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A B S T R A C T   

The probabilistic linguistic term set (PLTS) has been widely used in multiple criteria group decision making 
(MCGDM) problems where the linguistic information is uncertain and hesitant. To reflect the different prefer-
ences and uncertainties, we propose a new PLTS with probability in the form of Pythagorean fuzzy set (PFS), 
called Pythagorean fuzzy probabilistic linguistic term set (PFPLTS). In addition, considering the information 
integrity, uncertainty and DMs’ preferences, the operation and aggregation operators for PFPLTS are introduced. 
Then, the weight method based on minimum deviation and dual ideal point-vector projection is proposed, which 
considers the time-varying characteristics of the weights and combines multi-dimensional influencing factors. 
Next, the psychological distance measure is proposed by dividing the psychological space into multiple vectors. 
Based on the proposed dynamic weight method, three psychological distance measures and TOPSIS method, we 
develop a dynamic Pythagorean fuzzy probabilistic linguistic TOPSIS method with psychological distance (Psy- 
TOPSIS), the psychological index ranges from 1 to 40. Finally, a practical case, site selecting of COVID-19 
vaccination center, is given and compared with three approaches to illustrate the effectiveness and practi-
cality of PFPLTS and the proposed decision-making method.   

1. Introduction 

Multiple criteria group decision making (MCGDM) is an essential 
branch in the field of decision making. It refers to the way decision- 
makers (DMs) apply decision-making methods to select the best alter-
native with multiple criteria. With the increasing complexity of 
decision-making problems and their backgrounds, in many cases, DMs 
cannot accurately quantify the evaluation objects and can only use 
natural language to evaluate. For example, in the site selection of the 
COVID-19 vaccination center, DMs may say that “the traffic conditions 
in this location are not bad, but the transportation and transformation 
cost is too high." In this context, the words “not bad" and “too high" are 
described in linguistic terms. Although linguistic terms are intuitive, 
flexible, and close to people’s cognition, they are difficult to calculate. 
To deal with this problem, Zadeh [1] proposed the fuzzy linguistic 
approach (FLA), which can aptly describe the fuzziness and uncertainty 
of information. To further reflect the uncertainty and the preference 
degree of linguistic terms, Pang [2] proposed the concept of PLTS. Since 
it was submitted, PLTS has been widely used in medical level assessment 
[3], supplier selection [4], venture capital [5], and so on. On the other 

hand, some contributions have been made to the conversion, compu-
tation, and aggregation method of PLTS [6–15]. In the follow-up 
research, many scholars have carried on the related expansion to 
PLTS. For example, multiple linguistic terms are utilized in the proba-
bilistic uncertain linguistic term set (PULTS) to express the hesitation of 
evaluation information [16]. The Interval-valued probabilistic linguistic 
term set (IVPLTS) extends the corresponding probability of linguistic 
terms to interval values [17]. By adding the unknown probability to 
linguistic term, the uncertain probabilistic linguistic term set (UPLTS) 
can be established [18], etc. It is evident that only membership degree is 
used to describe the importance of linguistic terms in the existing 
probabilistic linguistic terms, which ignores the uncertainty and pref-
erence of DMs about a particular linguistic evaluation. 

Dynamic decision-making is a process that changes with time. 
Regarding the time pressure and affairs unpredictability at different 
development stages, DMs must be more cautious and effective in dealing 
with the fuzziness and uncertainty of information. Additionally, it also 
means that decision information and criteria weights are affected by 
time. Therefore, it is necessary to determine the time weight and criteria 
weights of each stage. At present, there are many methods for weight 
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determination, mainly divided into three categories: subjective 
weighting method, objective weighting method, and combination 
weighting method. Subjective weighting methods mainly include BEM 
[19], AHP method [20], Delphi method [21], etc., which are obtained by 
the personal judgment of experts’ experience and generally not affected 
by the attribute value. The advantage is that experts can determine the 
weights based on actual problems and their knowledge, and there will be 
no situation that contradicts the actual importance. However, the 
decision-making or evaluation results are subjective and vulnerable to 
the lack of decision-makers’ knowledge. Because of the poor objectivity, 
it has great limitations in application. The objective weights mainly 
include the dispersion maximization method [22], entropy weight 
method [23], etc., calculated by attribute values. This is usually based 
on sound mathematical theories and techniques, so the weights are 
highly reasonable, and the method has a solid mathematical theoretical 
basis. However, this kind of empowerment method cannot reflect the 
preferences of DMs, and there may be situations that are contrary to the 
actual importance. 

A combination weighting method was proposed to take into account 
the advantages of subjective and objective weighting methods. The most 
common is the linear weighted combination approach, and our personal 
perception often decides the combination coefficients. But in general, 
the mathematical theoretical basis of the subjective and objective inte-
grated weighting method is relatively perfect, but the disadvantage lies 
in the high complexity of the algorithm. At the same time, many criteria 
weights methods are based on the needs of one or two sides of the DMs, 
which rarely contain the needs of multiple sides together. In addition, 
most of the existing weight methods are in a static environment. The 
criteria weights do not consider time-varying factors, so they cannot 
reflect the characteristics of dynamic decision-making. 

The TOPSIS method is commonly used in MCGDM problems. It has 
been widely studied and applied, but it is rarely used in dynamic 
decision-making environments, and does not take into account the 
psychological changes of decision-makers. We propose a probabilistic 
linguistic term set that includes membership and non-membership of 
linguistic terms to overcome the above shortcomings. And on this basis, 
we have developed a new dynamic multi-criteria weight method that 
considers time-varying effects and a decision-making method that con-
siders psychological changes. The main contributions of this paper can 
be summarized as follows:  

1 Due to the advantages of PLTS in describing information, and its 
ignorance in linguistic preference and uncertainty, the correspond-
ing probability is extended to a set that includes both the degree of 
membership and non-membership. Using the Pythagorean Fuzzy Set 
(PFS) to appropriately reduce the constraints on the set, we define 
the term set of Pythagorean probabilistic linguistic term set 
(PFPLTS). In addition, the basic operation and aggregation operators 
of PFPLTS are introduced.  

2 In the existing criteria weights methods, DMs need to choose one or 
two angles for calculation, such as hesitation degree, identification 
degree, and so on. It is rare to consider the influence of multiple 
angles on the criteria weights, which leads to the inaccuracy of the 
fusion weight. Therefore, it is necessary to study the weight fusion 
method from multiple dimensions. In addition, the current weight 
methods are mostly single-stage and static [24,25], so they can not 
reflect the DMs’ changing information and preferences. The subjec-
tive and objective time weight method of minimum deviation linear 
programming and a weight fusion method of dual ideal point-vector 
projection in a dynamic environment is proposed to solve these two 
problems.  

3 The DMs’ preferences for different alternatives and criteria will 
change accordingly with the decision-making background and 
environment. Therefore, we consider the multi-dimensional psy-
chological space of DMs [26], and propose a dynamic psychological 

distance measurement that includes the psychological changes of 
DMs.  

4 As a widely used multi-criteria decision-making method, the TOPSIS 
method has attracted extensive research from scholars since it was 
proposed. Based on the TOPSIS method and the aforementioned 
methods, a dynamic Pythagorean fuzzy probabilistic linguistic 
TOPSIS method with psychological preference is constructed and 
applied to the site selecting of the COVID-19 vaccination center. 

The rest of this paper is organized as follows: In Section 2, some basic 
concepts about PLTS and PFS are briefly reviewed. Section 3 defines the 
concept of PFPLTS and proposes the related calculation method, oper-
ation and aggregation operators of PFPLTS. Section 4 constructs the time 
and criteria weights method with minimum deviation linear program-
ming and dual ideal-point vector projection, respectively. Section 5 es-
tablishes the novel TOPSIS method with psychological distance measure 
and constructs an approach for MCGDM based on the Pythagorean fuzzy 
probabilistic linguistic psy-TOPSIS method. Section 6 gives a case study, 
site selection for the COVID-19 vaccination center, to illustrate the 
applicability and practicability of the proposed method. Finally, some 
conclusions are given in Section 7. 

2. Preliminaries 

In this section, we will briefly review some basic concepts related to 
PLTS and PFS. 

2.1. Probabilistic linguistic term set 

Definition 1. [2] Let S = {sα|α = 0, 1,2,…, τ} be a linguistic term set, 
then the probabilistic linguistic term set (PLTS) can be defined as L(p) =

{L(k)(p(k))
⃒
⃒L(k) ∈ S, p(k) ≥ 0, k = 1, 2, …, #L(p),

∑#L(p)
k=1 p(k)≤ 1}. Where 

L(k)(p(k)) is the linguistic term L(k) associated with its corresponding 
probability p(k), and #L(p) is the cardinality of L(p). 

Definition 2. [27] Let L(p) = {L(k)(p(k))
⃒
⃒L(k) ∈ S,p(k) ≥ 0,k = 1,2,…,#

L(p),
∑#L(p)

k=1 p(k)≤ 1}, S = {sα|α = 0,1,2,…,τ}, and α(k) is the subscript of 
linguistic term L(k). The score function and its inverse function are 
defined as: 

g : [0, τ]→[0, 1], g(L(p)) =
{[

α(k)

τ

]
(
p(k))

}

= Lϖ(p),ϖ ∈ [0, 1],

g− 1 : [0, 1]→[0, τ], g
(
Lγ(p)

)
=
{

sτϖ
(
p(k))} = L(p)),ϖ ∈[0, 1].

(1)  

Definition 3. [27] Let L1(p) = {L1
(k)(p1

(k))
⃒
⃒k = 1, 2, …, #L1(p), 

L2(p) = {L2
(k)(p2

(k))
⃒
⃒k = 1, 2,…,#L2(p) and L3(p) = {L3

(k)(p3
(k))
⃒
⃒k = 1,

2,…,#L3(p) be three finite and ordered PLTSs. λ is a positive real 
number, γ(k)1 ∈ g(L1), γ(l)2 ∈ g(L2), γ(r)3 ∈ g(L3) and k = 1,2,…,#L1(p), l =

1,2,…,#L2(p), r = 1,2,…,#L3(p).  

1 L1(p) ⊕ L2(p) = g− 1(∪γ(k)1 ∈g(L1),γ
(l)
2 ∈g(L2)

{(γ(k)1 + γ(l)2 )(p(k)1 p(l)2 )}).  

