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Simple Summary: Remotely piloted aircraft systems (RPAS) have been successfully applied in
wildlife monitoring with imaging sensors to improve or to supplement conventional field observations.
To effectively utilize this technique, we reviewed previous studies related to wildlife detection with
RPAS. First, this study provides an overview of the applications of RPAS for wild animal studies
from the perspective of individual detection and population surveys as well as behavioral studies.
In terms of the RPAS payload, applying thermal-imaging sensors was determined to be advantageous
in detecting homeothermic animals due to the thermal contrast with background habitat using case
studies detecting southern elephant seal (Mirounga leonina) using RGB and thermal imaging sensors
in King George Island, maritime Antarctica.

Abstract: In wildlife biology, it is important to conduct efficient observations and quantitative
monitoring of wild animals. Conventional wildlife monitoring mainly relies on direct field
observations by the naked eyes or through binoculars, on-site image acquisition at fixed spots,
and sampling or capturing under severe areal constraints. Recently, remotely piloted aircraft systems
(RPAS), also called drones or unmanned aerial vehicles (UAV), were successfully applied to detect
wildlife with imaging sensors, such as RGB and thermal-imaging sensors, with superior detection
capabilities to those of human observation. Here, we review studies with RPAS which has been
increasingly used in wildlife detection and explain how an RPAS-based high-resolution RGB image
can be applied to wild animal studies from the perspective of individual detection and population
surveys as well as behavioral studies. The applicability of thermal-imaging sensors was also assessed
with further information extractable from image analyses. In addition, RPAS-based case studies
of acquisition of high-resolution RGB images for the purpose of detecting southern elephant seals
(Mirounga leonina) and shape property extraction using thermal-imaging sensor in King George Island,
maritime Antarctica is presented as applications in an extreme environment. The case studies suggest
that currently available cost-effective small-sized RPAS, which are capable of flexible operation and
mounting miniaturized imaging sensors, and are easily maneuverable even from an inflatable boat,
can be an effective and supportive technique for both the visual interpretation and quantitative
analysis of wild animals in low-accessible extreme or maritime environments.

Keywords: wildlife biology; remotely piloted aircraft system; UAV; drone; quantitative monitoring;
polar region; thermal-imaging sensor
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1. Introduction

In wildlife management or conservation, scientists monitor animal populations and make
behavior observations from the monitoring with the quantitative information on the status and trends
of populations (e.g., [1,2]). To conduct ecological monitoring on wild animals, traditional field surveys,
i.e., direct field observations by the naked eyes or through binoculars, on-site image acquisition at
fixed spots, and sampling or capturing under areal constraints, have been widely used. For birds,
direct observation recorded by point or transect counts is typically performed within a limited time or
until a cumulative richness is saturated [3]. Non-invasive samples from trapping camera or collecting
feces are analyzed to apprehend the genetic relationship [4] or reproductive events [5]. Mist-netting has
been mainly deployed to catch birds [6] and bats [7]. Animals captured by any other manner are
banded or tagged and then released [8,9].

To observe and monitor wildlife, remote sensing techniques are considered efficient at various
spatial and temporal scales [10]. Manned aircraft, a remote sensing platform, have been used to
investigate the status and distribution of free-ranging wild animal populations while overcoming the
aerial constraints of the conventional fieldwork-based monitoring methods (e.g., [11,12]). Aerial surveys
with manned aircraft require high operating costs, especially for repetitive flights for monitoring
purposes, even when investigating a small study area and with a runway within a suitable distance
to the study area. This method is adequate for applications with large enough animals, such as
medium to large mammals, detectable from relatively higher flight heights than remotely piloted
aircraft systems (RPAS). Publicly available satellite images of regional-scale coverage from Terra and
Aqua satellites with moderate-resolution imaging spectroradiometer (MODIS) or Landsat satellite
data were commonly used to monitor land-cover types (e.g., [13,14]), but these mid- to low-resolution
satellite images are not feasible for the direct monitoring of individual animals. Researchers indicated
the problems of higher-resolution commercial satellite imagery (i.e., the spatial resolution of less than a
few meters) suitable for ecological monitoring such as the high cost of scenes, limited repeat times
depending on orbits, and cloud contamination and suggested to the use of lightweight unmanned
aerial vehicles to solve those issues and allow researchers to study spatial ecology at close range [15].

