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Predicting gene regulatory networks from cell atlases
Andreas Fønss Møller1 , Kedar Nath Natarajan1,2

Recent single-cell RNA-sequencing atlases have surveyed and
identified major cell types across different mouse tissues. Here,
we computationally reconstruct gene regulatory networks from
three major mouse cell atlases to capture functional regulators
critical for cell identity, while accounting for a variety of technical
differences, including sampled tissues, sequencing depth, and
author assigned cell type labels. Extracting the regulatory crosstalk
from mouse atlases, we identify and distinguish global regulons
active in multiple cell types from specialised cell type–specific
regulons. We demonstrate that regulon activities accurately dis-
tinguish individual cell types, despite differences between indi-
vidual atlases. We generate an integrated network that further
uncovers regulon modules with coordinated activities critical for
cell types, and validate modules using available experimental
data. Inferring regulatory networks during myeloid differentia-
tion from wild-type and Irf8 KO cells, we uncover functional
contribution of Irf8 regulon activity and composition towards
monocyte lineage. Our analysis provides an avenue to further
extract and integrate the regulatory crosstalk from single-cell
expression data.
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Introduction

Multicellular organisms are composed of different tissues con-
sisting of varied cell types that are regulated at the single-cell level.
Single-cell RNA sequencing (scRNA-seq) enables high-throughput
gene expression measurements for unbiased and comprehensive
classification of cell types and factors that contribute to individual
cell states (1, 2). The underlying expression heterogeneity between
single cells can be attributed to finer grouping of cell types, in-
herent stochasticity and variations in underlying functional and
regulatory crosstalk (3, 4, 5, 6). Single cells maintain their cell state
and also respond to a variety of external cues by modulating
transcriptional changes, which are governed by complex gene-
regulatory networks (GRNs) (7, 8). A GRN is a specific combi-
nation of transcription factors (TFs) and co-factors that interact
with cis-regulatory genomic regions to mediate a specialised
transcriptional programme within individual cells (9, 10). Briefly, a

regulon is a collection of a TF and all its transcriptional target genes.
The GRNs define and govern individual cell type definition, tran-
scriptional states, spatial patterning and responses to signalling,
and cell fate cues (11). Recent computational approaches have
enabled inference of the gene regulatory circuitry from scRNA-seq
datasets (9, 12, 13, 14, 15, 16).

Recently two major single-cell mouse atlases studies were
published (17, 18). The Tabula Muris (TM) andMouse Cell Atlas (MCA),
profiled >500,000 individual single cells using three different
scRNA-seq platforms, across multiple murine tissues to provide a
broad survey of constituent cell types and gene expression patterns
and thereby demarcating shared and unique signatures across
single cells. The three cell atlases use different scRNA-seq plat-
forms and technologies including Smart-seq2 (TM-SS2: (19)), 10×
Chromium (TM-10×: (20)), and Microwell-seq (18).

For regulatory and mechanistic insights beyond cell type survey
across the three atlases, we have to extend analysis beyond
comparison of gene expression patterns. The computational in-
ference of TFs and their regulated gene sets (regulons) provides an
avenue to extract the regulatory crosstalk from single-cell ex-
pression data (9, 10, 21, 22). Here, we set out to comprehensively
reconstruct GRNs from single-cell atlases and address the fol-
lowing questions: (i) Which TFs, master regulators, and co-factors (i.e.,
regulons) govern tissue and cell types? (ii) Do inferred regulons
regulate “specific” or multiple cell types? (iii) Which regulons and
regulated gene sets are critical for individual cell identity?

In our integrative analysis, we identify regulon modules that
globally regulate multiple cell groups and tissues across cell
atlases. The cell type–specific regulons are characterised by
distinct composition and activity, critical for their definition. We
find that regulons and their activity scores are robust indicators
of cell type identity across cell atlases, irrespective of compo-
sition differences. We uncover modules of regulons and recon-
struct an integrated atlas-scale regulatory network, and also
validate network interactions using available experimental
datasets. Importantly, we uncover the functional consequence of
Irf8 regulon perturbation at the single-cell level during myeloid
lineage decisions from wild-type and Irf8 knockout cells. We
uncover a distinctly depleted Irf8 regulon composition and ac-
tivity of Irf8 knockouts, validating the specification bias from
monocytes to granulocytes. This work provides a consensus view
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of key regulators functioning in different cell types that define
cellular programs at the single-cell level.

Results

To identify regulatory networks across the different mouse cell
types and tissues, we analysed both “TM” and “MCA” scRNA-seq
studies (17, 18). The TM contains >130,000 annotated single cells
profiled using two scRNA-seq methods (referred as atlases), full-
length Smart-seq2 (~54k single cells, 18 tissues, and 81 cell types),
and 39-end droplet based 10× Chromium (70,000 single cells, 12
tissues, and 55 cell types). The MCA contains >230,000 annotated
single cells profiled using the author’s 39-end microwell-seq
platform (38 tissues, 760 cell types Supplemental Data 1).

We aimed to integrate the atlases to identify cell type–specific
regulons and build a consensus regulon atlas (Fig 1A; detailed
workflow in Fig S1). As each atlas samples different mouse tissues
and scRNA-seq technologies (full length versus 39 end) to identify
hundreds of varied cell types across cellular resolutions (discussed
below), a fundamental challenge is to effectively link the original
author’s cell type annotation across cell atlases. We address the
challenge of integrating cell type classification by combining two
complementary approaches. First, we manually devised a gener-
alised vocabulary consisting of broadly defined “7 cell groups” for
and standardise annotation between cell atlases (three datasets).
Second, we utilize scMAP, an unsupervised scRNA-seq cell pro-
jection method (23), to link the original author’s cell type anno-
tation across cell atlases Supplemental Data 1. By using TM-10×
Chromium annotations as a reference and by combining both
approaches, our generalised vocabulary contains “7 cell groups”
consisting of “55 reference cell types.” The seven cell groups include
Immune (22 subgroups), Specialised (12 subgroups), Epithelial (7
subgroups), Stem (4 subgroups), Endothelial (4 subgroups), Basal (3
subgroups), and Blood (3 subgroups) (Fig S2A). Subsequently, we
applied our two-step approach to individual atlases, that is, TM-10×
(Fig S2B), TM Smart-seq2 (TM-SS2; Fig S3A), MCA (Fig S3B), and to all
atlases integrated together (Fig S4). Our approach allows us to build
and link an integrated mouse atlas consisting of 831-author
assigned unique cell type labels from 50 tissues to a consensus of
55 reference cell types and 7 cell groups (Fig S4, the Materials and
Methods section, and Table S1).

