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BACKGROUND: Lactococcus lactis subsp. cremoris (YRC3780), which is isolated from kefir, has been associated with anti-allergic
effects in humans. However, it remains unknown whether daily intake of YRC3780 attenuates the response to psychological stress
in humans in parallel with changes to the gut microbiome. We examined the fundamental role of YRC3780 in the gut microbiome,
stress response, sleep, and mental health in humans.
METHODS: Effects of daily intake of YRC3780 on the hypothalamic-pituitary-adrenal (HPA) axis response to acute psychological
stress were investigated in a double-blind, placebo-controlled clinical trial involving 27 healthy young men (mean age and body
mass index: 23.5 years and 21.5 kg/m2) who were randomly assigned to placebo (n= 13) or YRC3780 (n= 14) groups. The HPA axis
response to acute psychological stress, the diurnal rhythm of HPA axis activity, and gut microbiome were assessed and compared
between the two groups.
RESULTS: The results showed that daily intake of YRC3780 significantly lowered morning salivary cortisol levels compared with
placebo. In addition, salivary cortisol levels following a social stress test significantly decreased +40min after beginning the TSST in
the YRC3780-treated group compared to placebo. There were no significant differences between the two groups in terms of
actigraphy-based sleep quality, but the subjective sleep quality and mental health were significantly improved in the YRC3780-
treated group compared to placebo.
CONCLUSIONS: Our study suggests that daily intake of YRC3780 improves the HPA axis response to acute psychological stress,
which might be associated with a decrease in morning cortisol levels.
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INTRODUCTION
The hypothalamic-pituitary-adrenal (HPA) axis and sympathetic
adrenomedullary (SAM) systems are major components of the
stress response system [1]. When individuals are exposed to acute
psychological stress, activation of the HPA axis and SAM system
increase glucocorticoid hormone (cortisol) levels and heart rate
(HR) [1, 2]. This HPA axis stress response is influenced by circadian
rhythms [3, 4], sleep [5, 6], and psychological stress [7, 8].
Recent research advancements have clarified the relationships

between gut microbiota functions and metabolic syndrome,
autism, autoimmunity, and cancer [9]. Several studies have
focused on the relationship between brain function and intestinal
microorganisms [10–12]. In rodents, HPA stress responses were
suppressed in specific pathogen-free mice compared with germ-
free mice, suggesting that the suppressive effects of the stress
response on the gut microbiota depend on the bacterial species
[13]. In humans, several studies on intestinal microorganisms and
stress responses have confirmed the efficacy of probiotic intake

[14–19], and the effectiveness of killed bacteria [20]. An alternative
mechanism involved in the alteration of the gut microbiota and/or
the efficacy of probiotics on the stress response may be associated
with the so-called gut-brain axis, a bidirectional interaction
between the gut microbiome and the central nervous system
[21]. As for the afferent pathways from the gut to the brain,
tryptophan, and mainly its metabolite serotonin, is released from
intestinal chromaffin cells by intestinal bacteria. Serotonins act on
the 5-HT3 receptor present on the vagus nerve or on spinal cord
salvage nerve terminals and signal to the brain via the solitary
nucleus. Neural substrates metabolized by intestinal bacteria such
as short-chain fatty acids, immune cells (cytokines), and GABA
directly or indirectly affect the brain [10, 21–23].
Studies have confirmed that anti-inflammatory cytokines and

regulatory T cells work effectively in animal models of multiple
sclerosis (MS) and in experimental autoimmune encephalomyelitis
[24, 25], which are neuroinflammatory diseases of the central
nervous system affecting brain and spinal cord function. Based on

Received: 9 February 2021 Revised: 18 June 2021 Accepted: 24 June 2021
Published online: 4 August 2021