Before describing the applications of RPAS in wildlife studies, we will clarify our use of terminology.
There are several terms to indicate aerial-vehicle systems that are remotely controlled without human
pilots. First, “drone” is a colloquial term to refer to a pilotless aircraft, and drones were also originally
developed under military objectives [16]. As described in Table 1, “unmanned aerial vehicles (UAVs)”
and “unmanned aircraft systems (UAS)” were adopted in the past [17,18]. “Remotely piloted aircraft
systems (RPAS)” functioning in safe and predictable operation regarding their interaction with
other aircrafts [18] are technically included in UAS; however, RPAS has now become more of an
internationally adopted term compared UAS followed by the International Civil Aviation Organization
(ICAO) [19] because of a widened meaning of UAS [16]. As an aircraft could be lighter or heavier than
air, unmanned aircraft also includes free balloons and fully autonomous operations [19]. However,
RPA operators must be properly certificated or licensed under local or international authorities with
regard to aviation safety. Therefore, while the terms UAV and UAS are still widely used in many
articles (e.g., [20,21]), we primarily use “RPAS” when indicating an aerial system throughout the text
to highlight the importance of real-time control with RPAS.

RPAS has merits in wildlife detection and monitoring: safety [22], reasonable prices [23],
and flexibility in use [24]. An RPAS could fly to an area that is dangerous for manned aircraft to approach,
such as narrow fjords [25] and fragmented sea ice [26]. An RPAS could ensure the safety of researchers
from becoming too close to fierce wild animals, like the Nile crocodile (Crocodylus niloticus) [27] and
poachers [28,29]. Cost-effectiveness has long been one of the main reasons for applying RPAS as the
equipment price of RPAS is at least ten times cheaper than that of a helicopter [30].
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Table 1. Term glossaries indicating aerial-vehicle systems that are remotely controlled without
human pilots.

Acronym Definition

Unmanned aerial vehicle (UAV)

A pilotless aircraft that is flown without a pilot-in-command
on-board is either remotely and fully controlled from another
place (ground, another aircraft, or space) or programmed and

fully autonomous [17]

Unmanned aircraft system (UAS) An aircraft and its associated elements that are operated with
no pilot on board [18]

Remotely piloted aircraft (RPA) An unmanned aircraft that is piloted from a remote
pilot station [19]

Remotely piloted aircraft system (RPAS)
A remotely piloted aircraft, its associated remote pilot

station(s), the required command and control links, and any
other component as specified in the type design [19]

RPAS are utilized in wildlife studies for a wide range of target animals and detection purposes,
so the types and functions of RPAS should be appropriately selected among their different kinds
to accomplish those goals. RPAS are traditionally classified by size and wing type. For example,
Anderson and Gaston [15] outlined four classes of platforms by size: large, medium, small, and mini,
in addition to micro and nano. Considering the target area, larger aircraft can typically fly for longer
and support a heavier payload, which is generally from the batteries.

Many RPAS designs were developed and tested for stability: fixed- and rotor-wing aircraft are
popular, but experimental or biomimetic designs, with the hummingbird shape as an example, were also
developed and introduced [31–33]. Rotor-wing aircraft can be produced with a high degree of freedom
in the number of rotors, like bicopters, tricopters, or quadcopters [34]. Quadcopters, hexacopters,
and octacopters are used the most due to their high reliability [34], and rotor-wing aircraft are adequate
for uneven and inhomogeneous ground [35]. Rotor-wing aircraft fly slower than fixedwing aircraft
can, even when hovering, and pilots may easily offhandedly change the flight path. When topological
features are contemplated, the operation speed and flight path must be skillfully determined.

As research using RPAS has recently become popular, papers dealing with reviews on specific
aspects of wildlife research using RPAS have been published. In view of RPAS image processing
techniques, Chabot and Francis [36] provided an overview of image analysis techniques for automated
bird detection and counting using manned aircraft- and RPAS-based high-resolution aerial images.
Hollings et al. [37] focused on image analysis techniques for detecting and counting animals to produce
animal abundance data using high-resolution images from satellite and RPAS data. Christin et al. [38]
covered the use of RPAS-based images for identification and classification, behavioral studies,
population monitoring, and ecosystem management and conservation using deep learning as a
part of the applications in ecology.

