maintaining exhaustion, with PD-

L1 blockade immediately boosting the functional quality of

exhausted CD8+ T cells [28]. Although in vitro PD-1 blockade

enhanced the antigen-specific ability of hypo-responsive Th2 cells

to produce Th2 cytokines, stimulating them with PMA and

ionomycin, which bypasses the PD-1 pathway, failed to recover

their function. Similarly, the Th2 cells remained hypo-responsive

to PMA and ionomycin stimulation immediately following in vivo

PD-1 blockade, although it led to a recovery in their functional

ability to respond to parasite antigens later in infection. Thus, the

hypo-responsive Th2 cell phenotype is likely distinct from

exhaustion, and appears to be more deep-seated, involving more

mechanisms, than PD-1 co-inhibition alone.

The disparity between GFP expression, which marks IL-4

mRNA, and IL-4 protein suggests that the loss of cytokine

production by hypo-responsive Th2 cells is due to post-transcrip-

tional regulation, which is an essential step in the production of

Th2 cytokines [32]. This has parallels with anergic self-reactive T

cells that express mRNA for effector cytokines such as IFN-c, IL-4,

and IL-13, but are unable to produce protein because translation

is blocked by AU-rich elements within the cytokine 39UTRs [48].

The description of an anergic molecular signature within the

PBMC of filariasis patients and the findings that addition of IL-2

can restore the in vitro immune responsiveness of human PBMC

[3,49], reinforce the idea that Th2 hypo-responsiveness is a form

of anergy. If so, it is more likely to represent a form of adaptive

tolerance than classical clonal anergy as it is not rescued by

stimulation with PMA and ionomycin, and results in the shutdown

of multiple cytokines, not just IL-2 [50]. Similarly, during S.

mansoni infection the anergy factor GRAIL is responsible for

Table 2. In vivo blockade of PD-L2, but not PD-L1, results in a reduced incidence of Mf within the blood and pleural cavity.

Incidence of blood Mf Incidence of PC Mf

IgG aPD-L1 aPD-L2 aPD-L1 + aPD-L2 IgG aPD-L1 aPD-L2 aPD-L1 + aPD-L2

Exp 1 3/6 3/3 1/6 2/5 4/6 3/3 1/6 1/5

Exp 2 3/6 5/6 1/6 2/5 3/6 4/5 4/6 3/5

Exp 3 5/8 5/7 4/7 3/7 7/8 7/7 4/7 3/7

Total 11/20 13/16 6/19* 7/17* 14/20 14/15 9/19* 7/17*

(55%) (81%) (32%) (41%) (70%) (93%) (47%) (41%)

*Significant difference in Mf incidence driven by aPD-L2 treatment, p,0.001 (GLM using combined data from three experiments).
doi:10.1371/journal.ppat.1003215.t002

Helminth-Induced Th2 Cell-Intrinsic Dysfunction

PLOS Pathogens | www.plospathogens.org 9 March 2013 | Volume 9 | Issue 3 | e1003215



driving Th2 cells towards an intrinsically hypo-responsive state

with characteristics of adaptive tolerance [24]. Interestingly, there

are differences in Th2 cell hypo-responsiveness during filariasis

and schistomiasis. Firstly, GRAIL is not part of the anergic

signature of PBMC from filariasis patients [3]. Secondly, S. mansoni

induced Th2 cell hypo-responsiveness does not relate to PD-1

Figure 8. L. sigmodontis-elicited alternatively activated macrophages do not suppress T cells via the PD-1 pathway. PC macrophages
from L. sigmodontis infected or naı̈ve BALB/c mice were assessed for expression of PD-L1 and PD-L2 and suppressive function at d 60 pi. (A)
Representative histograms showing expression of PD-L1 and PD-L2 on PC F4/80high macrophages. Grey shaded histograms represent isotype
controls, dotted lines show naı̈ve macrophages and solid lines show infected macrophages. (B) Geometric mean fluorescent intensity minus isotype
controls of PD-L1 and PD-L2 on F4/80high macrophages from naı̈ve (open circles) and infected (closed squares) mice. Symbols represent individual
animals and lines show mean. Panels show one representative experiment of two with at least 5 mice per group. *** Significant effect of infection,
(p,0.001, ANOVA based on combined data from two independent experiments). (C & D) Adherent PC macrophages were purified from individual
naı̈ve and L. sigmodontis infected mice and tested in vitro for their ability to inhibit the Ag-specific proliferation of pooled PC IL-4gfp+ Th2 cells
purified 60 d pi (C) or naı̈ve DO11.10 T cells (D) in the presence of control IgG or blocking antibodies against PD-1, PD-L2, and PD-L2. Panels show
mean and SD with 6 mice per group. Open bars show medium control and closed bars represent the presence of LsAg (C) or OVA (D). ** p,0.001
(ANOVA using combined data from two independent experiments).
doi:10.1371/journal.ppat.1003215.g008
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[24]. Thus, while an intrinsic functional shut-down of Th2 cells

appears common to different chronic helminth infections, it may

involve distinct mechanisms.