2 L1(p)⊖ L2(p) = g− 1(∪γ(k)1 ∈g(L1),γ
(l)
2 ∈g(L2)

{ξ(p(k)1 p(l)2 )}). 

Where ξ =

⎧
⎪⎨

⎪⎩

γ(k)1 − γ(l)2

1 − γ(l)2

, ifγ(k)1 ≥ γ(l)2 andγ(l)2 ∕= 1

0, otherwise

.  

1 L1(p)⊗ L2(p) = g− 1(∪γ(k)1 ∈g(L1),γ
(l)
2 ∈g(L2)

{(γ(k)1 γ(l)2 )(p(k)1 p(l)2 )}).  

2 L1(p) ⊘ L2(p) = g− 1(∪γ(k)1 ∈g(L1),γ
(l)
2 ∈g(L2)

{ζ(p(k)1 p(l)2 )}). 
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Where ζ =

⎧
⎪⎨

⎪⎩

γ(k)1

γ(l)2

, ifγ(k)1 ≤ γ(l)2 andγ(l)2 ∕= 0

0, otherwise

.  

1 λL3(p) = g− 1(∪γ(r)3 ∈g(L3)
{(1 − (1 − γ(r)3 )

λ
)(p(r)1 )}).  

2 L3
λ(p) = g− 1(∪γ(r)3 ∈g(L3)

{(γ(r)3 )
λ
(p(r)1 )}).

3 L3
− 1(p) = g− 1(∪γ(r)3 ∈g(L3)

{(1 − γ(r)3 )(p(r)1 )}).

And the distance measure is defined as: 

d(L1(p),L2(p)) =
1
2

(
∑#L1(p)

k=1
g
(
L1

(k))
(

p1
(k)
)
−

∑#PL1(p)

k=1
g
(

L2
(k)
)(

p2
(k)
)
)

2.2. Pythagorean fuzzy set 

Definition 4. [28] Let X be the universe of discourse, the Pythagorean 
fuzzy set is defined as 

P =
{
< x, μp(x), νp(x) >

⃒
⃒x ∈ X, 0 ≤ μp

2(x) + νp
2(x) ≤ 1

}

Where μp(x) : X→[0,1] and νp(x) : X→[0, 1] are the degree of mem-
bership and non-membership of x belonging to P respectively. For any 

x ∈ X, the hesitation of x belonging to P is πp(x) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − μp

2(x) − νp2(x)
√

. 

For convenience, < μp, νp > is called as Pythagorean fuzzy number 
(PFN), where μp,νp ∈ [0,1], μp

2 + νp
2 ≤ 1, it is simply recorded as P = <

μp,νp >. 

3. Pythagoras-probabilistic linguistic term set 

In order to describe the fuzziness and uncertainty of DMs, we 
introduce a new concept called PFPLTS. Then, the related comparison 
method, basic operation and aggregation operators are proposed. 

3.1. The concept and comparation method of PFPLTS 

By adding corresponding probability values to linguistic terms, PLTS 
has significantly progressed in describing uncertain information of 
hesitant fuzzy linguistic evaluation and comparative preference. But the 
fuzziness and uncertainty of linguistic terms have not been specifically 
expressed. With the increase of complexity and uncertainty of decision- 
making problems, the fuzziness of DMs’ thinking, and the limitation of 
knowledge reserve, the probability value of hesitant linguistic evalua-
tion is not completely certain. PFS introduced by Yager [28,29] on the 
basis of IFS can make the description of decision information more sci-
entific and effective, because it contains membership and 
non-membership degrees whose square sum is not more than 1. For the 
fuzziness and uncertainty of PLTS and Pythagorean fuzzy sets in 
describing information, the Pythagorean fuzzy probabilistic linguistic 
term set (PFPLTS) is proposed. 

Definition 5. Let X be a non-empty universe of discourse, S = {sα|α =
0, 1, 2,…, τ} is the linguistic term set, a PFPLTS can be defined as 
follows: 

PL(p) =
{[

x,PL(k)( p̃(k))]⃒⃒x ∈ X,PL(k) ∈ S, k = 1, 2,…,#PL(p)
}

=
{[

x,PL(k)〈μ(k), ν(k)〉]⃒⃒x ∈ X,PL(k) ∈ S, k = 1, 2,…,#PL(p)
}

where PL(k)(p̃(k)) represents the linguistic term PL(k) associated with its 
uncertain PFS probability ̃p(k), and ̃p(k) = 〈μ(k),ν(k)〉, in which μ(k) and ν(k)
represent the membership and non-membership degrees of linguistic 
term PL(k), α(k) is the subscript of linguistic term PL(k), and #PL(p) is the 
cardinal number of PL(p). The hesitation degree can be calculated 

byπ(k) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − (μ(k))
2
− (ν(k))2

√

. We have noticed that the PFPLTS is an 

extension of the PLTS, when PL(k) = 〈μ(k)〉, the PFPLTS degenerates into 
PLTS. 

To compare two different PFPLTSs, the score and accuracy function 
are given in the following, and then the comparison method is 
developed. 

Definition 6. Let X be a non-empty universe of discourse, and the 
score function of PFPLTSs on X can be defined as: 

S(PL(p)) =
∑#PL(p)

k=1
g
(
PL(k))×

[(
μ(k))2

−
(
ν(k))2

]
(2)  

The accuracy function of PFPLTSs on X can be defined as: 

H(PL(p)) =
∑#PL(p)

k=1
g
(
PL(k))×

[(
μ(k))2

+
(
ν(k))2

]
(3) 

Definition 7. Let X be a non-empty universe of discourse, for any 
two PFPLTSs PL1(p) and PL2(p).  

(1) If S(PL1(p)) > S(PL2(p)), then PL1(p) ≻ PL2(p).  
(2) If S(PL1(p)) < S(PL2(p)), then PL1(p) ≺ PL2(p).  
(3) If S(PL1(p)) = S(PL2(p)), then:  

a If H(PL1(p)) > H(PL2(p)), then PL1(p) ≻ PL2(p).  
b If H(PL1(p)) < H(PL2(p)), then PL1(p) ≺ PL2(p).  
c If H(PL1(p)) = H(PL2(p)), then PL1(p) ∼ PL2(p). 

Definition 8. Let X be a non-empty universe of discourse, give a 
PFPLTS PL(p) = {[x,PL(k)〈μ(k),ν(k)〉]|x ∈ X,PL(k) ∈ S,k = 1,2,…,#PL(p)}, 
and α(k) is the subscript of linguistic term PL(k), PL(p) is called an ordered 
PFPLTS, if the elements (PFPLEs) PL(k)(p̃(k)) in PFPLTS are sorted by the 
values of S(PL(k)(p̃(k)))(k= 1,2,…, #PL(P)) in ascending order. 

3.2. Some basic operation for PFPLTS 

With the introduction of PFPLTS, it is crucial to find the basic 
operation. Assume that all PFPLTSs are ordered and finite, then some 
basic operations are proposed as bellow: 

Definition 9. Let PL1(p)={[x,PL1
(k)〈μ1

(k),ν1
(k)〉]|x∈X,k=1,2,…, #

PL1(p)} and PL2(p)={[x,PL2
(l)〈μ2

(l),ν2
(l)〉]|x∈X,l=1,2,…,#PL2(p)} be 

any two PFPLTSs, then the distance measure is as follows: 

d(PL1(p),PL2(p))=
1
2
(

⃒
⃒
⃒
⃒
⃒

∑#PL1(p)

k=1
g
(
PL1

(k))
(

μ1
(k)
)2

−
∑#PL1(p)

k=1
g
(

PL2
(k)
)(

μ2
(k)
)2
⃒
⃒
⃒
⃒
⃒

+

⃒
⃒
⃒
⃒
⃒

∑#PL1(p)

k=1
g
(

PL1
(k)
)(

ν1
(k)
)2

−
∑#PL1(p)

k=1
g
(

PL2
(k)
)(

ν2
(k)
)2
⃒
⃒
⃒
⃒
⃒
)

(4) 
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Definition 10. Let PL1(p)= {[x,PL1
(k)〈μ1

(k),ν1
(k)〉]|x∈X,k= 1,2,…,

#PL1(p)} and PL2(p)= {[x,PL2
(l)〈μ2

(l),ν2
(l)〉]|x∈X, l=1,2,…,#PL2(p)}

be any two PFPLTSs, then some basic operations are defined as follows:  

(1) PL1(p) ⊕ PL2(p) =

g− 1
(
∪PL1

(k)〈μ1
(k) ,ν1 (k)〉∈PL1(p),PL2

(l)〈μ2
(l) ,ν2 (l)〉∈PL2(p)

{(γ1
(k) + γ2

(l) − γ1
(k)γ2

(l))〈μ1
(k)μ2

(l), ν1
(k)ν2

(l)〉}

)

.  

(2) PL1(p)⊖ PL2(p) = g− 1
(
∪PL1

(k)〈μ1
(k) ,ν1 (k)〉∈PL1(p),PL2

(l)〈μ2
(l) ,ν2 (l)〉∈PL2(p)

{ξ〈μ1
(k)μ2

(l), ν1
(k)ν2

(l)〉}

)

,

where ξ =

⎧
⎪⎨

⎪⎩

γ1
(k) − γ2

(l)

1 − γ2
(l) , ifγ1

(k) > γ2
(l), γ2

(l) ∕= 0

0, otherwise

. 

(3) PL1(p)⊗ PL2(p) = g− 1
(
∪PL1

(k)〈μ1
(k) ,ν1 (k)〉∈PL1(p),PL2

(l)〈μ2
(l) ,ν2 (l)〉∈PL2(p)

{γ1
(k)γ2

(l)〈μ1
(k)μ2

(l), ν1
(k)ν2

(l)〉}

)

. 

(4) PL1(p) ⊘ PL2(p) = g− 1
(
∪PL1

(k)〈μ1
(k) ,ν1 (k)〉∈PL1(p),PL2

(l)〈μ2
(k) ,ν2 (l)〉∈PL2(p)

{ζ〈μ1
(k)μ2

(l), ν1
(k)ν2

(l)〉}

)

, 

where ζ =

⎧
⎪⎨

⎪⎩

γ1
(k)

γ2
(l) , ifγ1

(k) ≤ γ2
(l), γ2

(l) ∕= 0

0, otherwise

. 