We support the robustness of our generalised vocabulary and
projection mapping approach by multiple analysis. Across indi-
vidual tissues, we re-confirmed that author cell type labels are
robustly mapped to reference cell types and cell groups both in
individual and integrated atlas (Fig S5A liver, Fig S5B spleen, Figs S2A
and S3A and B). The individual atlases have technical difference
owing to the different number of cells profiled (Fig S6A top panel),
sequencing depth (library size, Fig S6A middle panel), number of
tissues profiled (12 TM-10×, 18 TM-SS2, 38 MCA; Figs S2B and S3A and
B), scRNA-seq chemistry (Full-length versus 39), scRNA-seq plat-
form, and number of genes detected (Fig S6A bottom panel). The
dropout distribution for individual atlases highlights the rela-
tionship between the number of cells profiled, library size, and
genes detected (Fig S6B). Specifically, MCA compared with TM

atlases has the highest number of profiled cells at sparse se-
quencing depth, lower gene detected, and highest dropout rates
across reference cell groups (Fig S6A and B). Our seven reference
cell groups have high and proportional number of cells from both
integrated (Fig S6C) and individual atlas (Fig S6D). For example, the
immune cell group consists of 20,133 individual cells classified
across 22 reference cell types, whereas the blood cell group
consists of 1,559 cells classified into three reference cell types (Figs
S6C and S2A). We further present the different technical features for
each reference cell type across integrated and individual atlas (Fig
S7). Our two-step approach consisting of simplified cell group and
subgroup classification allows us to mitigate technical and cell type
label discrepancies and integrate mouse cell atlases to investigate
global and specific regulators across atlases.

Feature selection is a crucial aspect for robust regulon inference
and composition. We tested a variety of different feature sets for
both integrated and individual cell atlases. We selected a rea-
sonable cutoff of genes detected in at least 10% of all single cells,
consisting of 11,245 overlapping genes across three atlases (Fig 1B).
This cutoff robustly and proportionally captures the reference cell
groups across integrated and individual atlases, despite the
technical differences (Fig S7). To infer GRNs, we applied SCENIC, a
framework for network inference, reconstruction, and clustering
from scRNA-seq data (10). The SCENIC framework is applied directly
on the single-cell expression matrix combining (i) “GRNBoost” for
identification of TFs and co-expressed genes from single-cell ex-
pression matrix, (ii) “RcisTarget” for defining “regulons” (i.e., enriched
and validated TFs with their direct downstream target genes
containing annotated motif, and prunes co-expressed indirect
targets), and (iii) “AUCell” for scoring regulon activity ([RAS] regulon
activity scores) in single cells. Our motivation for using SCENIC for
atlas scale regulon inference was threefold. Firstly, SCENIC iden-
tifies, scores direct TF-target interactions, while pruning indirect
and co-expressed connections. The RCisTarget cross-matches
regulons with known TF-target databases, as opposed to de-novo
predictions, and infers, scores both TF–TF and TF-target. Second,
SCENIC does not prerequisite a single-cell trajectory/pseudotime
(12) and is suited to atlas-scale analysis. Third, SCENIC tools
(GENIE3/GRNBoost) are ranked highly in a recent benchmarking
study (12). Applying SCENIC, we identify 279 unique regulons, with
>60% (174 regulons) shared across the three atlases (Fig 1B). The
high degree of regulon overlap between the three atlases, in spite
of technical differences, highlights that single-cell regulatory state
is predominantly governed by core set regulators and their ac-
tivities within individual cells. A recent study also applied SCENIC,
but only for MCA data using only the author-assigned cell type
labels (21).

To distinguish the regulatory activity within individual cells, we
performed dimensionality reduction using UMAP on RASs of
~250,000 single cells, integrating all atlases (24). We coloured in-
dividual cells using the reference cell groups (Fig 1C), predicted cell
cycle stage (Fig 1C, right), and tissue of origin (Fig S8A). We observe
good visual separation between the seven cell groups based on
RAS, highlighting robustness of cell group classification and ability
of RAS to distinguish functional cell types in integrated atlas. The
overlapping cell groups are biologically and functionally related,
with similar RAS and tissue origin. For example, a subset of immune
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Figure 1. Gene regulatory inference from integrated single-cell transcriptomic atlases. (A) Overview of datasets and analysis performed in this study. (B) Venn plots
and table representation of shared and unique features across cell atlases including tissues, number of cells, and regulons across cells. We used 11,245 overlapping
genes and resulting 279 unique regulons for regulatory analysis. (C) UMAP embedding of single cells (centre) based on regulon activity scores (RAS) from integrated
mouse atlases. The individual cells are coloured by 55 reference cell types corresponding to seven cell groups. The surrounding plots highlight examples of individual
regulons (Irf7, Runx3, Gata2, and Fosb) coloured by RAS, predicted cell cycle stages (right), and overlaid on UMAP. (D) UMAP embedding of 50-cell pseudobulk samples,
based on RAS from integratedmouse atlases. The surrounding plots highlight examples of individual regulons (Sox2, Runx3, Pitx2, and Fos) coloured by RAS, predicted cell
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(blue) and stem (green) cell groups originating from bone marrow
overlap in the integrated atlas (bottom left: Figs 1C and S8A). The
cell cycle stage prediction based on scRNA-seq is also consistent
with cell groups and reference cell type classification (25, 26). As
expected, most Stem and Immune reference cell types are actively
cycling (S, G2M stage; Fig 1C), whereas subsets of Specialised, Stem
cell types are in the G0/G1 stage originating from the brain, liver,
and bone marrow. We could further classify Immune cell groups
into proliferating (i.e., T-cells from spleen) and quiescent (grey G0/
G1 monocytes). Furthermore, both endothelial cells and hepato-
cytes are in the G1 stage, whereas erythroblasts are actively cycling.
We next focussed on both global regulons active across multiple
cell groups and cell type–specific regulons within the integrated
atlas. The Irf7 (2,437 unique genes) and Runx3 (474 unique genes)
are enriched in the Immune cell group (Fig 1C) (27, 28). The general
TF E2F4 is enriched across most proliferating cells, while E2F7 (an
atypical E2F TF) is exclusively active in a subset of highly prolif-
erating cell groups (Fig S8C). The Foxo1 and Cebpe regulons are also
enriched acrossmultiple cell groups (Immune, Stem and Epithelial).
The specific and enriched regulons include Fosb (1,352 unique
genes; Endothelial and Stem), Gata2 (1,594 unique genes; Endo-
thelial), and Gli1 (114 unique genes; Bladder cells within Speci-
alised) (Figs 1C and S8C), Sox17 (267 unique genes; Endothelial) (29),
and Cebpa (1,201 unique genes; Pancreas and myeloid single cells
within Immune cell group; Fig S8C). The individual regulons and
their compositions are detailed in Table S2.