1Laboratory of Life & Health Sciences, Faculty of Education and Graduate School of Education, Hokkaido University, Sapporo, Japan. 2R&D Center, Yotsuba Milk Products Co., Ltd,
Kitahiroshima, Japan. 3Research and Education Center for Brain Science, Hokkaido University, Sapporo, Japan. ✉email: y-yu2ro@edu.hokudai.ac.jp

www.nature.com/ejcn European Journal of Clinical Nutrition

http://crossmark.crossref.org/dialog/?doi=10.1038/s41430-021-00978-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41430-021-00978-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41430-021-00978-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41430-021-00978-3&domain=pdf
http://orcid.org/0000-0001-5715-8528
http://orcid.org/0000-0001-5715-8528
http://orcid.org/0000-0001-5715-8528
http://orcid.org/0000-0001-5715-8528
http://orcid.org/0000-0001-5715-8528
http://orcid.org/0000-0001-8739-9445
http://orcid.org/0000-0001-8739-9445
http://orcid.org/0000-0001-8739-9445
http://orcid.org/0000-0001-8739-9445
http://orcid.org/0000-0001-8739-9445
http://orcid.org/0000-0003-4892-3421
http://orcid.org/0000-0003-4892-3421
http://orcid.org/0000-0003-4892-3421
http://orcid.org/0000-0003-4892-3421
http://orcid.org/0000-0003-4892-3421
http://orcid.org/0000-0003-3928-0735
http://orcid.org/0000-0003-3928-0735
http://orcid.org/0000-0003-3928-0735
http://orcid.org/0000-0003-3928-0735
http://orcid.org/0000-0003-3928-0735
mailto:y-yu2ro@edu.hokudai.ac.jp
www.nature.com/ejcn


these findings, lactic acid bacteria that act on immune cells, even
if they are not probiotics, may affect the stress response.
Lactococcus lactis subsp. cremoris YRC3780 (hereafter ‘YRC3780’),
which is isolated from kefir, has been shown to exert anti-allergic
effects in humans [26] and immunostimulatory effects, and
induces Foxp3+regulatory T cell activity confirmed in an animal
study [27]. However, it remains unknown whether YRC3780 affects
the human stress response and the gut microbiome. The present
study assessed the effects of daily YRC3780 intake on subjective

and objective sleep quality, mental health, basal activity of the
HPA axis, and stress reactivity in healthy young male participants.

MATERIALS AND METHODS
Ethical approval
All study protocols were approved by the ethical committee of Hokkaido
University Graduate School of Education (no. 17–41) and conducted
according to the Declaration of Helsinki.

Participants
Twenty-seven healthy young male participants (mean age 23.5 years and
body mass index 21.5 kg/m2) completed the study as paid volunteers.
Table 1 summarizes the placebo and YRC3780 participant characteristics.
Participants were recruited through advertisements at Hokkaido University
in Japan. The enrollment criteria included subjects who did not have jobs
that required early morning, late night, or rotating night shifts, and none
had a personal history of psychiatric, endocrine, or sleep disorders. All
participants provided written informed consent prior to entering the study,
which allowed them to withdraw from the experiment at any time.

Experimental protocol
This double-blind and placebo-controlled clinical trial was conducted
throughout 2018 and 2019. Figure 1 shows participant flow throughout
the study, which involved a baseline period of 2 weeks and daily ingestion
of placebo or YRC3780 capsules for 8 weeks. Participants wore a wrist
actigraphy sensor and kept a daily diary throughout the experiment to
collect data on bedtimes, wake times, subjective sleep, mealtimes, and
capsule ingestion times. To evaluate sleep quality, mood, and general
health status, each participant completed the Athens Insomnia Scale (AIS)

Table 1. Descriptive statistics by group.