(5) λPL1(p) = g− 1(∪PL1
(k)〈μ1

(k) ,ν1 (k)〉∈PL1(p){(1 − (1 − γ1
(k))

λ
)〈μ(k),ν(k)〉}). 

(6) (PL1(p))λ
= g− 1(∪PL1

(k)〈μ1
(k) ,ν1 (k)〉∈PL1(p){(γ1

(k))
λ
〈μ(k),ν(k)〉}),λ ≥ 0. 

(7) (PL1(p))− 1
= g− 1(∪PL1

(k)〈μ1
(k) ,ν1 (k)〉∈PL1(p){(1 − γ1

(k))〈μ(k),ν(k)〉}). 

Where γ1
(k) ∈ g(PL1(p)), γ2

(l) ∈ g(PL2(p)), g(⋅) is the score function. 〈
μ1

(k), ν1
(k)〉 and 〈μ2

(k), ν2
(k)〉 are the uncertain probability values of hes-

itant linguistic evaluations, which are in the form of PFS. 

Theorem 1. Let PL1(p)={[x,PL1
(k)〈μ1

(k),ν1
(k)〉]|x∈X,k=1,2,…,

#PL1(p)}, PL2(p)={[x,PL2
(l)〈μ2

(l),ν2
(l)〉]|x∈X,l=1,2,…,#PL2(p)} and 

PL3(p)={[x,PL3
(r)〈μ3

(r),ν3
(r)〉]|x∈X,r=1,2,…,#PL3(p)} be any three 

PFPLTSs, λ,λ1,λ2≥0. Then:  

(1) PL1(p) ⊕ PL2(p) = PL2(p) ⊕ PL1(p).
(2) (PL1(p) ⊕ PL2(p)) ⊕ PL3(p) = PL1(p) ⊕ (PL2(p) ⊕ PL3(p)).
(3) λ(PL1(p) ⊕ PL2(p)) = λPL2(p) ⊕ λPL1(p).
(4) (λ1 + λ2)PL1(p) = λ1PL1(p) ⊕ λ2PL1(p).
(5) PL1(p)⊗ PL2(p) = PL2(p)⊗ PL1(p).
(6) (PL1(p)⊗ PL2(p))⊗ PL3(p) = PL1(p)⊗ (PL2(p)⊗ PL3(p)).
(7) (PL1(p) ⊗ PL2(p))λ

= (PL2(p))λ
⊗ (PL1(p))λ

.

(8) (PL1(p))(λ1+λ2) = (PL1(p))λ1 ⊗ (PL1(p))λ2 .

(9) λ(PL1(p)⊖ PL2(p)) = λPL1(p)⊖ λPL1(p).
(10) λ1PL1(p)⊖ λ2PL1(p)) = (λ1 − λ2)PL1(p).
(11) (PL1(p) ⊘ PL2(p))λ

= (PL1(p))λ
⊘ (PL2(p))λ

.

(12) (PL1(p))λ1 ⊘ (PL1(p))λ2 = (PL1(p))λ1 ⊘ (PL1(p))λ2 

Proof   

(5)PL1(p) ⊗ PL2(p)
= g− 1

(
∪PL1

(k) 〈μ1
(k) ,ν1(k) 〉∈PL1(p),PL2

(l)〈μ2
(l) ,ν2 (l)〉∈PL2(p)

{
γ1

(k)γ2
(l)〈μ1

(k)μ2
(l), ν1

(k)ν2
(l)〉}

)

= PL2(p) ⊗ PL1(p).

(6)(PL1(p)⊗PL2(p))⊗PL3(p)
= g− 1

(
∪PL1

(k) 〈μ1
(k) ,ν1 (k) 〉∈PL1(p),PL2

(l) 〈μ2
(l) ,ν2 (l)〉∈PL2(p),PL3

(r) 〈μ3
(r) ,ν3 (r) 〉∈PL3(p)

{
γ1

(k)γ2
(l)γ3

(r)〈μ1
(k)μ2

(l)μ3
(r),ν1

(k)ν2
(l)ν3

(r)〉}
)

=PL1(p)⊗(PL2(p)⊗PL3(p)).

(6)(PL1(p) ⊗ PL2(p)) ⊗ PL3(p)
= g− 1

(
∪PL1

(k) 〈μ1
(k) ,ν1 (k) 〉∈PL1(p),PL2

(l) 〈μ2
(l) ,ν2 (l)〉∈PL2(p),PL3

(r) 〈μ3
(r) ,ν3 (r) 〉∈PL3(p)

{
γ1

(k)γ2
(l)γ3

(r)〈μ1
(k)μ2

(l)μ3
(r), ν1

(k)ν2
(l)ν3

(r)〉}
)
= PL1(p) ⊗ (PL2(p) ⊗ PL3(p)).

(1)PL1(p) ⊕ PL2(p)
= g− 1

(
∪PL1

(k) 〈μ1
(k) ,ν1 (k) 〉∈PL1(p),PL2

(l)〈μ2
(l) ,ν2 (l) 〉∈PL2(p)

{(
γ1

(k) + γ2
(l) − γ1

(k)γ2
(l))〈μ1

(k)μ2
(l), ν1

(k)ν2
(l)〉}

)

= g− 1
(
∪PL2

(l)〈μ2
(l) ,ν2 (l) 〉∈PL2(p),PL1

(k) 〈μ1
(k) ,ν1(k) 〉∈PL1(p)

{(
γ2

(l) + γ1
(k) − γ2

(l)γ1
(k))〈μ2

(l)μ1
(k), ν2

(l)ν1
(k)〉}

)

= PL2(p) ⊕ PL1(p)

(2)(PL1(p) ⊕ PL2(p)) ⊕ PL3(p)

= g− 1
(
∪PL1

(k) 〈μ1
(k) ,ν1 (k) 〉∈PL1(p),PL2

(l)〈μ2
(l) ,ν2 (l) 〉∈PL2(p){(

γ1
(k) + γ2

(l) − γ1
(k)γ2

(l))〈μ1
(k)μ2

(l), ν1
(k)ν2

(l)〉}+ ∪PL3
(r) 〈μ3

(r) ,ν3 (r) 〉∈PL3(p){γ3
(r)〈μ3

(r), ν3
(r)〉}

)

= g− 1
(
∪PL1

(k) 〈μ1
(k) ,ν1 (k) 〉∈PL1(p),PL2

(l)〈μ2
(l) ,ν2 (l) 〉∈PL2(p),PL3

(r) 〈μ3
(r) ,ν3 (r) 〉∈PL3(p){(

γ1
(k) + γ2

(l) + γ3
(r) − γ1

(k)γ2
(l) − γ1

(k)γ3
(r) − γ2

(l)γ3
(r) + γ1

(k)γ2
(l)γ3

(r))〈μ1
(k)μ2

(l)μ3
(r), ν1

(k)ν2
(l)ν3

(r)〉}

)

= g− 1
(
∪PL1

(k) 〈μ1
(k) ,ν1 (k) 〉∈PL1(p)

{
γ1

(k)〈μ1
(k), ν1

(k)〉}

+∪PL2
(l)〈μ2

(l) ,ν2 (l)〉∈PL2(p),PL3
(r) 〈μ3

(r) ,ν3 (r) 〉∈PL3(p)

{(
γ2

(l) + γ3
(r) − γ2

(l)γ3
(r))〈μ2

(l)μ3
(r), ν2

(l)ν3
(r)〉}

)

= PL1(p) ⊕ (PL2(p) ⊕ PL3(p)).

(4)(λ1 + λ2)PL1(p)
= g− 1

(
∪PL1

(k) 〈μ1
(k) ,ν1 (k) 〉∈PL1(p)

{(
1 −

(
1 − γ1

(k))λ1+λ2
)〈

μ(k), ν(k)〉
})

= g− 1
(
∪PL1

(k) 〈μ1
(k) ,ν1 (k) 〉∈PL1(p)

{(
1 −

(
1 − γ1

(k))λ1
)
+
(

1 −
(
1 − γ1

(k))λ2
)
−
(

1 −
(
1 − γ1

(k))λ1
)(

1 −
(
1 − γ1

(k))λ2
)〈

μ(k), ν(k)〉
})

= g− 1
(
∪PL1

(k) 〈μ1
(k) ,ν1 (k) 〉∈PL1(p)

{(
1 −

(
1 − γ1

(k))λ1
)〈

μ(k), ν(k)〉
})

⊕ g− 1
(
∪PL1

(k) 〈μ1
(k) ,ν1 (k) 〉∈PL1(p)

{(
1 −

(
1 − γ1

(k))λ2
)〈

μ(k), ν(k)〉
})

= λ1PL1(p) ⊕ λ2PL1(p).
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3.3. The aggregation operators for PFPLTS 

In order to make better use of PFPLTS in decision-making problems, 
some aggregation operators are proposed in this subsection. 

Definition 11. Let PLi(p) = {[x,PLi
(k)〈μi

(k),νi
(k)〉]|x ∈ X,PLi

(k) ∈ S,k = 1,
2,…,#PLi(p)}, (i = 1,2,…,n), where PLi

(k) is the kth linguistic term, and 
〈μi

(k), νi
(k)〉 is the corresponding uncertain probability. Then the Py-

thagorean fuzzy probabilistic linguistic average (PFPLA) operator is 
defined as: 

PFPLA(PL1(p),PL2(p),…,PLn(p)) =
1
n
(PL1(p) ⊕ PL2(p) ⊕ ⋯ ⊕ PLn(p))

(5)  

Definition 12. Let PLi(p) = {[x, PLi
(k)〈μi

(k), νi
(k)〉]|x ∈ X, PLi

(k) ∈ S,
k = 1, 2,…,#PLi(p)}, (i = 1, 2,…, n), where PLi

(k) is the kth linguistic 
term, and 〈μi

(k), νi
(k)〉 is the corresponding uncertain probability. Then 

the Pythagorean fuzzy probabilistic linguistic weighted average 
(PFPWLA) operator is defined as: 

PFPLWA(PL1(p),PL2(p),…,PLn(p)) = ω1PL1(p) ⊕ ω2PL2(p) ⊕ ⋯

⊕ ωnPLn(p) (6)  

Where ω = (ω1,ω2,…,ωn)
T is the weight vector of PLi(p)(i = 1,2,…,

n), ωi ≥ 0, i = 1, 2, …, n, and 
∑n

i=1ωi = 1. Especially, if ω =

(1/n,1/n,…,1/n)T, then the PFPLWA operator degenerates to the 
PFPLA operator. 