On the other hand, Johnston [39] reviewed RPAS applications within a subdiscipline,
i.e., marine science and conservation, by selecting a specific environment type. As another example
of selecting an analysis target narrowed by the environment type, Verfuss et al. [40] also reviewed
RPAS applications for the detection and monitoring of marine fauna. Mangewa et al. [41] analyzed
previous studies applying the RPAS techniques to community wildlife management areas in Tanzania.
Burke et al. [42] focused on the optimization of RPAS-based thermal imaging strategies, considering the
thermal effects of ground and atmosphere, occlusion by vegetation, and effective flight height for
accurate image acquisition and identification of animals of interest. Wang et al. [43] reviewed previous
wild animal survey studies using satellites, manned aircraft, and RPAS and focused on the data
specifications, animal detection methods, and detection accuracy.

Here, we review studies on the use of RPAS and their application on wild animal monitoring
from the perspective of individual detection and population surveys as well as behavioral studies,
in addition to the applicability of thermal-imaging sensors, and further extractable information from
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thermal image analyses. Additionally, to differentiate from existing reviews, RPAS-based case studies of
the practical acquisition of high-resolution RGB images for the purpose of detecting southern elephant
seal (Mirounga leonina) through the operation of an inflatable boat-based RPAS in Potter Peninsula,
King George Island, maritime Antarctica, and the southern elephant seal detection and shape property
extraction using RGB and thermal-imaging sensors in the Barton Peninsula, King George Island,
maritime Antarctica are presented as applications in an extreme environment.

2. RPAS Application for Wild Animal Detection and Monitoring

2.1. Literature Review

We browsed the Web of Science (http://www.webofknowledge.com) to search for articles
that contained the topics of “unmanned aerial”, “unmanned aircraft”, “remotely piloted aerial”,
“remotely piloted aircraft”, or “drone” but not “honey bee” in the title, abstract, and keywords.
Yielding 19,399 such results from 1975 in November 2020, we chose these to wholly include the broad
term UAS and formally accepted term RPAS [16]. When we included “drone”, we excluded the term
with “honeybee” to reduce any confusions because drone is also used to indicate a male honeybee,
Apis mellifera. The record of published articles to date is almost exponentially increasing and records
increased by around 40% in the five most recent years (Figure 1a).
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Then, we narrowed the topic down with “monitor” (n = 2807), which occupied 14.4% of the total
articles (Figure 1a), and then “wildlife OR animal” (n = 157; Figure 1b and Supplementary Table S1).
We primarily reviewed these searched articles and their cited references, leading to the selection of
121 articles for wild animal studies, and we categorized them according to their monitoring purposes
(Supplementary Table S1). We classified wild animal monitoring applied with RPAS into individual
detection and population surveys focusing on animals themselves as well as behavioral studies revealing
the relationship with other animals or the surroundings. Here, we introduced selected studies for
animal monitoring with RPAS into the two categories (‘individual detection and population survey’
and ‘behavioral study’) (Table 2). All studies in Figure 1b are provided in Supplementary Table S1.

Early studies in animal monitoring tested the feasibility of RPAS with decoys [54,55] or inflatable
kayaks representing whale-like targets [56], and RPAS is now applied in the field-study area. Chabot and
Bird [57] argued that RPAS would fit in animal research due to nondestructive high-resolution imagery
and repeatable operations, even in inaccessible areas. Therefore, RPAS is globally used regardless of
latitude (Figure 2). Studies are not limited to terrestrial animals. Gharials (Gavialis gangeticus) and
muggers (Crocodylus palustris) [58], dugongs (Dugong dugon) [59], and other aquatic animals living in
freshwater and seawater have also been targeted. As depicted in Figure 2, studies on wild mammals
and birds occupy a high proportion, but several attempts on reptiles [52,58,60] and fish [30,53] have
been made.
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Table 2. Selected applications of RPAS on wild animal monitoring.

Subject Species Area Sensor Used Studies of Importance Reference

Individual detection
and population survey

Pink-footed goose (Anser
branchyrhynchus), common ringed

plover (Charadrius hiaticula),
black-faced spoonbill (Platalea minor)

Sirius Passet, Greenland
and Yellow Sea,

Republic of Korea

Phantom 4 (DJI Co.,
Shenzhen, China) and a thermal

camera (FLIR Systems,
Wilsonville, OR, USA)

Detected three bird species
in inaccessible areas [44]

Common hippopotamus
(Hippopotamus amphibious)

Garamba National Park,
Democratic Republic

of Congo

Sony Nex7 digital still camera (Sony,
Tokyo, Japan)