The GRN inference on ~250,000 unevenly sampled single cells is
computationally intensive and also impacted by scRNA-seq
platform-specific biases (Figs S6A and B and S7). To address this, we
generated pseudobulk cells by averaging scRNA-seq expression
over 50 cells. The pseudobulk approach is computationally robust
and also accounts for technical differences between atlases (ad-
ditional comparison below). We re-performed the SCENIC frame-
work on pseudobulk cells across the integrated atlas, projected
individual cells on UMAP based on RAS, coloured by cell groups (Fig
1D), predicted cell cycle stage (Fig 1D), and tissue of origin (Fig S8B).
We expected a better separation with pseudobulk owing to reduced
technical noise (50 cell average) and more robust RAS. Consistently,
the cell type separation is visually refined, with a strong overlap of
cell groups across different tissues (Fig S8B) and recovery of both
general and specific regulons. These include Runx3 (Immune), Sox2
(752 genes; Stem and Immune) (30), Homeodomain Pitx2 (63 unique
genes from the bladder, skin, and heart), Atf3, Fos (Basal), and Foxc1
(564 unique genes; Stem) (Figs 1D and S8B and D).

We next assessed regulon activities in individual cell atlases by
re-performing SCENIC (regulon scoring by AUCell) and compared

with integrated mouse atlas. The UMAP embedding based on RAS
distinctly separates cell groups within individual atlases, in both
single- (Fig S9A top panel) and pseudobulk cells (Fig S9B top panel).
The MCA dataset has the largest number of cells, increased
technical noise, lower gene detection (Fig S6A bottom row), and is
enriched for Immune and Stem cell groups. Consequently, the MCA
single-cell UMAP partially distinguishes reference cell groups
compared with other atlases (Fig S9A top right). However, the MCA
pseudobulk UMAP clearly resolves cell groups, while retaining
robust regulon activities (Fig S9B). Across individual atlases, we
recapitulate several integrated atlas features including global and
cell group specific regulons. For example, the large Irf8 (2,988
unique genes) and smaller Tcf7 regulons (25 unique genes) are both
highly specific and enriched in Immune across multiple tissues in
all atlases (Figs S9A and B and S10A and B). Within individual
atlases, we also observe finer cell type and tissue-specific regulon
activity, including Sox17 (267 genes), Sox2 (752 genes), and Pparg
(584 genes) (Fig S9A). We also observe better reference cell types
mixing originating from similar tissues in pseudobulk compared
with single cells (Fig S10A and B). The individual regulons andmean
RAS for reference cell types are reported in Table S3.

To highlight that pseudobulk robustly captures regulon activities
across cell groups in comparison with single cell, we performed
several quantitative and qualitative comparisons. First, we distin-
guish single and pseudobulk cells by principal component analysis
(PCA) for each atlas, coloured by seven cell groups (Fig 1E, see the
Materials and Methods section). The pseudobulk cells are better
separated than single cells by PCA, but not as distinctly as with
nonlinear methods (e.g., UMAP; Fig 1C and D). We next compare the
distances of individual single and pseudobulk cells to cluster
centres of seven reference cell groups. Globally, the pseudobulk
cells have increased distance to cluster centre than single cells,
indicating a more homogeneous separation and increased cell
group resolution based on RAS (Fig 1E). To compare the clustering of
cell groups between pseudobulk and single cells, we computed
Adjusted Mutual Information (AMI) and Completeness (Fig 1F). The
AMI score is a symmetric measure of the agreement between two
independent clustering labels, that is, pseudobulk and single cells,
given the reference cell group labels, whereas Completeness
compares clustering, given a ground truth by measuring the
membership of data points to the same cluster. Across both in-
dividual and integrated atlas, the AMI scores are consistently higher
in pseudobulk than single cells (Fig 1F top). Notably, the MCA AMI is
significantly lower than other atlases, reflecting the poorer cell
group separation in single cells compared with pseudobulk (Fig S9A
and B top right). We calculate Completeness measure between