Definition 13. Let PLi(p) = {[x,PLi
(k)〈μi

(k),νi
(k)〉]|x ∈ X,PLi

(k) ∈ S,k = 1,
2,…,#PLi(p)}, (i = 1,2,…,n), where PLi

(k) is the kth linguistic term, and 
〈μi

(k), νi
(k)〉 is the corresponding uncertain probability. Then the 

Pythagorean fuzzy probabilistic linguistic geometric (PFPLG) operator is 
defined as: 

PFPLG(PL1(p),PL2(p),…,PLn(p)) = (PL1(p) ⊗ PL2(p) ⊗ ⋯ ⊗ PLn(p))
1
n

(7)  

Definition 14. Let PLi(p) = {[x, PLi
(k)〈μi

(k), νi
(k)〉]|x ∈ X, PLi

(k) ∈ S,
k = 1, 2,…,#PLi(p)}, (i = 1, 2,…, n), where PLi

(k) is the kth linguistic 
term, and 〈μi

(k), νi
(k)〉 is the corresponding uncertain probability. Then 

the Pythagorean fuzzy probabilistic linguistic geometric (PFPLWG) 
operator is defined as: 

PFPLWG(PL1(p),PL2(p),…,PLn(p)) = (PL1(p))ω1 ⊗ (PL2(p))ω2 ⊗ ⋯

⊗ (PLn(p))ωn (8)  

Where ω = (ω1,ω2,…,ωn)
T is the weight vector of PLi(p)(i = 1,2,…,

n), ωi ≥ 0, i = 1, 2, …, n, and 
∑n

i=1ωi = 1. Especially, if ω =

(1/n,1/n,…,1/n)T, then the PFPLWG operator degenerates to the 
PFPLG operator. 

4. The weight calculation method 

The objectivity and accuracy of criteria weights are quite important 
in decision-making problems, which directly affect the validity of 
decision-making results. With the existing research methods and time- 
varying factors, we use the minimum deviation and the vector projec-
tion method to conduct in-depth research on the time weight method 
and the criteria’s fusion weight method. 

4.1. Time weight method based on minimum deviation of AHP and 
entropy method 

In dynamic decision-making problems, the importance of different 
stages is quite different. To make the time weights at different stages 
more convincing and improve the accuracy of the decision-making 

(8)(PL1(p))(λ1+λ2)

= g− 1
(
∪ PL(k)

1
〈
μ(k)

1 , ν(k)
1
〉
∈ PL1(p)

{(
γ(k)1
)(λ1+λ2)〈μ(k)

1 , ν(k)
1
〉})

= (PL1(p))λ1 ⊗ (PL1(p))λ2  

(8)(PL1(p))(λ1+λ2)

= g− 1
(
∪ PL(k)

1
〈
μ(k)

1 , ν(k)
1
〉
∈ PL1(p)

{(
γ(k)1
)(λ1+λ2)〈μ(k)

1 , ν(k)
1
〉})

= (PL1(p))λ1 ⊗ (PL1(p))λ2  

(11)(PL1(p)⊘PL2(p))λ

=g− 1

(

∪PL1
(k) 〈μ1

(k) ,ν1 (k) 〉∈PL1(p),PL2
(l) 〈μ2

(k) ,ν2 (l) 〉∈PL2(p)

{(
γ1

(k)

γ2
(l)

)λ〈
μ1

(k)μ2
(l),ν1

(k)ν2
(l)〉
})

=g− 1

(

∪PL1
(k) 〈μ1

(k) ,ν1 (k) 〉∈PL1(p),PL2
(l) 〈μ2

(k) ,ν2 (l) 〉∈PL2(p)

{(
γ1

(k))λ

(
γ2

(l))λ

〈
μ1

(k)μ2
(l),ν1

(k)ν2
(l)〉
})

=(PL1(p))λ
⊘(PL2(p))λ

,whenγ1
(k) ≤γ2

(l),γ2
(l) ∕=0.

(12)(PL1(p))λ1 ⊘ (PL1(p))λ2

= g− 1
(
∪PL1

(k) 〈μ1
(k) ,ν1 (k) 〉∈PL1(p)

{(
γ1

(k))λ1〈μ1
(k), ν1

(k)〉
})

⊘ g− 1
(
∪PL1

(k) 〈μ1
(k) ,ν1 (k) 〉∈PL1(p)

{(
γ1

(k))λ2〈μ1
(k), ν1

(k)〉
})

= g− 1
(
∪PL1

(k) 〈μ1
(k) ,ν1 (k) 〉∈PL1(p)

{(
γ1

(k))λ1 − λ2〈μ1
(k), ν1

(k)〉
})

= (PL1(p))λ1 ⊘ (PL1(p))λ2 ,whenγ1
(k) ≤ γ2

(l), γ2
(l) ∕= 0.
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results, we combine the subjective and objective weights to calculate the 
time weights. The entropy method calculates the objective time weight, 
reflecting the advantages in illustrating data information. Then, the DMs 
compare the importance of different stages in pairs according to their 
experience and use the AHP method to determine their objective 
weights. Finally, a model is set to solve the distribution coefficient by 
minimizing the deviation of the subjective and objective weights to the 
combined weight. 

Definition 15. Let X be a non-empty universe of discourse, A = {A1,

A2,⋯,Am} is the alternatives set, C = {c1, c2,⋯, cn} is the criteria sets, S 
= {sα|α = 0,1, 2,…, τ} is the linguistic term set. In the eth stage, the 
PFPLTS evaluation of the ith alternative under the jth criterion is 
recorded as PLij(p) = {[x,PL(ek)〈μ(ek), ν(ek)〉]|x ∈ X, PL(ek) ∈ S, k = 1,2,…,

#PLij(p)}. The entropy of eth stage is defined as: 

H(e) = −
1

2lnmn

∑m

i=1

∑n

j=1

(
P(e)

ijlnP(e)
ij +Q(e)

ijlnQ(e)
ij
)

(9)  

Where, P(e)
ij,Q(e)

ij represent the degree of membership and non- 
membership contribution at the eth stage, respectively. In order to 
obtain entropy H(e), the membership and non-membership contribution 
P(e)

ij and Q(e)
ijneed to be evaluated m*n times. And 

P(e)
ij =

∑#PLij(P)

k=1
g
(

PL(ek)
ij

)(
μ(ek)

ij

)2

∑m

i=1

∑#PLij(P)

k=1
g
(

PL(ek)
ij

)(
μ(ek)

ij
)2

(10)  

Q(e)
ij =

∑#PLij(P)

k=1
g
(

PL(ek)
ij

)(
ν(ek)

ij

)2

∑m

i=1

∑#PLij(P)

k=1
g
(

PL(ek)
ij

)(
ν(ek)

ij
)2

(11) 

Where, the function g(⋅) is given as Definition 2. The entropy weight 
of the eth stage is defined as: 

θ(1)(te) =
1 − H(e)

∑p

e=1
(1 − H(e))

(12) 

Definition 16. The 1~9 scale method is used to construct the 
pairwise judgment matrix A(aij)q×q about q stages, it is necessary to have 
q(q-1)/2 pairwise comparisons. The normalized eth row vector is 

θ(2)
(te) = p

̅̅̅̅̅̅̅̅̅̅̅̅
∏p

i=1
aei

√

(13)  

And the subjective weight of the eth stage can be calculated as: 

θ(2)(te) =
θ2(te)

∑p

e=1
θ2(te)

(14) 

The consistency test is performed on the judgment matrix. When CR 
< 0.1, the judgment matrix passes the consistency test, where CR = CI 
/RI, CI is the maximum eigenvalue of the judgment matrix, and RI is 
directly obtained by looking up the table. Otherwise, the judgment 
matrix should be reconstructed. 

Considering subjective and objective weights, we propose a combi-
nation weight method that minimizes the deviation between AHP and 
entropy weight method, which is defined as follows: 

Definition 17. The objective weight is θ(1)(te), the subjective weight is 
θ(2)(te), and the combination weight is θ(te) = αθ(1)(te)+ βθ(2)(te), where 
0 ≤ α,β ≤ 1,α+ β = 1. In order to obtain the coefficients, the nonlinear 
multi-objective programming model is constructed as follows: 

⎧
⎪⎨

⎪⎩

min
1

p − 1
∑p

e=1

( ⃒
⃒θ(te) − θ(1)(te)

⃒
⃒+
⃒
⃒θ(te) − θ(2)(te)

⃒
⃒
)

α + β = 1, 0 ≤ α, β ≤ 1

(15)   

4.2. Fusion criteria weights based on time-varying 

Since the criteria selection has been subjectively analyzed and 
selected by experts, this paper tends to use objective methods to deter-
mine the criteria weights. The objective weight method based on the 
idea of data analysis can avoid the error of subjective cognitive uncer-
tainty and help reduce the pressure of DMs. This subsection selects three 
common objective weight analysis methods and proposes the dual ideal 
point-vector projection method to get the fusion criteria weights with 
time-varying factors. 

4.2.1. Weight analysis method based on criterion recognition 
Generally, a criterion has a higher recognition degree for the 

distinction and selection of alternatives, the more critical it is in the 
decision-making process. Then, it should be given greater weight. 
Conversely, if the criterion has a low degree of recognition in evaluating 
the alternatives, the criterion is not conducive to decision-making and 
should be given a smaller weight. The weight method based on criterion 
recognition of PFPLTS is proposed in this subsection. 

Definition 18. Let PLij
(e) = {〈cj,PLij

(ek)(〈μij
(ek),νij

(ek)〉)〉|cj ∈ C,PLij
(ek) ∈

S,k = 1,2,…,#PLij(p)}, which means the PFPLTS evaluation information 
of alternative Ai about criterion cj at the eth stage. The degree of 
recognition is defined as: 

Oj
(e) =

∑m

i=1

∑m

l=1,l∕=i

d
(
PLij

(e),PLlj
(e)) (16)  

Where, d(PLij
(e),PLlj

(e)) means the deviation between alternative Ai 

and Al at the eth stage. 