Determined optimal flight
parameters and estimated

total number
[45]

Sharks (lemon Negaprion brevirostris,
nurse Ginglymostoma cirratum,

bonnethead Sphyrna tiburo), stingrays
(Dasyatis americana), and spotted

eagle rays (Aetobatus narinari)

Great Abaco Island,
The Bahamas

Phantom Vision 2+® (DJI Co.,
Shenzhen, China)

Identified and counted marine
megafauna in shallow habitats [46]

Spot-billed duck (Anas
poecilorhyncha), greenwinged teal

(Anas crecca), great egret (Ardea alba),
gray heron (Ardea cinerea)

Shihwa lake and
Yeongjong island,
Republic of Korea

NX500 camera (Samsung Corp.,
Seoul, Republic of Korea),

and Phantom 4 Pro (DJI Co.,
Shenzhen, China)

Compared different
bird-detection models with

field study and decoy
[47]

Wood thrush (Hylocichla mustelina),
gray catbird (Dumetella carolinensis),

song sparrow (Melospiza melodia),
and other songbirds

State Game Lands 249,
Pennsylvania, USA

H1 Handy Recorder
(Zoom Corp., Tokyo, Japan)

Developed bioacoustics and
RPAS combined monitoring

protocol for counting songbirds
[48]

Wild boar (Sus scrofa), red deer
(Cervus elaphus), and fallow deer

(Dama dama)

Doñana National Park,
SW Spain

Lumix LX-3 digital photo camera
11MP (Panasonic, Osaka, Japan)

Developed new spatially explicit
aggregation index and applied

on a field study
[49]

Roe deer (Capreolus capreolus) Lány, Czech Republic
WIRIS second-generation

thermalimaging camera (Workswell,
Prague, Czech Republic)

Searched for roe-deer fawns
before harvesting to reduce

unexpected kills
[50]

Field sparrow (Spizella pusilla) Pierce Cedar Creek
Institute, Michigan, USA

Zenmuse XT thermal camera (FLIR
Systems, Wilsonville, OR, USA)

Detected cryptic nests in
grassland and showed

the efficiency of
RPAS-assisted searches

[51]

Behavioral study

Green turtle (Chelonia mydas) Rancho Nuevo,
Tamaulipas, Mexico

Inspire 1™ (DJI Co.,
Shenzhen, China)

Recorded courtship and
mating behavior [52]

Reef shark
(Carcharhinus melanopterus)

Society Archipelago,
French Polynesia

Hero 3+ Silver edition (GoPro,
San Mateo, CA, USA)

Quantified collective shoaling
behavior through fixed images

from video
[53]
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2.2. Individual Detection and Population Survey

One of the most common research subjects in wild animal monitoring with RPAS is
individual detection by human verification to observe if a target species exists in a given area.
RPAS-based individual detection and population surveys extended include identifying and counting
birds or mammals in cryptic habitats. When the RPAS is equipped with a thermal camera, the results
can be used to easily discriminate homeothermic animal body temperatures from the surrounding
backgrounds, such as rainforests with a partially exposed body through openings between leaves and
clouds, preventing thermal radiation from passing through (e.g., detecting orangutans [61]) and sea ice
revealing a high thermal contrast between bodies and snow/ice surface (e.g., identifying pink-footed
geese (Anser brachyrhynchus) [44]). To improve detection quality, thermal cameras were used with RGB
cameras [28,49,62,63], and white-spotted shapes were discovered in grayscale thermal images that
could even detect small cryptic nests [44,51,64].

Aerial photographs from RPAS are also efficient for counting herd numbers. As animals often form
groups in their natural habitats, high-resolution images are effectively acquired within an adequate
operation radius of RPAS (e.g., a few kilometers) and used to estimate the population size for large
animals, like hippos [45] and sharks [46]. Thus, RPAS can be applied to examine the density or
distribution of cryptic or endangered species. RPAS could save time and help with identifying whole
raptor nestlings and eggs [65] or Sumatran orangutan (Pongo abelii) nests [66], both located at the tops
of trees.

As an extension of individual detection, RPAS showed strength in population surveys by saving
time [67] and reconfirming field images [68]. For example, Hodgson et al. [69] put decoys on the beach
so that the real number of fake wildlife could be confirmed. RPAS methods counted wildlife with less
variation and in more accurate numbers than a group of human researchers by direct observation with
binoculars, showing that the benefit from counting large flocks of mammals and birds using RPAS [70].
Newly designed automated image processing methods have been suggested, such as automated target
detection algorithms [36,71,72] and deep-learning-based object-detection methods [47]. These attempts
were all based on distinguishing the shape of the target species from the background.