Placebo
(n= 13)

YRC3780
(n= 14)

P value

Age (years) 23.2 ± 3.8 23.8 ± 5.1 0.952

Height (cm) 169.8 ± 6.2 170.7 ± 6.1 0.592

Body weight (kg) 61.0 ± 7.5 63.4 ± 7.5 0.232

Body mass index (kg/m2) 21.8 ± 2.6 21.1 ± 2.1 0.765

PSQI score 4.0 ± 1.8 4.4 ± 1.6 0.613

AIS score 4.3 ± 2.4 3.8 ± 2.4 0.604

GHQ-28 score 4.3 ± 3.2 3.7 ± 3.2 0.460

POMS 2 TMD score 46.3 ± 5.1 48.3 ± 7.8 0.573

Values are means ± SD.
PSQI Pittsburgh Sleep Quality Index, AIS Athens Insomnia Scale, GHQ-28
General Health Questionnaire, POMS 2 TMD Profile of Mood States 2nd
Edition, Total Mood Disturbance subscale.

Assessed for eligibility (n=40)

Assigned to the placebo group (n=17) Assigned to the YRC3780 group (n=16)

Analyses (n=13) Analyses (n=14)

Completed the TSST (N=13)

Completed the placebo ingestion 

for 8 weeks (n=13)

Completed the YRC3780 ingestion 

for 8 weeks (n=14)

Completed the TSST (N=14)

Randomized (n=33)

Cortisol Responder 

to the TSST (n=7)

Cortisol Non-responder 

to the TSST (n=6)

Cortisol Responder 

to the TSST (n=8)

Cortisol Non-responder 

to the TSST (n=6)

Wtihdrawal by subjects (n=4) Withdrawal by subjects (n=2)

Declined to participate (n=7)

Completed the baseline 

period for 2 weeks (n=13)

Completed the baseline 

period for 2 weeks (n=14)

Fig. 1 Experimental protocol. Study design and flow chart of the double-blind, placebo-controlled, and randomized trial in healthy
Japanese men.
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[28, 29], Pittsburgh Sleep Quality Index (PSQI) [30, 31], General Health
Questionnaire (GHQ-28) [32], and Profile of Mood States 2nd Edition-Adult
Short, Total Mood Disturbance subscale (POMS 2 TMD) [33] every 2 weeks
throughout the study (starting at the last day of baseline, and 2, 4, 6, and
8 weeks after beginning capsule ingestion). The AIS score ranges from 0 to
28: scores of 0–3 are classified as no insomnia, scores of 4–5 are suggestive
of insomnia, and scores of ≥6 are strongly suggestive of insomnia [28, 29].
The PSQI score ranges from 0 to 21: a lower score indicates better sleep
quality and a higher score (≥6) indicates poor sleep quality [30, 31]. The
GHQ-28 score ranges from 0 to 28: <5 is classified as good mental health
(better than usual) and a higher score indicates psychiatric distress (worse
than usual) [32]. The POMS 2 TMD score ranges from 30 to 70 where scores
40–59 classify the normal mood state, while ≥60 indicates higher mood
disturbance (unfavorable psychological state) [33]. To assess HPA axis
activity diurnal rhythms, every 2 weeks participants provided saliva
samples collected at 2 h intervals throughout the day, starting immediately
after waking. In addition, three fecal samples were collected to analyze the
gut microbiome (on the last day of baseline, and at 4 and 8 weeks after
beginning capsule ingestion). Within 1 week after completing the 8-week
capsule ingestion period, the participants completed the Trier Social Stress
Test (TSST) at the laboratory to assess the effect of daily YRC3780 ingestion
on the HPA axis stress response in a laboratory setting.
The Supplementary data includes information regarding the micro-

biological characterization of YRC3780, the test meal, the TSST protocol,
measurement of salivary cortisol levels, microbiome analysis, PCR primer
(Table S1), and statistical analysis in the present study.