Definition 19. Let ω(1) = (ω(1)
1 ,ω(1)

2 ,…,ω(1)
n ) denote the fusion weight 

based on the recognition degree of the criteria, then the recognition 
weight ω(1)

j with time varying of criterion cj is 

ω(1)
j =

∑q

e=1
θ(te)

Oj
(e)

∑n

p=1
Op

(e)
=
∑q

e=1
θ(te)

∑m

i=1

∑m

l=1,l∕=i
d
(
PLij

(e),PLlj
(e))

∑n

p=1

∑m

i=1

∑m

l=1,l∕=i
d
(
PLip

(e),PLlp
(e))

(17) 

Fig. 1.. The cosine projected vector on the positive and negative ideal weights.  
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In particular, if the identification degree of the criterion to the al-
ternatives is 0, it is completely impossible to distinguish the pros and 
cons of the alternatives, which means that the criterion has no meaning 
in decision-making, and the weight should be set to 0. 

4.2.2. Weight analysis method based on information disorder degree 
The orderliness of decision-making information is also crucial to the 

impact of decision making, which can be described as the lower the 
disorder degree, the greater the utility value of the information. Infor-
mation entropy is usually used to measure the disorder of information. 
The smaller the information entropy, the lower the information disorder 
degree, and the greater the effect value, then the greater the weight of 
the criterion. The weight method based on the information disorder 
degree of PFPLTS is proposed in this subsection. 

Definition 20. Let PLij
(e) = {〈cj,PLij

(ek)(〈μij
(ek),νij

(ek)〉)〉|cj ∈ C,PLij
(ek) ∈

S,k = 1,2,…,#PLij(p)}, which means the PFPLTS evaluation information 
of alternative Ai about criterion cj at the eth stage. The information 
entropy of criterion cj is defined as: 

Ej
(e) =

1
2lnm

∑m

i=1

(
Pij

(e)lnPij
(e) +Qij

(e)lnQij
(e)) (18)  

Where, Pij
(e),Qij

(e) represent the degree of membership and non- 
membership contribution, respectively. And 

Pij
(e) =

∑#PLij(P)

k=1
g
(

PL(ek)
ij

)(
μ(ek)

ij

)2

∑m

i=1

∑#PLij(P)

k=1
g
(

PL(ek)
ij

)(
μ(ek)

ij
)2

(19)  

Qij
(e) =

∑#PLij(P)

k=1
g
(

PL(ek)
ij

)(
ν(ek)

ij

)2

∑m

i=1

∑#PLij(P)

k=1
g
(

PL(ek)
ij

)(
ν(ek)

ij
)2

(20)) 

Where the function g(⋅) is given as definition 2. Especially, Ei
(e) = 1, 

when Pij
(e) = Qij

(e) = 1
m. 

Definition 21. Let ω(2) = (ω(2)
1 ,ω(2)

2 ,…,ω(2)
n ) denote the fusion weight 

based on information disorder degree, then the information disorder 
weight ω(2)

j with time-varying of criterion cj is 

Fig. 2.. Process of PFPL-PT method for dynamic MCGDM.  
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ω(2)
j =

∑q

e=1
θ(te)

1 − Ej
(e)

∑n

j=1

(
1 − Ej

(e))
(21)  

When the degree of membership and non-membership contributions 
tend to be the same, that is, Ej

(e) = 1, we can ignore this criterion in 
decision-making, and the corresponding weight is 0. 

4.2.3. Weight analysis method based on information hesitation degree 
The advantage of PFPLTS is that it can help DMs express the un-

certainty of linguistic evaluation, reflect the probability and ambiguity 
of each linguistic evaluation. Obviously, the lower the hesitation of the 
DM’s evaluation information, the more certain the decision-making is. It 
further shows that the evaluation information has higher accuracy, and 
the corresponding alternative should be given greater weight. The 
weight method based on the information hesitation degree of PFPLTS is 
proposed in this subsection. 

Definition 22. Let PLij
(e) = {〈cj,PLij

(ek)(〈μij
(ek),νij

(ek)〉)〉|cj ∈ C,PLij
(ek) ∈

S,k = 1,2,…,#PLij(p)}, which means the PFPLTS evaluation information 
of alternative Ai about criterion cj at the eth stage. The information 
hesitation degree Hj

(e) is defined as: 

Hj
(e) =

∑m

i=1

∑#LPij(p)

k=1

[
1 −

(
μ(ek)

ij

)2
−
(

ν(ek)
ij

)2]
(22)  

Definition 23. Let ω(3) = (ω(3)
1 ,ω(3)

2 ,…,ω(3)
n ) denote the fusion 

weight based on information hesitation degree, then the information 
hesitation weight ω(3)

j with time-varying of criterion cj is 

ω(3)
j =

∑q

e=1

1 − Hj
(e)

/
∑n

j=1
Hj

(e)

∑n

j=1

(

1 − Hj
(e)

/
∑n

j=1
Hj

(e)

) (23)   

4.2.4. Fusion weight method based on dual ideal point-vector projection 
The ideal point method has a wide range of applications in MCGDM 

problems, and many scholars have carried out in-depth research on it. 
The vector projection method has become a commonly used tool in 
studying multiple indexes due to its simple operation and easy under-
standing characteristics. The determination of the fusion weight is 
essentially a multi-index problem. In view of the advantages of the ideal 
point and vector projection method in multi-criteria problems, they will 
be integrated to get the fusion weight in this section. 

In MCGDM problems, the effects of criteria are often divided into 
positive and negative effects. Generally, we expect that the positive 
criterion weight to be larger and the negative criterion weight to be 
smaller. Each weight vector is cosine projected on the positive and 
negative ideal weights, and the projection diagram is shown in Fig. 1. 

The definitions of positive and negative ideal weight ω+ and ω− are 
presented below. 

Definition 24. Let ω(i) = (ω(i)
1 ,ω(i)

2 ,…,ω(i)
n ), i = 1,2,3, which represent 

the criteria weight based on criterion recognition, information disorder 
degree and information hesitation degree, respectively. When the cri-
terion is positive, 

ω+ =

(

max
j

ω(1)
j ,max

j
ω(2)

j ,max
j

ω(3)
j

)

(24)  

ω− =

(

min
j

ω(1)
j ,min

j
ω(2)

j ,minω(3)
j

)

(25)  

When the criterion is negative, 

ω+ =

(

min
j

ω(1)
j ,min

j
ω(2)

j ,minω(3)
j

)

(26)  

ω− =

(

max
j

ω(1)
j ,max

j
ω(2)

j ,max
j

ω(3)
j

)

(27) 

Definition 25. We have the criterion weight vector ω(i) = (ω(i)
1 ,ω(i)

2 ,

…, ω(i)
n ), i = 1, 2, 3, positive and negative ideal weight ω+ and ω− . Let 

vector ωide
j = (ω(1)

j ,ω(2)
j ,ω(3)

j )
T
. The positive projection intensity of the 

weight vector in the positive ideal weight is denoted as Bj, and the ratio 
of the positive projection intensity to the total sum is the positive fusion 
weight of the vector, denoted as ω+

j . 

Bj =
< ω+,ωide

j >

‖ ω+ ‖ ‖ ωide
j ‖

‖ ωide
j ‖ =

< ω+,ωide
j >

‖ ω+ ‖
(28)  

ω+
j =

Bj
∑n

i=1
Bj

(29)  

The negative projection intensity of the weight vector in the negative 
ideal weight is denoted as Dj, and the ratio of the negative projection 
intensity to the total sum is the negative fusion weight of the vector, 
denoted as ω−

j . 

Dj =
< ω− ,ωide

j >

‖ ω− ‖ ‖ ωide
j ‖

‖ ωide
j ‖ =

< ω− ,ωide
j >

‖ ω+ ‖
(30)  

ω−
j =

Dj
∑n

j=1
Dj

(31) 

Then, the fusion weight is defined as: 

ωj =
ω−

j + ω+
j

2
(32)  

5. Dynamic Pythagorean fuzzy probabilistic linguistic MCGDM 
with Psy-TOPSIS method 

In this section, we mainly introduce the Pythagorean fuzzy proba-
bilistic linguistic TOPSIS method with psychological distance measure 
(Psy-TOPSIS) method. Then an approach for MCGDM based on Py-
thagorean fuzzy probabilistic linguistic Psy-TOPSIS is proposed. 

5.1. Novel TOPSIS method with psychological distance measure 

Individuals do not consistently distribute their attention equally to 
each dimension when describing objects, and it differs their psycho-
logical space. A psychological distance measure, which can clarify the 
influence of different psychological factors and background information 
of the DMs and alternatives, is proposed. In psychological space, the 
preferential relationship between the alternatives is reflected by indif-
ferent vectors (vfj(j= 1,2,…, n − 1)) and dominant vector (vd). The 
indifferent vectors vfj quantitatively describe the relative gain due to 
criterion substitution and the dominant vector vd can manifest the di-
rection of the optimal alternative. 

In MCGDM problems, the alternatives set isA = (A1,A2,…,Am), C =

{c1, c2,⋯, cn} is the criteria sets, and the criteria weight is ω = (ω1,ω2,… 
, ωn). To calculate the indifferent vectors, we compare each criterion 
weight with the position weighted average weight (ω̃) based on the 
normal distribution. Then, the indifferent vectors can be calculated as: 

vfj =
(
−

ωj+1

ω̃ , 0,…, 0,
ω1

ω̃

)T
(34) 
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where ω1

ω̃ 
is at the (j + 1)th position. According to Berkowitsch [26], the 

dominance vector vd is orthogonal to all indifference vectors (vfj)n− 1, 
which means vd⋅vfj = 0, j = 1,2,…,n − 1. Then, the dominant vector is 

vd =
(ω1

ω̃ ,
ω2

ω̃ ,…,
ωn

ω̃

)T
(35) 

To calculate the projection in each direction, the basis matrix(M) can 
be built as 

M =
(
vf 1, vf 2,…, vfn− 1, vd

)T (36) 

And the basis matrix (M∗) after length normalization is 

M∗ =

(
vf 1

‖ vf 1 ‖
,

vf 2

‖ vf 2 ‖
,…,

vfn− 1

‖ vfn− 1 ‖
,

vd

‖ vd ‖

)T

(37) 

It is significant to weigh the dominance vector more strongly in 
psychological distance measure by adjusting the parameter wdom. Hence, 
we construct a psychological matrix H: 

H = diag(1, 1,…, 1,wdom) (38) 

Then, the psychological distance between alternatives Ak and Al can 
be computed as follows: 

‖ D ‖i = ‖ HM∗− 1d′ ‖i, i = 1, 2,∞. (39) 

Where, d is the standard distance matrix between two alternatives Ak 

and Al, d(Ak,Al) = (PLk1 − PLl1,PLk2 − PLl2,…,PLkn − PLln), PLij is the 
PFPLTS evaluation information of alternative Ai about criterion cj. 
Especially, ‖ D ‖is 1-norm, when i = 1. ‖ D ‖is 2-norm, wheni = 2. 
‖ D ‖is infinity-norm, when i = ∞. 