Some rare cases attempted to monitor animals in a nonoptical manner, and bioacoustic detection
and classification are used with pattern recognition [73] or the means to acquire samples originated
from wild animals [74–77]. It can be complicated to combine the bioacoustic approach with an RPAS
due to the operational noise of the aircraft. However, songbird surveys were conducted by RPAS-based
bioacoustic monitoring [48], and echolocation calls of Brazilian free-tailed bats (Tadarida brasiliensis)
were recorded [24,78]. Thus, a new method for aerial bioacoustics was demonstrated. Furthermore,
an intriguing approach with RPAS to collect fresh respiratory vapor of cetacean species revealed a novel
way to sample whale blow microbiome or virome [74–77]. Potential pathogens or body conditions of
marine mammals could be discovered with the aid of RPAS.

2.3. Behavioral Study

In addition to detecting and counting certain species, recent studies have also revealed preferred
habitats and behavioral observation based on the individual detection results. For example, an RPAS
was utilized in analyzing changes in the ecosystem structure attributed to two introduced Eurasian
beavers (Castor fiber) [79]. Likewise, pictures of wetlands taken at 274 m height were spatially analyzed,
and least bitterns (Ixobrychus exilis) were shown to favor cattails for nesting [80,81]. The Global
Positioning System (GPS) data loggers were attached to a couple of lesser kestrels (Falco naumanni),
and their tracks were imitated by RPAS to understand their landscape using mosaicked images [82].

RPAS can be launched near the sea surface to observe the behavior of marine species. A case
study was the recording of the courtship and mating behavior of the green turtle (Chelonia mydas) in the
western Gulf of Mexico [52]. Another case was the application of UAVs to capture the shoaling behavior
of blacktip reef sharks (Carcharhinus melanopterus) in Mo’orea, French Polynesia [53]. Behavioral studies
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using RPAS also contain video recordings or a series of images to estimate animals’ mating and
courtship behavior (green turtles [52]) or collective shoaling behavior (reef sharks [53]).

Animal vocal behavior was also collected from animals. For instance, echolocating bats can
be sampled by designing the vehicle with noise-cancelled flying [78]. In marine animal studies,
an RPAS video survey has advantages in minimizing human-induced disturbance and reducing the
cost of observing the animals compared to traditional monitoring methods using ships. In addition,
new algorithms have been developed to detect swarming behavior for the aggregation and foraging of
social animals [83,84]. This approach has been recently applied to collect blow samples by flying over
a group of dolphins [77] and to observe the socializing and nurturing behavior of baleen whales [85].
Collectively, RPAS has been widely applied to collect multiple types of behavior by video-recordings
or serial photo images as well as spatial information of animal distributions and densities.

Despite the increase of RPAS monitoring on wild animals, investigating the possible behavioral
impact on individuals is scarce. Researchers have manipulated the definition of disturbance with
vigilance or escape behavior [86–89]. Such responses are apparent to notice; however, this does not imply
that approaching devices does not influence animals at all if there is no response. Watershed research
indicated that the heart rate of American black bears (Ursus americanus) was elevated to about double
after a UAV flew over them, while their movement rate did not show a significant difference [90].
Therefore, the aircraft must be operated on the basis of the precautionary principle, so the operator
should practice beforehand, choose an appropriate aircraft and sensor, and report flight details such as
altitude, speed, and angle [91,92].

3. RPAS Use in Extreme Environments: Applications on Arctic and Antarctic Research

One of the major advantages of deploying RPAS is to secure safety. Cautiously operated RPAS
reduces unexpected damage to human life by not piloting a manned aircraft or not exploring an
unfamiliar area firsthand. This advantage produces fruitful results in extreme environments such as
the polar regions [26,44] and deserts [93] or topographically inaccessible zones that researchers cannot
easily approach, such as seaside cliffs [94].