cycle stages (right), and overlaid on UMAP. The pseudobulk is generated by averaging the expression of 50 cells across same tissues, using author assigned tissue and
cell type labels; and performing SCENIC regulon inference. (E) Principal component analysis of matched single- and pseudobulk cells based on RAS across individual
atlases and coloured by seven cell groups (first two columns). For each of the seven cell groups, we plot cluster centroids (column 3) and connect single- (circles) and
pseudobulk (asterisk). Box plots (column 4) represent Euclidean distance of individual single- and pseudobulk cells to respective cell group centroid. (F) Different
measures of cluster comparison (top: adjusted mutual information, bottom: completeness) between pseudobulk and single cells across integrated and individual mouse
atlases, considering seven cell groups. (G) Distribution of Gini coefficients per regulon in pseudobulk and single cells across integrated atlas, considering all seven cell
groups. The Gini coefficient is a measure of inequality, that is, whether individual regulons contribute to individual (smaller Gini) or multiple cell groups (higher Gini).
The pseudobulk cells have higher Gini coefficients and tighter distributions compared with single cells, which highlights their contribution to effectively distinguish
multiple cell groups. (H) Comparison of regulon composition between atlases (pairwise Jaccard index) considering TM-10× as reference. Each dot represents a regulon
and overlap of its target genes across three atlases. The shaded area represents 95% confidence interval from the linear regression line.
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pseudobulk and single cells by comparing k-means clustering (k = 7)
to our reference seven cell groups across both individual and in-
tegrated atlas (Fig 1F bottom). To measure the importance of reg-
ulons in driving integrated atlas, we computed Gini coefficient for
each regulon (using RAS) across pseudobulk and single cells. The
Gini coefficient is a measure of equality in a given distribution, that
is, whether individual regulons drive all cell groups (Gini = 0;
complete equality) ormultiple regulons drivemost cell groups (Gini = 1;
inequality). Across integrated atlas, the pseudobulk has a higher
median Gini coefficient with narrow dispersion compared with
single cells (Fig 1G). Notably, the single cell RAS tend to be skewed
towards lower Gini coefficient, consistent with poorer separation of
cell groups in lower dimensions (UMAP and PCA; Fig 1C and D),
compared with pseudobulk. We observe the same trend of Gini
coefficients across individual cell groups (Fig S11A). To compare and
validate the clustering between integrated and individual atlases
across single and pseudobulk cells, we compute Silhouette score
(Fig S11B). The Silhouette score is a measure of similarity between
different clustering and considers both cohesion (within clusters)
and separation (distance between clusters). We observe a positive
Silhouette score for both integrated and individual atlases, with
higher scores in pseudobulk cells. Consistent with previous ob-
servations, the MCA pseudobulk has significantly improved clus-
tering and Silhouette scores compared with single cells. In addition,
we assess the regulon composition similarity between pseudobulk
and single cells by pairwise atlas comparison and computing
Jaccard similarity index (Fig 1H). The Jaccard index is strongly
correlated (Rpearson = 0.8), highlighting that target gene composi-
tions are similar in individual atlases (individual regulon examples
described in Figs 3A–D and S18–S20). Lastly, we compare RAS be-
tween single- and pseudobulk cells and observed significantly
improved correlation in individual cell groups (Fig S11C).

Given the different technical differences between individual atlases
(dropouts, tissues profiled, scRNA-seq protocol, sequencing depth, etc.),
we also assessed whether batch effects confound RAS across mouse
atlases. Although SCENIC analysis has been shown to be unaffected by
batch and technical effects (10), we performed batch correction on a
common tissue (spleen) profiled by both TM-10× and TM-SS2 atlases. We
apply twomethods “Batch-balanced KNN” (BBKNN) and “Mutual nearest
neighbours correction” (MNN) (31, 32) and visualise individual cells on
t-distributed stochastic neighbour embedding (tSNE). The BBKNN and
MNN-correct approaches apply correction to neighbourhood graph and
expression space, respectively. The batch correctionhadminimal impact
on resolving and overlapping similar cell types between the two atlases,
comparedwith uncorrected data (Fig S12A). Notably, the corrected batch
effects were unique to each method on tSNE space. Performing SCENIC
on uncorrected and two batch-corrected datasets, we find that indi-
vidual regulon activities (RAS similarity) and regulon compositions
(Jaccard coefficient) are highly correlated, indicating that batch effects
have little effect on regulon activity (Fig S12B and C). In summary, the
pseudobulk approach accounts for technical and batch effects, robustly
reports on regulon activities, and leads to better classification of cell
groups across individual and integrated atlas.

For an unbiased identification of concerted regulon activity
across integrated atlas, we perform cell-to-cell correlation on RAS
(Fig 2A). We observe three major clusters with the largest cluster 1
composed of Immune and Stem cell groups from all atlases (Fig 1C and

D). The cluster 2 is composed of Epithelial and Stem cell group, ex-
clusively from MCA dataset, with several sub-clusters within. The
distinct MCA sub-clustering is expected, owing to increased sampling
of tissues and single cells (150,889MCA versus 93,753 TM; Fig S6A and C).
The third cluster is composedof Stemand Specialised cell groups from
all atlases. Weobserve several smaller clusters composedof individual
cell types highlighting their distinct classification based on specific
regulon activity (Fig 2A). Next, we performed cell-to-cell correlation
within individual atlases to identify clusters composed of shared and
individual cell groups, highlighting the diversity of cell types captured
within each atlas. Consistent with integrated atlas, the shared clusters
include “Stem and Specialised,” “Immune and Stem,” and “Basal and
Endothelial” and are quite distinct from individual cell group clusters
(Immune, Stem, Epithelial, Basal, etc.) in each atlas (Fig S13A). To further
investigate shared regulatory activity across individual atlases, we
performed pairwise comparison and observed strong correlation
betweenboth shared and individual cell groups (Fig S13B). In summary,
the shared and individual cell group clusters validate that regulon
activities correspond to true regulation in matched cell types.

To highlight the regulon crosstalk and regulation across integrated
cell atlas, we performed regulon-to-regulon correlation using Con-
nection Specificity Index (CSI) Supplemental Data 1 (21, 33). The CSI is a
context dependent graph metric that ranks the regulon significance
based on similarity and specificity of interaction partners, thereby
mitigating the effects of non-specific interactions. Correlating across
integrated atlas using CSI, we identify 174 regulons across five distinct
modules and sub-modules within (Fig 2B). For broad assessment of
module features, we perform Gene Ontology (GO) using all genes
within regulon modules and pathway analysis on regulons (Fig S14A
and B). The module 1 consists of 19 regulons (7,165 genes) involved in
various cellular processes including differentiation, meta-
bolism, and signal transduction predominantly in immune
pathways (Fig S14A and B). The module 2 consists of critical TFs
Gata3 and Klf16 (605 genes) that regulate multitude of cell types.
Module 3 is composed of 66 regulons (8,655 genes) involved in
cellular differentiation, organogenesis (including Hox and AP1
family TFs), and with significant enrichment for signal transduction
pathways (Fig S14B). Module 4 consisted of 74 regulons (9,286
genes) composed of core transcriptional activators with cell cycle
and messenger RNA roles (E2F, SP, and IRF family TFs), across both
GO and pathway analysis. Last, cluster 5 is composed of 13 regulons
(3,344 genes) involved in generalised development, tissue, and
cellular organisation roles. Next, we compared whether regulon
modules could be distinguished based on CSI scores within indi-
vidual atlases. The larger regulon modules (Module 3 and 4) are
clearly separated within individual atlases, highlighting their roles
in global regulation across multiple cell groups (Fig S15A–C). The
smaller modules (modules 1, 2, and 5) highlight tissue-specific
regulation of different cell groups in both integrated and indi-
vidual atlases. For example, the module 1 regulon Mafb regulates a
subset of myeloid immune cells from microglia (Fig 2B) (34),
whereas the module 5 regulon Sox2 regulates Stem and Immune
group (Figs 2B and S9A).