5.2. An approach for MCGDM problems based on PFPLF-PT method 

We mainly introduce the dynamic Pythagorean fuzzy probabilistic 
linguistic MCGDM with the Psy-TOPSIS method. The procedure is 
visualized in Fig. 2 and summarized as follows: 

Step1: Collect and preprocess the evaluation information of the 
PFPLTS decision matrices D(ge) = (PL(ge)

ij )m×n given by the gth DM under 
the same criteria at eth stage. 

Step2: Calculate the objective weights vector θ(g)1 (te) of the gth DM 
according to the method in Definition 15. 

Step3: To subjectively evaluate the importance of the three stages 
involved in the problem, use the 1~9 scale method in Definition 16 to 
construct pairwise judgment matrix A(aij)q×q, and calculate the subjec-

tive weight vector θ(g)2 (tk) through the AHP method. 
Step4: Combine the subjective and objective time weights, use a 

nonlinear optimization model to calculate the coefficients of the time 
combination weights, and then get the time combination weights vector 
θ(g) = (θ(g)(t1,t2,…,tq)), which is assigned by the method in Section 4.1. 

Step5: Derive the comprehensive PFPLTS decision matrix D(g) =

(V(com− g)
ij )m×n of each expert. And 

Table 1 
Individual PFPLTS decision matrix D11.   

c1  c2  c3  c4  c5  

A1  {s5〈0.8,0.1〉} {s5〈0.9,0.1〉} {s2〈0.7,0.3〉,
s3〈0.2,0.4〉}

{s3〈0.2,0.5〉,
s4〈0.7,0.2〉}

{s5〈0.8,0.1〉}

A2  {s2〈0.5,0.2〉,
s3〈0.3,0.1〉}

{s3〈0.6,0.2〉,
s4〈0.3,0.2〉}

{s5〈0.9,0.2〉} {s3〈0.8,0.1〉} {s1〈0.9,0.1〉}

A3  {s4〈0.6,0.1〉,
s5〈0.3,0.2〉}

{s4〈0.6,0.3〉,
s5〈0.3,0.1〉}

{s5〈0.9,0.1〉} {s4〈0.9,0.1〉} {s1〈0.9,0.1〉}

A4  {s1〈0.9,0.1〉} {s1〈0.6,0.2〉,
s2〈0.4,0.3〉}

{s2〈0.5,0.2〉,
s3〈0.4,0.3〉}

{s3〈0.7,0.2〉,
s4〈0.3,0.2〉}

{s1〈0.7,0.3〉,
s2〈0.2,0.2〉}

Table 2. 
Individual PFPLTS decision matrix D12.   

c1  c2  c3  c4  c5  

A1  {s2〈0.7,0.4〉,
s3〈0.3,0.4〉}

{s4〈0.7,0.3〉,
s5〈0.3,0.1〉}

{s2〈0.7,0.3〉,
s3〈0.2,0.4〉}

{s4〈0.9,0.2〉,
s5〈0.1,0.3〉}

{s4〈0.7,0.2〉,
s5〈0.2,0.5〉}

A2  {s2〈0.5,0.3〉,
s3〈0.4,0.1〉}

{s4〈0.7,0.2〉} {s5〈0.8,0.1〉} {s3〈0.9,0.1〉} {s2〈0.7,0.4〉,
s3〈0.1,0.3〉}

A3  {s4〈0.7,0.2〉,
s5〈0.2,0.3〉}

{s3〈0.6,0.3〉,
s4〈0.4,0.2〉}

{s5〈0.9,0.1〉} {s4〈0.8,0.2〉} {s1〈0.8,0.3〉,
s2〈0.2,0.2〉}

A4  {s1〈0.8,0.2〉,
s2〈0.2,0.4〉}

{s1〈0.7,0.3〉,
s2〈0.3,0.3〉}

{s3〈0.6,0.2〉} {s3〈0.9,0.1〉} {s1〈0.8,0.2〉}

Table 3. 
Individual PFPLTS decision matrix D13.   

c1  c2  c3  c4  c5  

A1  {s3〈0.7,0.3〉,
s4〈0.3,0.4〉}

{s4〈0.9,0.1〉} {s2〈0.8,
0.2〉}

{s4〈0.9,0.2〉,
s5〈0.1,0.3〉}

{s4〈0.7,0.3〉,
s5〈0.2,0.5〉}

A2  {s2〈0.5,0.3〉,
s3〈0.4,0.1〉}

{s4〈0.8,0.2〉} {s5〈0.8,
0.1〉}

{s3〈0.9,0.1〉} {s1〈0.9,0.1〉}

A3  {s4〈0.7,0.3〉,
s5〈0.2,0.4〉}

{s3〈0.6,0.3〉,
s4〈0.4,0.3〉}

{s5〈0.9,
0.1〉}

{s4〈0.8,0.1〉} {s4〈0.7,0.3〉,
s5〈0.3,0.2〉}

A4  {s1〈0.7,0.3〉,
s2〈0.3,0.1〉}

{s1〈0.8,0.2〉,
s2〈0.2,0.1〉}

{s3〈0.7,
0.1〉}

{s3〈0.9,0.1〉} {s1〈0.9,0.1〉}

Table 4. 
Individual PFPLTS decision matrix D21.   

c1  c2  c3  c4  c5  

A1  {s5〈0.9,0.1〉} {s5〈0.9,0.1〉} {s3〈0.6,0.4〉,
s4〈0.3,0.1〉}

{s3〈0.8,0.2〉} {s5〈0.9,0.1〉}

A2  {s2〈0.5,0.2〉,
s3〈0.3,0.1〉}

{s3〈0.5,0.3〉,
s4〈0.5,0.4〉}

{s5〈0.9,0.1〉} {s2〈0.6,0.4〉,
s3〈0.4,0.1〉}

{s1〈0.9,0.2〉}

A3  {s4〈0.8,0.1〉} {s5〈0.8,0.2〉} {s5〈0.9,0.1〉} {s4〈0.8,0.3〉,
s5〈0.1,0.3〉}

{s1〈0.9,0.2〉}

A4  {s3〈0.8,0.2〉} {s2〈0.7,0.3〉,
s3〈0.2,0.1〉}

{s3〈0.6,0.3〉,
s4〈0.4,0.3〉}

{s3〈0.8,0.1〉} {s1〈0.8,0.3〉,
s2〈0.2,0.1〉}

Table 5. 
Individual PFPLTS decision matrix D22.   

c1  c2  c3  c4  c5  

A1  {s2〈0.9,0.2〉,
s3〈0.1,0.1〉}

{s4〈0.9,0.2〉} {s3〈0.7,0.3〉} {s4〈0.8,0.3〉,
s5〈0.2,0.1〉}

{s4〈0.8,
0.2〉}

A2  {s3〈0.6,0.2〉} {s4〈0.8,0.2〉} {s5〈0.9,0.1〉} {s2〈0.3,0.3〉,
s3〈0.7,0.2〉}

{s3〈0.9,
0.2〉}

A3  {s4〈0.8,0.1〉} {s3〈0.7,0.3〉,
s4〈0.3,0.2〉}

{s5〈0.9,0.1〉} {s4〈0.9,0.2〉} {s1〈0.8,
0.2〉}

A4  {s2〈0.9,0.1〉} {s2〈0.7,0.3〉} {s3〈0.7,0.2〉,
s4〈0.3,0.2〉}

{s4〈0.7,0.3〉,
s5〈0.3,0.4〉}

{s1〈0.8,
0.2〉}

Table 6. 
Individual PFPLTS decision matrix D23.   

c1  c2  c3  c4  c5  

A1  {s3〈0.8,
0.2〉}

{s4〈0.9,0.2〉} {s3〈0.8,
0.2〉}

{s4〈0.9,0.2〉, s5〈0.1,
0.3〉}

{s4〈0.8,
0.2〉}

A2  {s3〈0.7,
0.2〉}

{s4〈0.8,0.2〉} {s4〈1〉} {s2〈0.5,0.3〉, s3〈0.5,
0.2〉}

{s1〈0.9,
0.1〉}

A3  {s4〈0.8,
0.2〉}

{s3〈0.7,0.3〉, s4〈0.3,
0.2〉}

{s5〈0.9,
0.1〉}

{s4〈0.9,0.2〉} {s4〈0.8,
0.2〉}

A4  {s2〈0.9,
0.1〉}

{s2〈0.8,0.2〉} {s3〈0.8,
0.2〉}

{s4〈0.8,0.2〉} {s1〈0.8,
0.2〉}
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V (com− g)
ij =

∑p

e=1
θ(te)PLij

(ge) (40) 

Where, PLij
(ge) = [PLij

(gk)(te)〈μij(te)
(gk)

, νij(te)(gk)
〉], PLij

(gk)(te) ∈ S,k = 1,

2,…,#PL(ge)
ij . According to formula in Definition 6, 

V (com− g)
ij =

∑p

e=1
θ(te)

[
PLij

(g)(te)
〈
μij(te)

(g)
, νij(te)

(g)〉]

=
∑p

e=1
∪PLij

(gk) (te)〈μij(te)
(gk) ,νe(te)(gk)〉∈PLij

(ge)

{(
1 −

(
1 − PLij

(gk)(te)
)θ(te)

)〈
μij(te)

(gk)
, νij(te)

(gk)〉
}

(41) 

Step6: According to the score function in Definition 2 and Definition 
7, find the positive and negative ideal solution of each DM, respectively. 