Consistent with the hypothesis that multiple factors maintain

Th2 cell hypo-responsiveness, in vivo PD-1 blockade failed to

initially expand or recover the function of the hypo-responsive

Th2 cells at the infection site. Instead it first caused a temporary

expansion of CXCR52IL-4gfp+ Th2 cells and CXCR5+ IL-4gfp+

Tfh cells within the draining LN, followed by the appearance of

functionally superior IL-4gfp+ Th2 cells at the infection site 20

days later. In contrast to the PC, CD4+ T cells in the LN did not

lose the ability to produce IL-4 protein during L. sigmodontis

infection. Tfh cells are the predominant source of IL-4 in the LN

and demonstrate distinct control of IL-4 gene expression

compared to Th2 cells [39,40,41,51]. Thus, similar to viral

infections where Tfh cells do not become exhausted [52], Tfh cells

may remain functionally responsive during chronic helminth

infection and maintain a source of IL-4. It is interesting to

speculate that, rather than directly rescuing the hypo-responsive

Th2 cells, PD-1 blockade acted by expanding a reservoir of still

responsive IL-4gfp+ T cells within the LN, either Tfh or Th2 cells,

that over time replaced the unresponsive Th2 cells at the infection

site. Alternatively, PD-1 can inhibit T cell priming [53] and so its

blockade may have favoured the generation of new responsive

Th2 cells.

The involvement of PD-L2, rather than PD-L1, indicates that

professional immune cells regulate CD4+ Th2 cell hypo-respon-

siveness. Suppression of T cell responses by PD-1 during helminth

infections has mainly been attributed to macrophages expressing

PD-L1 and/or PD-L2, and the PD-1 pathway has been shown to

be an important mechanism of suppression by AAM [35,36].

Although L. sigmodontis infection induces suppressive AAM [16],

the proliferative suppression of Th2 cells and naı̈ve T cells by L.

sigmodontis-elicited AAM was independent of PD-1, PD-L1 and

PD-L2. Thus, whilst AAM are clearly able to suppress T cells via

the PD-1 pathway they do not do so in all Th2 contexts, and it is

not their dominant mechanism of suppression during L. sigmodontis

infection. Furthermore, as we have previously shown [16],

suppression by L. sigmodontis-elicited AAM was restricted to T cell

proliferation and did not inhibit the production of Th2 cell

cytokines. As reduced Th2 cytokines were a defining characteristic

of hypo-responsive Th2 cells it indicates that AAM are not driving

hypo-responsiveness, although in vivo AAM studies are required

to confirm our in vitro findings. Interestingly, B cell deficient mice

are more resistant to primary L. sigmodontis infection indicating a

regulatory role for B cells [54]. B cells can express PD-L2 [44] and

up-regulate it during L. sigmodontis infection (van der Werf, Taylor,

unpublished data) raising the possibility that B cells are involved in

conditioning Th2 cells towards hypo-responsiveness. Alternate

candidates that may influence the intrinsic functional quality of

Th2 cells include DC and Foxp3+ Tregs.

The development of functionally impaired CD4+ Th2 cells

provides a potential explanation for why protective memory to

helminths takes decades to develop in humans [14]. Hypo-

responsive Th2 cells may fail to develop into memory cells as seen

with exhausted CD8+ T cells [22], and consistent with this filariasis

patients show contractions in their central memory CD4+ T cell

pool [55]. Alternatively, a tolerised memory response may develop

as anergic T cells can show long-term survival and maintain their

unresponsive phenotype even in the absence of antigen [56]. A

failed or tolerised memory response may also explain why

helminth-infected individuals become rapidly re-infected following

drug clearance, even though some aspects of immune suppression

are lifted. PD-1 blockade in combination with drug treatments

may thus represent a new strategy for restoring protective Th2

memory, particularly as we find PD-1 blockade has a long-term

effect on Th2 cell quality and it has been successfully used in

clinical trials to treat cancer [57,58]. Alternate targets include

GITR, as providing co-stimulation through GITR increases the

functional quality of L. sigmodontis specific Th2 cells [59], and

CTLA-4, which promotes the expression of T cell anergy factors

and inhibits protective Th2 immunity during filarial infections

[3,26]. The development of Th2 hypo-responsiveness also has

implications for vaccine development. Even the best live-attenu-

ated filarial vaccines are only 70% effective [60], meaning that

residual infections could condition vaccine-elicited Th2 cells

towards hypo-responsiveness resulting in vaccine failure.