To investigate regulon crosstalk within and between modules across
the integrated atlas, we devised an undirected regulon network con-
sidering the most interacting regulons with stringent CSI association (CSI
> 0.7; Fig 2C). As expected fromCSI correlationmatrix (Fig 2B), the regulons
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Figure 2. Regulatory network uncovers broad acting and cell-type specific regulon activites. (A) Spearman cell-to-cell correlation map across three atlases. The first column
(and topmost row) indicates the respectivemouseatlases,whereas the secondcolumn (andsecond row) indicates the 55 reference cell types. The clusters arehighlighted in red rectangles.
(B) Connection Specificity Index (CSI) matrix highlights regulon-to-regulon correlation in pseudo-bulk cells across integrated atlas. Hierarchical clustering of regulons identifies five distinct
regulonmodules (first column), which capture both global and distinct regulatory roles across cell groups and tissues. Selected regulons are coloured bymodule and listed next to heatmap.
(C)Undirected regulonnetwork generated fromstrongly correlated CSI scores (Fig 2B). Each regulon is represented as anode, and regulonspairs with strongest associated interactions (CSI
scores > 0.7) are connected with undirected and unweighted edges. The larger modules 3 (green) and 4 (blue) are bridged by smaller modules. Bottom: examples of individual regulons
contributing to different network features (degree, closeness centrality, and eigen centrality).

Gene regulatory networks in cell atlases Møller et al. https://doi.org/10.26508/lsa.202000658 vol 3 | no 11 | e202000658 6 of 14

https://doi.org/10.26508/lsa.202000658


within modules have higher connections than across modules implying
concerted regulation in cell types across integrated atlas. We also assess
several network features to determine regulon importance for individual
modules as well as regulon network. Notably, the smaller modules (1, 2,
and 5) bridge the nodes between larger modules (3 and 4) within the
network. Within individual atlases, we find that the global regulon net-
work is largely retained irrespective of regulon composition differences
within atlas (Fig S15D–F). We highlight regulons with important regulatory
roles in reference cell types within individual atlases (Fig S16). Assessing
the different network features across the integrated network, we find
Cebpd (module 1), Gata3 (module 2), and Hdac2 (module 5) are the key
bridge nodes (betweenness centrality) traversing the shortest path
through the network. The top intra- and inter-module regulons have
highly correlated network features (degree, closeness, and Eigen cen-
trality with regulon composition; Fig 2C bottom). The network features
across integrated atlas are detailed in Table S4.

To further validate the modules across integrated regulon network,
we perform several in silico comparisons. First, our framework includes
RCisTarget (as a part of SCENIC) for defining regulons, that is, TFs and
direct target genes. RCisTarget cross-matches identified regulons with
known and annotated TF target databases, prunes indirect co-
expressed targets, and enables scoring of TF–TF and TF-target rela-
tionships. Consequently, all direct targets of a given regulon harbour
the regulon motif at respective promoters. In addition, we expect and
observe many regulons within individual modules to share over-
lapping motifs (motif correlation in Fig S17A). We also report a few
representative examples of regulons and their motifs within individual
modules (Fig S17A). We next assessed whether regulons crosstalk
across the integrated network are mediated through protein–protein
interactions (PPi). Comparing and overlaying the annotated PPi from
STRING (35), we validate 57% of regulon network connections (Fig S17B).
Since each STRING annotated PPi is assigned a combined score
(measure of confidence), we compared our regulon network with the
STRING combined score (in 20% bins; Fig S17C). Consistently, the
regulon network connections have the highest STRING combined
score. In addition, we also observe a strong positive relationship
between regulon CSI and STRING combined score, validating the
regulon network interactions from experimental evidence (Fig S17D
and Table S5). Last, we compared our regulon network for essential
genes in theOnlineGene Essentiality database (OGEE) (36).Weobserve
109 essential genes (70%) in our regulon network with strong repre-
sentation across all modules (Fig S17E and Table S5), further high-
lighting the regulon importance across integrated network.

Next, we focussed on regulons with differential composition that
drive individual cell types (Figs 3A and S16). The regulon Cebpe
consists of 1,342 unique genes (TM-10×: 332, TM-SS2: 531, and MCA:
479 genes) with 189 common and direct targets. The Cebpe activity is
highly specified in granulocyte and monocytes, consistent with its
known role in lineage determination (Fig 3A) (37). The Irf8 is amaster
regulator of monocytes and dendritic cells and is important for both
adaptive and innate immunity (38). We observed 641 shared targets
and specific activity in monocytes and macrophages (Fig 3B). We find
that regulons with few shared direct targets across cell atlases have
specific and consistent activity. The Lef1 and Hoxb7 regulons have
fewer overall targets genes, only five shared targets between cell
atlases, but with specific activity in T-cells (39) and kidney epithelial

cells (40), respectively. Several global and cell type–specific regulons
with differential compositions are presented in Figs S18–S20.

To further validate our regulatory framework for atlas-scale
analysis, we performed GRN inference using an alternative method
“bigSCale2” considering TM-10× atlas (41). The “bigSCale2” approach
uses expression correlation to calculate regulatory network and
does not distinguish between direct and indirect TF-targets.
Comparing the two methods, we find 117 regulons (67%) co-
identified by both methods, whereas 57 regulons (33% and
direct targets within) exclusively captured in our SCENIC frame-
work (Fig S21A). Computing the Jaccard index, we find only 95
regulons with composition similarity between both GRN inference
methods (Fig S21B). In summary, the SCENIC framework robustly
identifies regulons and their direct targets for atlas-scale analysis.
We also compared GRN scoring between SCENIC (AUCell) and an
alternative approach (VIPER), which computes a normalised en-
richment score (NES) per regulon, for a defined cell type (or group)
by comparing against other defined cell types (42). We consider
regulons (GRNBoost and RcisTarget) across B cells from the TM-10×
atlas for comparison (Fig S22A and B). Although direct comparison
between the two approaches is tricky because of underlying scoring
methods, we plot the regulon correlation between VIPER enrich-
ment scores and mean RAS (NES versus mean AUC; Fig S22A).
However, the correlation is significantly improved when consid-
ering the VIPER enrichment scores (42) with regulon specificity
scores (21), indicating specific cell type enrichment (Fig S22B).