Step7: Calculate the distance from each alternative to the positive 
and negative ideal solution, and get the positive and negative distance 
matrix of every DM, respectively. 

Step8: Calculate the criteria weights with time-varying based on 
criterion recognition by Eq. (17). 

Step9: Calculate the criteria weights with time-varying based on 
information disorder degree by Eq. (21). 

Step10: Calculate the criteria weights with time-varying based on 
information hesitation degree by Eq. (23). 

Step11: Calculate the fusion criteria weights based on the dual ideal 
point-vector projection method as Eq. (32). The time-varying fusion 
weight vector is recorded as ω[g] = (ω1

[g],ω2
[g],…,ωn

[g])
T. 

Step12: Calculate the dominance vector vd and the indifference 
vectors (vfj)n− 1 by the fusion criteria weight ω[g]. Then, build the basis 
matrix M. 

Step13: Construct a psychological matrix H = diag(1,1,…,1,wdom)

Step14: Compute the psychological distances d(g)
psy(Vij

(com− g),Vj
+) and 

d(g)
psy(Vij

(com− g), Vj
− ), Vj

+ and Vj
− are the positive ideal solution and 

negative ideal solution of Vij
(com− g)respectively. 

Step15: Through the weighted average method, the comprehensive 
psychological distance d(g)

psy(Ai,A+) and d(g)
psy(Ai,A− ) are aggregated based 

on each DM’s psychological distance in Step 14, and the DMs’ weight 
vector is σ = (σ1, σ2,…, σg)

T. 
Step16: Calculate the closeness ηi for each alternative Ai. 
Step17: Sort the alternatives according to ηi and choose the best one. 

6. Case study and analysis 

This section will give an example about the site selecting of the 
COVID-19 vaccination center to illustrate the proposed method. 

6.1. Case study: site selecting of the COVID-19 vaccination center 

With the control of the COVID-19 in the country, production and life 
are slowly recovering. China successfully eliminated COVID-19 and 

Table 7. 
Judgment matrix A(aij)q×q.   

t1 t2 t3 

t1 1 1/3 5 
t2 3 1 7 
t3 1/5 1/7 1  

Fig. 3. . The time weight radar map of E1.  

Fig. 4. The time weight radar map of E2.  

Table 8 
Time comprehensive decision matrix D1.   

c1  c2  

A1  {s5〈0.8,0.056〉} {s5〈0.81,0.004〉}
A2  {s2〈0.125,0.018〉, s2.2335〈0.1, 0.006〉, s2.3329〈0.075, 0.009〉,

s2.5405〈0.06, 0.003〉, s2.5604〈0.1, 0.006〉, s2.7503〈0.08, 0.002〉,
s2.8311〈0.06, 0.003〉, s3〈0.048,0.001〉}

{s3.7773〈0.336,0.008〉, s3.9999〈0.168,0.008〉}

A3  {s3.9999〈0.294,0.006〉, s5〈0.435,0.009〉} {s3.3641〈0.216,0.027〉, s3.5758〈0.144,0.027〉,
s3.8512〈0.144, 0.018〉, s3.9999〈0.096, 0.018〉,
s5〈0.3, 0.03〉}

A4  {s1.546〈0.441, 0.012〉, s1.7391〈0.189, 0.004〉,
s2.1912〈0.189,0.012〉, s2.3482〈0.081, 0.004〉}

{s1〈0.336,0.012〉, s1.2236〈0.084,0.006〉,
s1.32〈0.224,0.018〉, s1.5257〈0.056,0.009〉,
s1.546〈0.144,0.012〉, s1.7391〈0.036,0.006〉,
s1.8223〈0.096, 0.018〉, s2〈0.024,0.009〉}

c3  c4  c5  

A1  {s2〈0.3920,0.018〉, s2.3329〈0.112,0.024〉,
s2.5604〈0.112,0.024〉, s2.8311〈0.032,0.032〉}

{s3.7773〈0.162,0.02〉, s3.9999〈0.567,0.008〉,
s5〈0.171, 0.147〉}

{s5〈0.648,0.056〉}

A2  {s5〈0.576,0.002〉} {s3〈0.648,0.001〉} {s1.546〈0.567,0.004〉, s2.1912〈0.081,0.003〉}
A3  {s5〈0.729,0.001〉} {s3.9999〈0.576,0.002〉} {s1.9684〈0.504,0.009〉, s2.1912〈0.216,0.006〉}
A4  {s2.7503〈0.21,0.004〉, s3〈0.168,0.006〉} {s3〈0.567,0.02〉, s3.3641〈0.243,0.002〉} {s1〈0.504,0.006〉, s1.32〈0.144,0.004〉}
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became a non-epidemic area. However, no country can afford the cost of 
isolation from the world. At most, it can only temporarily block 
personnel exchanges with a few countries. When many countries outside 
of China treat the COVID-19 as the flu, we cannot stand alone. How to 
adapt to this possible prospect is a major challenge and a subject worth 
considering. 

The good news is that China has sufficient industrial and health 
strength to provide vaccination for a large-scale population. At the same 
time, the State Council promised that individuals would not bear any 
vaccination costs. The principle of vaccination is to make the body 
produce antibodies naturally by accessing the deactivated COVID-19. 
Vaccinating can significantly enhance the immunity of this virus. As of 
June 18, 2021, 31 provinces (autonomous regions and municipalities 
directly under the central government) and the Xinjiang Production and 

Construction Corps reported a total of 99.257 million doses of COVID-19 
vaccination. Choosing the site of the COVID-19 vaccination center will 
be related to the public recognition, vaccination efficiency and vacci-
nation success rate, and ultimately affect the essential role of the vac-
cine. Temporary vaccination centers are generally transformed from 
some public places, such as gymnasiums, conference halls. The choice of 
vaccination sites is an MCGDM problem. Suppose that the health 
administration of District A needs to establish a vaccination site. After 
preliminary screening, four alternatives {A1,A2,A3,A4}are formed, and 
two DMs {E1,E2} will evaluate the alternatives from the following five 
criteria:  

(1) Traffic conditions(c1): Reasonable and efficient traffic condition 
is conducive to vaccinators to save traffic costs. In addition, 

Table 9 
Time comprehensive decision matrix D2.   

c1  c2  c3  

A1  {s5〈0.864,0.006〉} {s5〈0.81,0.004〉} {s3〈0.336,0.024〉, s3.3413〈0.168,0.006〉}
A2  {s2.7685〈0.21, 0.008〉,

s3〈0.126, 0.004〉}
{s3.7943〈0.32, 0.012〉,
s4〈0.448,0.008〉}

{s5〈0.81,0〉}

A3  {s4〈0.512,0.002〉} {s5〈0.968,0.03〉} {s5〈0.729,0.001〉}
A4  {s2.3112〈0.648,0.002〉} {s1.9999〈0.392,0.018〉,

s2.3112〈0.336, 0.012〉}
{s3〈0.336, 0.012〉, s3.3413〈0.28, 0.008〉,
s3.5956〈0.24, 0.006〉, s3.8352〈0.2, 0.004〉}

c4  c5  

A1  {s3.7943〈0.576,0.012〉, s5〈0.568,0.018〉} {s5〈0.576,0.004〉}
A2  {s1.9999〈0.216,0.036〉, s2.2559〈0.288,0.012〉,

s2.3112〈0.18, 0.018〉, s2.5406〈0.24, 0.006〉,
s2.5603〈0.288,0.012〉, s2.7685〈0.384,0.004〉,
s2.8135〈0.24, 0.006〉, s3〈0.32, 0.002〉}

{s3.0276〈0.729,0.004〉}

A3  {s4〈0.648,0.012〉, s5〈0.405,0.008〉} {s1〈0.576,0.008〉}
A4  {s3.283〈0.448,0.006〉, s3.7943〈0.32,0.002〉} {s1〈0.512,0.006〉, s1.2988〈0.32,0.004〉}

Table 10 
The positive and negative ideal solution of each DM.   

c1  c2  c3  c4  c5  

A(1)+ {s5〈0.8,0.056〉} {s4〈0.9,0.2〉} {s2〈0.3920, 0.018〉,
s2.3329〈0.112,0.024〉,
s2.5604〈0.112,0.024〉,
s2.8311〈0.032,0.032〉}

{s3.7773〈0.162,0.02〉,
s3.9999〈0.567,0.008〉,
s5〈0.171,0.147〉}

{s5〈0.648,0.056〉}

A(1)− {s2〈0.125, 0.018〉,
s2.2335〈0.1,0.006〉,
s2.3329〈0.075,0.009〉,
s2.5405〈0.06, 0.003〉,
s2.5604〈0.1,0.006〉,
s2.7503〈0.08, 0.002〉,
s2.8311〈0.06, 0.003〉,
s3〈0.048,0.001〉}

{s1〈0.336,0.012〉,
s1.2236〈0.084,0.006〉,
s1.32〈0.224, 0.018〉,
s1.5257〈0.056,0.009〉,
s1.546〈0.144,0.012〉,
s1.7391〈0.036,0.006〉,
s1.8223〈0.096,0.018〉,
s2〈0.024, 0.009〉}

{s2.7503〈0.21, 0.004〉,
s3〈0.168,0.006〉}

{s3〈0.567, 0.02〉,
s3.3641〈0.243,0.002〉}

{s1〈0.504,0.006〉,
s1.32〈0.144,0.004〉}

A(2)+ {s5〈0.864,0.006〉} {s5〈0.968,0.03〉} {s5〈0.81,0〉} {s3.7943〈0.576,0.012〉,
s5〈0.568,0.018〉}

{s5〈0.576,0.004〉}

A(2)− {s2.7685〈0.21, 0.008〉,
s3〈0.126,0.004〉}

{s1.9999〈0.392, 0.018〉,
s2.3112〈0.336,0.012〉}

{s3〈0.336, 0.024〉,
s3.3413〈0.168,0.006〉}

{s3.283〈0.448,0.006〉,
s3.7943〈0.32, 0.002〉}

{s1〈0.576,0.008〉}

Fig. 5. The criteria weights relation of E1.  Fig. 6. The criteria weights relation chart of E2.  
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convenient transportation also helps increase vaccine 
acceptance. 