The Arctic and Antarctic regions are difficult regions for monitoring research due to their cold and
windy environments. RPAS are preferred when exploring inaccessible areas like oceans with floating
ice or fjords. Ribbons (Histriophoca fasciata) and spotted seals (Phoca largha), referred to as ice-associated
seals, were monitored by a fixed-wing aircraft at the Bering Sea ice edge [26]. In addition, sudden gusts
of wind can occur in narrow fjords, which is risky for piloting manned aircraft; hence, a UAV was
designated for a transect survey of the humpback whale (Megaptera novaeangliae) and killer whale
(Orcinus orca) [25]. Disturbances on these marine animals are easily overlooked because they appear to
have no need to defend against aerial predators due to their huge size. However, bottlenose dolphins
(Tursiops truncatus) and Antillean manatees (Trichechus manatus manatus) were found to respond to
small quadcopters even at altitudes of 30 and 104 m [88].

Penguins, as colonial birds, nest close to each other in open space and this makes it difficult
for researchers to estimate their population. Ratcliffe et al. [95] operated a UAV to survey a gentoo
penguin (Pygoscelis papua) colony at Volunteer Point, East Falkland in sub-Antarctic islands. At 30 m
height above ground, the images of penguins clearly revealed individuals, and 1021 active nests
were found in the mosaicked images covering the whole colony. Similarly, Goebel et al. [96] took
aerial photographs of the gentoo and chinstrap penguin (Pygoscelis antarctica), Antarctic fur seals
(Arctocephalus gazelle), Weddell seals (Leptonychotes weddellii), and leopard seals (Hydrurga leptonyx) at
Cape Shirreff, Livingston Island, South Shetland Islands.

In the polar regions, thermal sensors are effective because the surface temperature of ice or
seawater is contrasted from that of endothermic animals. Thermal images were applied onto two grey
seal (Halichoerus grypus) colonies to develop automated detection and enumeration [72].

Here, we present an RPAS-based case study of the practical acquisition of high-resolution RGB
images for the purpose of investigating southern elephant seal through the operation of an inflatable
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boat-based RPAS in Potter Peninsula, King George Island, Antarctica. In Antarctica, berthing facilities
are rare; therefore, takeoff and landing on board can be a feasible method of RPAS operation for
investigating coastal animals.

In December 2019, Phantom 4 (DJI Co., Shenzhen, China) was controlled from an inflatable boat
anchored near Potter Peninsula and acquired four images over the coast. The images were mosaicked
using Metashape 1.6.2 software (Agisoft LLC, St. Petersburg, Russia) with a spatial resolution of 3.0 cm
(Figure 3). In the mosaicked image, a total of 60 individuals were detected by human verification.
From this case study, the Phantom 4, a small-sized RPAS, can be evaluated as a practical RPAS from its
easy takeoff and landing function even on a small boat for high-resolution RGB image acquisition,
aiming coast animal monitoring in maritime Antarctica.Animals 2020, 10, x 10 of 18 
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4. RPAS-Based Thermography in Wild Animal Monitoring

Thermal cameras can be used together with high-resolution RGB cameras [28,62,63] to complement
the lower spatial resolution of a thermal detector, e.g., 640 × 512 pixels [44,50,64]. Although small-scale
surface features are omitted in thermal images due to the larger pixel size, the thermal contrast between
wild animals and the background land covers enables identifying individuals or aggregations [72].
The thermal contrast yielded from differences in the surface temperature vary from the composition of
land cover with a combination of environmental factors, such as the duration of exposure to the sun and
shadow casting from the local topography. Therefore, for optimal monitoring, the timely acquisition of
a thermal image preventing a homogenized scene temperature is crucial to maximize the detectability
of target animals by enhancing the thermal contrast between targets and backgrounds [42,97].

4.1. Detection and Counting Wild Animals Using Thermal Images

RPAS-based thermography was used to automatically detect marine wildlife like the grey
seal (Halichoerus grypus), with manually selected temperature and polygon area thresholding to
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develop automated detection and enumeration [72]. Although the intrinsically low resolution of
the thermal image is an obstacle to clearly depict individual targets, pixel aggregations above the
temperature threshold were able to be separated to individual seals using high pass-filtering to
estimate the population of seals. Particularly, in the Arctic and Antarctic regions, the detection
capability of endothermic animals can be emphasized from the higher thermal contrast between targets
and backgrounds [44].

4.2. Retrieving Quantitative Properties from RPAS-Based Thermal Images

Quantitative properties, including the length and mass of individual animals, have been
retrieved from high-resolution RGB images. Comparing with traditional measurement protocols [98],
RPAS-based methods showed a higher accuracy to predict seal mass with the photogrammetric
standard length of leopard seals [99]. Lee et al. [44] identified the approximate size of pink-footed
geese by calculating the longest length of the convex hull of manually selected isothermal polygons
depicting individual birds.