Last, we assess the functional importance of regulon activity by
investigating mixed-lineage transitions during myeloid cell-fate deter-
mination using scRNA-seq (43). The Irf8 regulon and its regulatory in-
teractions are critical for monopoiesis and have a reciprocal dynamics
with Gfi1-driven granulocyte specification (43). We analyse granulocytic
and monocytic specification in wild-type and Irf8−/− progenitors using
scRNA-seq data (Fig S23A), infer regulons, and score regulon activity in
single cells (Fig S23B). Both scRNA-seq expression counts and regulon
activities separate different cell types and capture the shift in Irf8−/− cells
towards granulocyte lineage (Fig S23A–D). Comparing the Irf8 regulon
across monocytes, granulocytes, and Irf8−/− cells, we observe prefer-
entially high composition of direct targets inMonocytes (542 genes) over
granulocytes (148 genes), consistent with cell-fate roles (Fig S23E) (43).
Notably, the Irf8 regulon is significantly perturbed both in composition
(direct target genes) and activity (target regulation) across Irf8−/− cells
(Fig S23D and E), highlighting the functional importance of regulon
activity in mediating cell states and cell types.

Discussion

As major tissue, organ, and organism expression atlases are in-
creasingly generated (44, 45), it is critical to also decipher mech-
anistic gene regulatory programs for refining functional cell state
and cell type definitions. Here, we highlight a computational ap-
proach to infer regulons and link their specific cell type activity with
functional roles, from integrated scRNA-seq cell atlases. To resolve
the author assigned cell type labels across cell atlases, we stan-
dardise and categorise single cells into broadly defined seven cell
groups and reference cell types. In our study, we project and map
cell groups across different cell atlases, which indeed diminishes the
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resolution of individual cell types. However, it allows us to converge and
group similar cell types together irrespective of differences in cell atlases
including tissue sampling, scRNA-seq platform, and sequencing depth.

For regulon identification, inference, and scoring, we used GRNBoost,
RcisTarget and AUCell (as in reference 10); however, alternative inference
methods have been proposed with improvements for both directed and

Figure 3. Regulon compositions and activities across atlaseslases. (A, B, C, D) Vennplots of representative individual regulons, gene compositions, overlap across individual
atlas and specific cell type regulation (A) Irf8, (B) Irf8, (C) Hoxb7, and (B) Lef1. The heat map represent z-scaled mean regulon activity score across different cell types.
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undirected networks (9, 12, 46, 47). A fundamental caveat of recent GRN
methods is the requirement of a priori pseudotime or cellular trajectory,
which makes them incompatible for atlas-scale analysis. Our integrative
analysis on three atlases uncovers global regulon modules that operate
onmultiple cells types, aswell as specialised regulons critical for cell type
definition and identity. Through a variety of in silico comparisons, we
highlight the robustness of pseudobulk cells in effectively classifying cell
groups and highlight regulatory crosstalk. The global regulon network is
recapitulated in individual cell atlases usingboth single- andpseudobulk
cells, validating the regulatory crosstalk in individual cell groups. The
functional consequence of regulon composition and activity is high-
lighted during the lineage transition from monocytes to granulocytes in
Irf8k cells. Our integrated computational atlas with standardised clas-
sification of cell groups, global, and cell type–specific regulons across
three MCAs presents a valuable resource for the single-cell community.

Materials and Methods

Datasets

Tabula Muris
The TM scRNA-seq dataset contains single cells profiled using both
39end 10× Chromium and full-length Smart-Seq2 (17). The data were
retrieved through the data portal (https://figshare.com/projects/
Tabula_Muris_Transcriptomic_characterization_of_20_organs_and_
tissues_from_Mus_musculus_at_single_cell_resolution/27733). The
data contained 1,23,878 single cells. The Smart-seq2 dataset consists of
53,760 single cells from 18 tissues classified into 81 cell types, whereas
the 10× Chromium contains 70,118 single cells from 12 tissues classified
into 55 cell types. After filtering the non-annotated cell types, we ob-
tained 44,779 and 54,865 single cells from Smart-seq2 and 10× Chro-
mium, respectively. The annotated cell types from Smart-seq2 and 10×
Chromium are referred to as author assigned cell type labels.

Mouse cell atlas
The MCA (18) scRNA-seq dataset contains single cells profiled using
authors 39 end microwell method. The data were retrieved through
thedata portal (https://figshare.com/articles/MCA_DGE_Data/5435866).
After filtering non-annotated cells types, we obtained 2,33,994
single cells from 38 tissues classified into 760 cell types. The an-
notated cell types from across 39 end microwell method are re-
ferred to as author assigned cell type labels.

Myeloid differentiation
The myeloid differentiation dataset contains 382 wild-type (9 cell
types) and 62 Irf8−/− cells (43). The scRNA-seq expression matrices
were retrieved from data portal (https://www.dropbox.com/sh/
yqlclftyolwqy7y/AADVD-_IOqpXQx8PlWcywMypa?dl=0) (48).

Data processing

Data normalization and scaling
We use Scanpy (version 1.4) for normalization of all datasets (49) using
the pre-processing functions for cell library size (scanpy.pp.normali-
ze_per_cell) and log-transformation (scanpy.pp.log1p). We regress the

variance arising from variable library size andmitochondrial gene count
fraction, and scale genes (zero mean and unit variance) using in-built
functions (scanpy.pp.regress_out and scanpy.pp.scale, respectively). The
Highly Variable Genes for each dataset are calculated using in-built
functions (scanpy.pp.highly_variable_genes) with default parameters.