Altogether, our data demonstrates that intrinsic changes in Th2

cell quality lead to the development of a functionally hypo-

responsive phenotype that plays a key role in determining

susceptibility to filarial nematode infection, and that can be

therapeutically manipulated to promote resistance. Alongside its

relevance to the treatment of helminth infections, a deeper

understanding of how Th2 cells are conditioned towards hypo-

responsiveness will help define the checkpoints that determine

whether a T cell remains inflammatory or becomes tolerised during

chronic immune challenge. This may help determine why Th2 cells

fail to shutdown naturally in settings of chronic pathology, such as in

allergic inflammation or fibrosis, and potentially lead to novel

approaches for tolerising pathogenic Th2 cells.

Materials and Methods

Ethics statement
All animal work was approved by the University of Edinburgh

Ethics Committee (PL02-10) and by the UK Home Office

(PPL60/4104), and conducted in accordance with the Animals

(Scientific Procedures) Act 1986.

Animals and parasites
Female BALB/c and IL-4gfp 4get reporter mice on the BALB/

c background (courtesy of Markus Mohrs, The Trudeau Institute)

[27] were bred in-house and maintained under specific pathogen-

free conditions at the University of Edinburgh. Mice were used at

6–12 weeks of age. The L. sigmodontis life cycle was maintained in

gerbils using the mite vector Ornithonyssus bacoti [61]. Mice were

infected s.c. on the upper back with 30 L. sigmodontis L3 larvae.

Adult parasites were recovered by lavage and fixed in 70% ethanol

for morphological analysis. The analysis of fecundity of female L.

sigmodontis parasites was performed as previously [43]. The

numbers of healthy eggs and Mf within the anterior, median

and posterior of the uterus were semi-quantitatively scored on

scales of 0–5. Each region’s scores were summed giving a total

possible score of 15. To quantify blood Mf, 30 mL of tail blood was

collected in FACS lysing solution (Becton-Dickinson). L. sigmodontis

antigen (LsAg) was prepared by collecting the PBS-soluble fraction

of homogenized adult male and female worms.

In vivo antibody treatments
Mice received i.p. injections of 250 mg of blocking anti-PD-1

mAb (RMP1-14, Bioxcell), 250 mg of blocking anti-PD-L2 mAb

(Ty25, Bioxcell) or 200 mg of blocking anti-PD-L1 mAb (MIH5, in

house) every three days from d28–43 pi An equivalent dose of rat

IgG (Sigma-Aldrich) was used as control.

Cell purifications and in vitro restimulations
The parathymic, posterior, mediastinal and paravertebral LN,

were taken as a source of tLN draining the PC. PC cells were
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recovered by lavage. TLN and spleen cells were dissociated and

washed in RPMI-1640 (invitrogen) supplemented with 0.5%

mouse sera (Caltag-Medsystems), 100 U/ml penicillin, 100 mg/

ml streptomycin and 2 mM L-glutamine. To purify GFP+CD4+ T

cells from IL-4gfp mice PC or tLN cells were enriched for CD4+ T

cells by magnetic negative selection (DynaMag, Dynal) using anti-

CD8 (53–6.72), anti-B220 (RAB632), anti-MHC class II (M5/

114.15.2), anti-Gr1 (RB6-8C5) and anti-F4/80 (A3-1), followed by

sheep anti-rat IgG Dynal Beads (Invitrogen). Cells were stained

with allophycocyanine-conjugated anti-CD4 (RM4-5). To purify

GFP+CD4+ T cells from anti-PD-1 treated mice cells were stained

with phycoerythrin-conjugated anti-CD4 followed by positive

magnetic section with anti-phycoerythrin MicroBeads (Milenyi

Biotec). GFP+CD4+ T cells were then purified using a FACSAria

flow sorter (Becton-Dickinson). On average, sorted cells were

98.3% positive for CD4, of which 97.6% were GFP+. Due to

limited cell numbers it was necessary to pool CD4+GFP+ T cells

from 10–15 mice to obtain sufficient numbers. Whole tLN cells

were cultured at 56105 cells/well and spleen cells at 16106 cells/

well in 96 well plates (Nunc). Purified GFP+CD4+ T cells were

cultured at 5–106104 cells/well with 16106 irradiated (30 Gy)

naı̈ve splenocytes. For in vitro restimulations, cells were cultured in

medium alone or with 10 mg/ml LsAg for 72 hours followed by

addition of 1 mCi/well [Methyl-3H]-Thymidine (PerkinElmer) for

16 h to measure proliferation. Blocking antibodies against PD-1,

PD-L1 and PD-L2 were used at 20 mg/ml as detailed in the

results. For macrophage suppression assays, PC cells were adhered

to 96-well flat-bottom plates at 16105 cells/well for 2 h at 37uC
and the non-adherent fraction rinsed off. GFP+CD4+ T cells or

DO11.10 CD4+ T cells were added at 56104 cells/well and after

72 h the cultures were pulsed with thymidine as described.