(2) Flow density (c2): There are many people waiting to be vacci-
nated, and most of them are vulnerable to infection. To prevent 
the possibility of the spread of COVID-19, the flow density of the 
site should not be too high.  

(3) Internal facilities(c3): There should be sufficient material storage 
and turnover space and good emergency equipment to prevent 
particular circumstances such as trampling and chaos. 

(4) Surrounding supporting construction(c4): Complete security fa-
cilities and drainage systems are needed. Moreover, it should also 

consider surrounding eating and resting places so that the vac-
cinators can eat and rest nearby. 

(5) Transportation and modification costs(c5): During the trans-
portation of vaccines, due to factors such as the length of trans-
portation time and temperature, the vaccine’s potency is reduced 
or invalid. The transportation cost should be considered on the 
premise that the vaccine will not be damaged. At the same time, 
the cost and complexity of site reconstruction should not be too 
high. Then, the steps to solve the problem are as follows: 

Step1: Collect and preprocess the evaluation information of PFPLTS 

Fig. 7. The influence of wdom on dpsy(Ai,A+) and dpsy(Ai,A− ).  

Fig. 8. The ranking result with different norms.  
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decision matrices D(ge) = (PL(ge)
ij )m×n given by each DM under the same 

criteria at three different stages. The decision matrices are shown in 
Tables 1–6, which already meet the standard and do not need to be 
processed. 

Step2: Calculate the objective weight θ(g)1 of the gth DM at different 
stages according to the method in Definition 15. The objective time 
weights of the two DMs are θ(1)1 = (0.30,0.37,0.33)Tand θ(2)1 =

(0.26,0.37,0.37)T, respectively. 
Step3: Use the 1~9 scale method to construct pairwise judgment 

matrix A(aij)q×q, which is shown in Table 7. Calculate the subjective 
weight θ2 through the AHP method. 

The objective time weight is θ2 = (0.28,0.65,0.07)T . 
Step4: To integrate the subjective and objective time weights, we use 

the nonlinear optimization model to calculate coefficients of the time 
combination weights by the method in Section 4.1, and then get the time 
combination weights θ(1) = (0.29,0.51,0.20), θ(2) = (0.27,0.51,0.22). 
The radar map of the fusion time weight, subjective and objective time 
weight is shown in Figs. 3 and 4. 

Step5: Derive the comprehensive PFPLTS decision matrix D(g) =

(V(com− g)
ij )m×n of each expert with time weight. The comprehensive time 

decision matrices are shown in Tables 8 and 9. 
Step6: According to the score function in Definition 2,7, the positive 

and negative ideal solutions of each DM are shown in Table 10. 
Step7: Calculate the distance from each alternative to the positive 

and negative ideal solution, get the positive and negative distance ma-
trix of every DM, respectively. 

Step8: According to Eq. (17), the criteria weights vectors with time- 
varying based on criterion recognition are ω1

(1) =

(0.19,0.20,0.23,0.18,0.20)T and ω1
(2) = (0.14,0.21,0.26,0.17,0.21)T . 

Step9: According to Eq. (21), the criteria weights vectors with time- 
varying based on information disorder degree are ω2

(1) =

(0.21,0.21,0.21,0.20,0.17)T and ω2
(2) = (0.21,0.21,0.21,0.21,0.17)T . 

Step10: According to Eq. (23), the criteria weights vectors with time- 
varying based on information hesitation degree are ω3

(1) =

(0.18,0.19,0.21,0.22,0.21)T and ω1
(2) = (0.18,0.19,0.22,0.21,0.21)T . 

Step11: Based on the dual ideal point-vector projection method as 
Eq. (32). The fusion weight vectors are recorded as ω(1) =

(0.19,0.20,0.23,0.18,0.20)T and ω(2) = (0.17,0.20,0.23,0.20,0.19)T. 
And the relation between these weights can be shown in Figs. 5 and 6. 

Step12: Calculate the dominance vector vd and the indifference 
vectors (vfj)n− 1 by the fusion criteria weight ω(1) and ω(2). Then, the basis 
matrix M is obtained. 

Step13: Construct a psychological matrix H = diag(1,1,…,1,wdom), 
and let wdom = 10. 

Step14: Compute the psychological distance d(g)
psy(Vij

(com− g),V+) and 
d(g)

psy(Vij
(com− g),V− ) with the comprehensive value in Step 5. 

Step15: The DMs’ weight vector is σ = (0.5,0.5)T . Then, with the 
weighted average method, the comprehensive psychological distances 
d(g)

psy(Ai,A+) and d(g)
psy(Ai,A− ) are aggregated based on each DM’s psy-

chological distance in step 14. 
Step16: Calculate the closeness ηi for each alternative Ai. The 

comprehensive closeness ηi = (0.6631,0.3120,0.5324,0.0513). 
Step17: In accordance with ηi, the final alternative ranking is 

A1 ≻ A3 ≻ A2 ≻ A4. 
In the case calculation, keep the dominance vector at an appropriate 

importance and set the psychological index to 10. According to the 
evaluation information given by the two experts and the criteria weights 
calculated according to the time weights of different stages, the rec-
ommended ranking of the COVID-19 vaccination center selection in the 
four alternatives is A1 ≻ A3 ≻ A2 ≻ A4. Therefore, it is suggested that 
the health administration of District A establish a vaccination center at 
A1. 

6.2. Comparison and discussion 

In the former section, we mention that the variable wdom reflects the 
preference of DMs. Different distance measures and decision-making 
methods make the Psy-TOPSIS method more robust and flexible. 
Hence, to further illustrate the effectiveness of the proposed method, the 
analysis is conducted with different distance measures, decision-making 
methods and the value of wdom ranges from 1 to 40. 

6.2.1. Sensitivity analysis 
We draw figures to show the influence of parameter wdom and 

different distance measures on the alternative rankings. Fig. 7(a)-(b) 
describes the influence of varying wdom on the distance from each 
alternative to the positive and negative ideal solutions when 1-norm is 
used. It is easy to find that both dpsy(Ai,A+) and dpsy(Ai,A− ) increase 
with wdomfrom Fig. 7(a)-(b), and dpsy(Ai,A+) increases faster than dpsy(Ai,

A− ). 
DMs can express their unique personal preferences by providing 

diverse wdom, which determines the weight between dominant and 
indifferent directions. Especially, with 1-norm, when wdom = 1, which 
means the preferential relationship has no difference between dominant 
vector and indifferent vectors. From Fig. 8(a)-(c), we can conclude that 
the rankings of the alternatives are identical when wdom or the norms are 
different, yet the closeness gap increases with the increase of wdom, no 
matter which norm is used. And when wdom is greater than 4, the 
closeness gradually stabilizes, and the ranking of the alternatives be-
comes stable, which shows that our method is adequately effective and 
robust. Hence, DMs can select the value of wdom that will affect the 
alternative closeness and final rankings to describe their psychological 
preference of the dominant vector and indifferent vectors. 

6.2.2. Comparison with different ranking aggregation methods 
To illustrate the effectiveness of the proposed aggregation method, 

we compare the ranking results of several ranking aggregation methods 
with ours. As we can see from Table 11, the optimal location obtained by 
all ranking aggregation methods is A1, but the final rankings are slightly 
different by these ranking aggregation methods. The results produced by 
all these methods are not very different or even basically the same. The 
most important reason is that we use the same weights and weight 
method in the calculation, that is, the weight determination method 
proposed in Section 4 above. The traditional TOPSIS method [17] can 
effectively avoid data subjectivity and well depict the comprehensive 
influence of multiple indicators. The advantage of the OWA operator [2] 
is that it can reflect the importance of the information itself, as well as 
the importance of the location of the information. The GBWM method 
has a broad application prospect because of its low time complexity in 
computation. However, these methods can only determine the only 
decision alternatives ranking according to the known weight and deci-
sion information, that is, time varying factors and decision maker’s 
psychology are not considered. 

In the Psy-TOPSIS method, we can fully use the changing and un-
certain information to derive the time and criteria weights, which can 
directly influence the final ranking. At the same time, the DMs can fully 

Table 11 
Final ranking by different ranking aggregation methods.  

Ranking aggregation method Final ranking Optimal location 

Method in [17] A1 ≻ A3 ≻ A2 ≻ A4  A1  

Method in [2] A1 ≻ A2 ≻ A3 ≻ A4  A1  

Method in [30] A1 ≻ A3 ≻ A2 ≻ A4  A1  

Proposed method(1-norm) A1 ≻ A3 ≻ A2 ≻ A4  A1  

Proposed method(2-norm) A1 ≻ A3 ≻ A2 ≻ A4  A1  

Proposed method(infinity-norm) A1 ≻ A3 ≻ A2 ≻ A4  A1   
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reflect their psychological preference for different alternatives between 
dominant vector and indifferent vectors, which indicates the effective-
ness and superiority of the proposed method to other aggregation 
methods. 

7. Conclusion 

PLTS is a valuable technique in linguistic evaluation. However, DMs 
may be uncertain and self-denying about the given linguistic terms. To 
reflect the uncertainty and hesitation of DMs, we have extended the 
traditional PLTS to a new fuzzy linguistic set named PFPLTS. Then, some 
corresponding basic operations and aggregation operators have been 
proposed. A linear programming method with minimum deviation and 
the vector projection method to determine the time and criteria weights 
are submitted, respectively, which can determine the importance of 
different stages in dynamic Pythagoras fuzzy probabilistic linguistic 
MCGDM problems and make full use of the hesitation and uncertainty of 
the evaluation information. Furthermore, DMs’ psychological prefer-
ence information has been considered. With the new time and criteria 
weights method, the TOPSIS method with psychological distance has 
been developed. Finally, the validity and feasibility are verified with a 
numerical example, site selecting of COVID-19 vaccination center. 

In the future study, the proposed method can be applied in other 
MCGDM problems, such as medical diagnosis and investment decisions 
combined with forecasting model. In addition, the weight methods and 
the Psy-TOPSIS method can be further used in other fuzzy sets, such as 
intuitionistic fuzzy set and so on. 
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