Pseudobulk
For creating pseudobulk cells, we randomly sampled 50 cells from author
assigned reference cell type within a given tissue. Only genes with non-
zero counts are used for averaging. This approach potentially removes
authorassignedcell typesconsistingof fewer than50cells (very rarecells).

Cell cycle stage prediction
The cell cycle stage prediction is performed using Scanpy function
(scanpy.tl.score_genes_cell_cycle) to score S and G2M-specific genes.
Each single cell has an S- and G2M-score and is assigned, respectively,
based on the highest scoring class. If neither the S-score nor the G2M-
score exceeds 0.5, the cells are assigned as G1 phase. The reference cell
cycle phase marker genes (50) used for scoring can be found here
(https://github.com/theislab/scanpy_usage/blob/master/180209_cell_
cycle/data/regev_lab_cell_cycle_genes.txt).

Mapping author-assigned cell type labels to common reference

Reference cell types
We first devise a common reference for mapping different author
assigned cell type labels.We choose TM 10× cell type labels as reference
cell types as it has the fewest annotated cell types for effective inte-
gration. The reciprocal reference using either TM Smart-seq2 or MCA
lead to unresolved and undefined cell types and poor mapping. We
manually curated the reference cell types to seven cell groups (Fig S3B).

scMAP
Wemap both TM Smart-seq2 and MCA to TM 10× separately using scMAP
(version 1.4.1) with default parameters (23). We use the function “select-
Features” for identifying features and use the common feature set (In-
tersection) formapping. This further reduces the contribution of cell types
either identified in single atlas or without any common features with
reference cell types. For example, none of theMCA single cells mapped to
reference cell type “Keratinocytes” in TM 10×. Similarly, none of the TM
Smart-seq2 single cells mapped to reference cell type “Duct epithelial
cells” in TM10×. In the last step,we further excludenon-mapping cells. The
remaining single cells from TM 10× (54,865 cells), Smart-seq2 (38,888 cells),
and MCA (150,889 cells) are used for regulon inference.

Inferring GRNs

Feature selection for pySCENIC
To retain a large but stringent feature size while accounting for
technical atlas differences, we select the features that are
expressed in 10% of pseudobulk cells for downstream analysis (Fig
1B). Similarly, we select genes expressed in 10% wild-type cells
(1,002 genes) from the myeloid differentiation dataset (43).
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Dataset pre-processing for pySCENIC
The rawdatasets are normalised using Scanpy pre-processing functions
for cell library size (scanpy.pp.normalize_per_cell) and log-transformed
(scanpy.pp.log1p). No additional scaling of genes was performed.

Running pySCENIC
We implement the three steps for pySCENIC pipeline (10). First,
GRNboost is run on filtered expression matrix using list of TFs
(https://resources.aertslab.org/cistarget/motif2tf/motifs-v9-nr.mgi-
m0.001-o0.0.tbl). Second, RcisTarget is used to infer direct targets
using “mm9-500bp-upstream-7species” and “mm9-tss-centred-10kb-
7species” (https://resources.aertslab.org/cistarget/). The defined reg-
ulons are TFs and their direct target genes harbouring significant TF
motif enrichment. Third, RAS is calculatedusingAUCell as the areaunder
the recovery curve of all genes identifiedwithin the regulon. All the steps
are run with default parameters. The regulon inference identifies 233
regulons in TM 10× (median composition of 141.5 genes), 222 regulons in
TM Smart-seq2 (median composition of 195 genes), and 222 regulons in
MCA (median composition of 151 genes).

Similarly, we identify 154 regulons (median composition 93.5 genes)
from wild-type cells in myeloid differentiation dataset (43). We also
separately ran pySCENIC pipeline on Monocytes (191 regulons, median
48 genes), granulocytes (181 regulons, median 54.5 genes), and Irf8−/−

cells (136 regulons, median 69.5 genes), respectively. To specifically
infer Irf8 regulon activity (Fig S22D) in both wild-type and Irf8−/− cells,
we repeated AUCell 50 times and used the averaged activity score.

Cell type similarity based on regulon activity

Spearman correlation
We calculated pseudobulk cell-to-cell spearman correlation co-
efficients based on RAS to quantify cell type similarity using “sci-
py.stats.spearmanr” (version 1.1.0). The pseudobulk spearman
correlation coefficients are classified by hierarchical clustering
using “seaborn.clustermap” function (version 0.9.0) with default
parameters. The force directed graphs only link edges where the
spearman correlation coefficients are greater than 0.5.

Embedding

PCA
PCA is performed on RAS using “scanpy.tl.pca” with default
parameters.

UMAP
We performed Uniform Manifold Approximation and Projection (24)
using the Scanpy function “scanpy.tl.umap” with default parameters.

Comparison of RAS and regulon composition between single- and
pseudobulk cells

PCA and cluster centres
To compare the RAS between single- and pseudobulk bulks, we first
plotted pseudobulk cells on PCA (sklearn.decompositin.pca) and
projected the single cells onto the same embedding. For individual
single- and pseudobulk cell, we calculated the Euclidean distances
to cell group centres.

AMI and completeness
For clustering comparison between single- and pseudobulk cells, we
performed K-means clustering (using k = 7) and compared clusters to
ground truth, that is, seven reference cell groups. The AMI (sklearn.me-
trics.ajusted_mutual_information_score) and completeness (sklearn.-
metrics.completeness_score) is calculated on RAS of individual regulons
from single- and pseudobulk cells. Similarly, the RAS correlation is
quantifiedbetween single- andpseudobulk cells for global and individual
cell groups.

Gini coefficient
To measure equality of RAS in classifying individual and global cell
groups, we calculate Gini coefficient of RAS per regulon between
both single- and pseudobulk cells.

G = Σni = 1ð2i −n − 1Þxi
nΣni = 1xi

Comparison between integrated and individual mouse atlases

For clustering comparison between integrated and individual atlas, we
performed k-means clustering (using k = 7) and calculate silhouette
score (“sklearn.metrics.silhouette_score”), by comparing with ground
truth, that is, seven reference cell groups.

Regulon modules and regulon networks

Connection specificity modules and network
The CSI is calculated for each pair of regulon (from Pearson cor-
relation coefficient) and is ameasure to identify regulatory partners
(21, 33).