DO11.10 cells were restimulated with 0.5 mg/ml OVA peptide

(ISQAVHAAHAEINEAGR) from Advanced Biotechnology Cen-

tre (Imperial School of Medicine, London, U.K.). For measure-

ment of intra-cellular cytokines cells were stimulated for 4 hours

with 0.5 mg/ml PMA (Sigma-Aldrich) and 1 mg/ml Ionomycin,

with 10 mg/ml Brefeldin A added for the final 2 hours (all from

Sigma-Aldrich).

Flow cytometry and ELISA
The following antibodies were used: Alexafluor700-conjugated

anti-CD4 (RM4-5), polyclonal anti-GFP (Ebioscience), Alexa-

fluor488-conjugated goat anti-rabbit IgG (Invitrogen), eFluor450-

conjugated anti-IL-2 (JES6-5H4, Ebioscience), phycoerythrin-

conjugated anti-IL-4 (11B11, Biolegend), allophycocyanine-conju-

gated anti-IL-5 (TRFK5, Biolegend), phycoerythrin-conjugated or

biotinylated anti-PD-1 (J43, Ebioscience), biotinylated anti-PD-L1

(MIH5, Ebioscience), phycoerythrin-conjugated anti-PD-L2

(Ty25, Ebioscience), biotinylated anti-CXCR5 (RF8B2, BD

Biosciences) and allophycocyanine-conjugated streptavidin (Biole-

gend). Non-specific binding was blocked with 4 mg of rat IgG/

16106 cells. For intracellular cytokine staining dead cells were

excluded using Aqua Dead Cell Stainkit (Molecular Probes), and

the cells fixed and permeabilized using the BD Cytofix/Cytoperm

kit. Staining was compared with the relevant isotype controls to

verify specificity. Flowcytometric acquisition was performed on a

FACSCANTO II or LSR II (BD Biosciences) and data were

analyzed using Flowjo Software (Tree Star). Antibody pairs used

for cytokine ELISA were as follow: IL-4 (11B11/BVD6-24G2) and

IL-5 (TRFK5/TRFK4). Recombinant murine IL-4 and IL-5

(Sigma-Aldrich) were used as standards. Biotin detection antibod-

ies were used with ExtrAvidin-alkaline phosphatase conjugate

(Sigma-Aldrich) and Sigma Fast p-nitrophenyl phosphate substrate

(Sigma-Aldrich).

Statistics
Statistical analysis was performed using JMP version 8 (SAS).

Parametric analysis of combined data from multiple repeat

experiments, or of experiments containing more than two groups,

was performed using ANOVA followed by Tukey’s post-hoc tests

when required. When using two-way ANOVA to combine data

from multiple experiments, experimental effects were controlled

for in the analysis and it was verified that there were no significant

qualitative interactions between experimental and treatment

effects. Mf incidence was analysed using a GLM with a binomial

distribution.

Supporting Information

Figure S1 CD4+ Th2 cells lose their functional ability to
produce IL-5 and IL-2 during L. sigmodontis infection.
PC CD4+ T cells from naive and L. sigmodontis infected BALB/c

IL-4gfp mice were analysed at d20, d40, and d60 pi for expression

of GFP, IL-5 and IL-2. Representative flow plots showing

expression of IL-5 (A) and IL-2 (B) by PC IL-4gfp+ Th2 cells.

(PDF)

Figure S2 L. sigmodontis infected BALB/c IL-4gfp
reporter mice were treated with blocking anti-PD-1,
anti-PD-L1, anti-PD-L2, or rat IgG from d28 to d43 pi.
(A) Number of Mf within the uteri of individual female parasites

recovered from anti-PD-1 (down triangles) and IgG (squares)

treated hosts 60 d pi. (B–C) Mf counts per ml of blood (B) and total

number of MF within the PC (C) 68 d post-L. sigmodontis infection

following treatment with IgG (squares), anti-PD-L1 (up triangles),

anti-PD-L2 (down triangles) or anti-PD-L1 and anti-PD-L2 in

combination (diamonds).

(PDF)
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