Here, we present an example of retrieving a quantitative feature, the curvilinear overall length [99]
of the southern elephant seal, using RPAS-based thermal images acquired in the Barton Peninsula,
King George Island, Antarctica. A DJI Inspire V1 with a 12-megapixel Zenmuse X3 RGB camera
(DJI Co., Shenzhen, China) and FLIR Vue Pro R thermal-imaging sensor with 13 mm lens (FLIR Systems,
Wilsonville, OR, USA) were operated on 4 January 2020 with Pix4D Capture flight planning mobile
application (Pix4D S.A., Lausanne, Switzerland). Individual raw radiometric JPEG files from the
thermal-imaging sensor were converted to Geotiff format files using FLIR ResearchIR software
(FLIR Systems, Wilsonville, OR, USA) for further processing. RGB images and thermal images
were mosaicked using Metashape 1.6.2 software (Agisoft LLC, St. Petersburg, Russia) with a spatial
resolution of 1.8 and 5.7 cm, respectively; then, the mosaicked thermal image was coregistered to the
mosaicked RGB image of finer spatial resolution and higher geolocation accuracy using a georeferencing
tool in ArcGIS 10.3 software (ESRI, Redlands, CA, USA) (Figure 4). The seal was clearly identifiable in
the thermal image from the background of seashore gravel.
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The shape of the seal was recognizable in the thermal image, similar to the higher-resolution RGB
image (Figure 5a,b). To retrieve the seal size, temperature contours with 1 ◦C intervals were delineated
as polygons using ArcGIS (Figure 5c). The smallest change in the area of polygons between adjacent
temperatures indicating the highest thermal contrast was considered as the threshold temperature,
i.e., 16 ◦C, for determining the boundary of the seal body (Figure 5d). To measure the overall curvilinear
length, the centerline of the selected 16 ◦C temperature polygon was extracted using the Thiessen
polygon method [100]. Then, the endpoints of the centerline were extended to vertices at the ends of
the polygon to fill gaps. From the extracted centerline, the overall curvilinear length of the target seal
was calculated as 170.1 cm, similar to the ca. 180 cm measured in the field using a tape measure.
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Figure 5. Mosaicked RPAS-based RGB and thermal images zoomed to a Southern elephant seal
(Mirounga leonina): (a) zoomed RGB image, (b) zoomed coregistered thermal image, (c) temperature
contours with 1◦C interval overlaid on thermal image, and (d) selected contour of 16 ◦C depicting the
highest thermal contrast and centerline of the polygon indicating an individual seal.
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Here, we examine that the RPAS-based thermal approach was efficient to detect Antarctic seals on
the coastal regions and count the number of individuals. Based on the size measurements, we expect
that it can be applied to distinguish small-sized sub-adults among adults. The captured seal in
Figure 4 was estimated to be a sub-adult individual which was resting near the shore. When it is
observed by humans with binoculars, it is often confused rocks or wet sands due to their dark-colored
body. Thus, thermal images can be used to detect such small seals solely distributed. In addition,
adult individuals can be further discriminated between the sexes. Since southern elephant seals have
high levels of sexual dimorphisms in body sizes, a dominant alpha male can be detected from the size
measurements using the RPAS images.

5. Conclusions

Our review showed that RPAS and imaging sensors can contribute to wild animal studies,
including the identification of individuals from backgrounds, counting detected individuals,
and monitoring. In addition, multi-temporal high-resolution image acquisition capability within an
operation radius enables behavioral studies. Geographically registered RPAS-based images can also be
used to measure animal properties, e.g., body size. Therefore, RPAS is a useful technique to detect
and monitor wild animals, particularly in extreme environments such as polar regions, by helping
researchers find cryptic animals and nests in more secured fieldwork conditions. Although an RPAS
can offer an effective and efficient method for animal detection, it still cannot totally replace the current
monitoring methods of conventional surveys by researchers themselves. RPAS-based images may
miss actual animal figures depending on the light conditions and environmental obstacles, e.g., clouds,
leaves, and topographic hindrance. Yet, we suggest using an RPAS for collecting on-site material to
support survey data for various purposes and expect using RPAS in wildlife studies will be expanded
continuously according to its potential uses and RPAS and sensor technology advances.
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