The CSI for two nodes A and B is calculated by:

CSIAB = 1 −No: of nodes connected to A or Bwith PCC ≥ PCCAB − 0:05
ny

Where the Pearson correlation coefficient (PCC) is the interac-
tional correlation between A and B.

To identify regulon modules (Fig 1F), we use hierarchical clustering
(scipy.cluster.hierarchy.fcluster) on regulon linkage matrix (scipy.clus-
ter.hierarchy.linkage) using method “average” to calculate Euclidean
distances between clusters. The Pairwise distance between regulons is
calculated by “scipy.spatial.distance.pdist” with Euclidean metric. We
filter select regulon modules, that is, co-active regulons (regulons pairs)
with CSI greater than 0.7 and project on a force directed graph, coloured
by regulon modules (Fig 1G).

Functional analysis of regulon modules

GO
We use ClusterProfiler (v3.10.1) for GO analysis (Biological Pro-
cesses) (51). For significant GO terms within the regulon module,
we use enrichGO function considering all unique genes within
the regulon module as gene set. The GO comparison across
modules was performed using compareCluster function. Significant
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terms are selected using P-value cutoff (P < 0.05) after adjusting for
multiple testing using Benjamini–Hochberg correction.

Pathway analysis
The regulons within individual modules are directly used for pathway
analysis using Reactome (https://reactome.org/PathwayBrowser/)
with default parameters (52). For each module, we quantify the sig-
nificantly enriched terms (P-value < 0.05) within each high-level
pathway term (e.g., Immune System, Metabolism, Developmental Bi-
ology etc.). The terms and relationships were downloaded from
Reactome directly (pathways: https://reactome.org/download/current/
ReactomePathways.txt and relationships: https://reactome.org/
download/current/ReactomePathwaysRelation.txt).

Batch effect correction

We applied two different batch correction methods on TM-10× and
TM-SS2 atlases. We used pseudobulk cells from the spleen, which
was profiled by both atlases.

MNN-correct
We corrected the expression space of the two atlases using the
Scanpy implementation of MNN-correct (“scanpy.pp.mnn_correct”)
with parameters (svd_dim = 5 and k = 10), using the two atlases as
batch key.

BBKNN
We corrected the neighbourhood graph of the two atlases also
using the Scanpy implementation (“bbknn” library version 1.3.1, with
parameters (neighbors_within_batch=10, n_pcs=10, trim=50), using
the two atlases as batch key).

Non-corrected
The non-corrected expression space of the two atlases was created
by concatenating the individual Scanpy AnnData objects (‘scan-
py.AnnData.concatenate’ with join=‘inner’).

For both the non-corrected and batch corrected data, we
compute regulons using pySCENIC CLI that includes RCisTarget
(database: “mm9-tss-centred-10kb-7species”) for cross matching
and regulon pruning. For regulons identified in both non-corrected
and batch corrected data, we compute the spearman correlation of
RAS between datasets. For each regulon predicted in the batch
correction datasets, we compute Jaccard index (sklearn.me-
trics.jaccard_similarity_score) as a measure of composition
similarity to the non-corrected dataset.

JðA;BÞ = jA\Bj
jA[Bj =

jA\Bj
jAj + jBj − jA\Bj

Network validation

STRING
The experimental annotated and scored PPi were downloaded
from the static STRING database (https://stringdb-static.org/
download/protein.links.v11.0.txt.gz) alongside their “Combined
score,” which is a measure of confidence of interaction. We

classified the PPi and CSI in 20 and 10 percentile bins, respectively,
based on “Combined score,” and compared the regulon network
node-edges pairs.

OGEE
The OGEE gene essentiality table was retrieved from http://
ogee.medgenius.info/file_download/gene_essentiality.txt.gz, and
gene identifier to name mapping was performed using http://
ogee.medgenius.info/file_download/genes.txt.gz. We only consid-
ered mouse genes for analysis.

Regulon importance and integrated network features

Having constructed the integrated regulon network, the network
features (“Degree,” “Closeness centrality” and “Eigen centrality”) are
calculated using Gephi (0.9.2) with default parameters.

Comparison of regulon motifs

For each individual regulon across the integrated network, we
obtained the TF binding motif from JASPAR (53). We used a pub-
lished database containing Pearson correlations between TFs
position weight matrix (54, 55) and subset, visualised the TFs from
integrated regulon network.

Comparison with alternative GRN (regulon) scoring method

We used VIPER (version 1.16) (42), as an alternative to scoring
regulons with AUCell. To facilitate comparison, we used the reg-
ulons inferred by GRNBoost and RCisTarget on B-cells from the TM-
10× cell atlas (222 regulons, 10,119 targets and 78,742 interactions),
applied VIPER (“rowTtest”) to get B-cell signatures, and compared
with other cell types (z-score). The t test null model was made with
20 permutations and reposition, and the NES are computed using
“msviper” function. We compare VIPER NES with regulon specificity
score as described in reference 12.

Comparison with alternative GRN inference method

We compared our atlas-scale GRN inference using SCENIC with
an alternative published GRN method “bigSCale” (41) on TM-10×
atlas considering the same gene-set of 11,245 genes. We used
the most recent bigSCale version 2 “compute.network” with
parameters (speed.preset=‘fast’ and clustering=‘direct’) and
default Pearson correlation cutoff (R = 0.9) for network con-
struction. bigSCale2 captures 117 out of 174 regulons from our
SCENIC consensus network. Using Jaccard index (sklearn.me-
trics.jaccard_similarity_score), we also quantify the regulon
composition overlap between bigSCale2 and our SCENIC con-
sensus network.

Computational infrastructure

The computational analysis was performed on DeIC National High-
Performance Computing cluster (ABACUS 2.0) with each node
consisting of two Intel E5-2680v3 CPUs with each 12 cores and with
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64 or 512 GB RAM. Dask was used to parallelize compute intensive
processes across several nodes (56, 57, 58).

Data Availability

The supplementary document contains the full data sources
analysed in the current study. The Jupyter notebooks detailing all
the analysis steps can be found here: https://github.com/Natarajanlab/
Single-cell-regulatory-network.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202000658.
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