RESULTS
Diurnal salivary cortisol rhythms
Figure 2 illustrates the diurnal salivary cortisol rhythms measured
on the last day of the 2-week baseline period and every 2 weeks
during the 8-week ingestion period. Friedman tests identified
significant changes in diurnal rhythms in both the YRC3780 and
placebo groups during the experiment. On the last day of the
baseline period and at week 2 of the ingestion period, salivary
cortisol levels were not significantly different between the placebo
and YRC3780 groups (Fig. 2A,B). After 4 weeks of ingestion,
the morning salivary cortisol levels (0 h and 6 h after waking) were
slightly decreased in the YRC3780 group compared with the
placebo group (Fig. 2C). At week 6 of YRC3780 intake, salivary
cortisol levels at 2 h and 6 h after waking were significantly lower
than those in the placebo group (Fig. 2D). The lowered salivary
cortisol levels in the YRC3780 group persisted at week 8 of the
ingestion period, with salivary cortisol levels measured at 0 h and
2 h after waking significantly lower in the YRC3780 group than in
the placebo group (Fig. 2E).

HPA axis and sympathetic nervous system response to the
TSST
To evaluate the effects of daily placebo/YRC3780 ingestion on the
HPA axis stress response, participants were categorized as salivary
cortisol responders and non-responders based on previously
published classification criteria (1.5 nmol/L or 15.5% increase) [34].
The classification resulted in 15 cortisol responders (placebo group,
n= 7; YRC3780 group, n= 8) and 12 cortisol non-responders

(placebo group, n= 6; YRC3780 group, n= 6). In the cortisol
responders, the salivary cortisol concentration in the YRC3780 group
was lower after the TSST than in the placebo group (Fig. 3A). Salivary
cortisol concentrations at 40min after the TSST were significantly
lower in the YRC3780 group (4.2 ± 4.4 nmol/L) (mean ± SD) than in
the placebo group (7.6 ± 4.7 nmol/L) (p= 0.043, Mann–Whitney U
test), while salivary cortisol concentrations in the non-responders did
not show a significant increase after the TSST.
Although the salivary cortisol concentrations after the TSST in

the cortisol responders were significantly different between the
placebo and YRC3780 groups, the HR after the TSST did not differ
significantly between the two groups (Fig. 3C). Interestingly, the
salivary cortisol concentrations in the non-responders did not
significantly increase after the TSST (Fig. 3B), whereas the HR after
the TSST increased to the same extent in both the placebo and
YRC3780 groups (Fig. 3D).

Questionnaire and sleep parameters
Table 2 summarizes the questionnaire results for the baseline and
8-week placebo/YRC3780 ingestion period. During the ingestion
period, the AIS scores at 6 weeks and GHQ-28 scores at 8 weeks
were significantly lower in the YRC3780 group than in the placebo
group (AIS, p= 0.031; GHQ-28 p= 0.038, Mann–Whitney U test).
Table 3 summarizes the results of the actigraphy-measured sleep
efficiency for the baseline and 8-week placebo/YRC3780 ingestion
period. There were no significant differences between the two
groups at any time point.

Fecal microbiome
Alpha diversity (Chao 1, Shannon) and fecal microbiota analysis
was performed on all 81 fecal samples collected from the
participants on the last day of baseline evaluations, and at 4
and 8 weeks after capsule ingestion. First, to assess the effects of
the fecal microbiome on the HPA axis response to the TSST, the
placebo and YRC3780 group participants were divided into
cortisol responders and non-responders based on the published
classification [34], and intra- and inter-group differences were
compared. There were no significant differences between the
responders and non-responders; therefore, all data in each group
were averaged and used in the group comparisons. Figure 4
shows the results of the fecal microbiota analysis in the placebo
and YRC3780 groups.

DISCUSSION
We demonstrated that daily intake of YRC3780 decreased morning
salivary cortisol levels 6 and 8 weeks after beginning daily
ingestion (Fig. 2) and decreased the salivary cortisol response to
acute psychological stress induced by the TSST (Fig. 3). Basal
activity of the HPA axis and its stress response exhibited a 24 h
circadian rhythm with higher activity in the morning than in the
afternoon and evening [3, 4]. Thus, the decrease in the cortisol
stress response after TSST in the YRC3780 group might be
associated with lower morning cortisol concentrations associated
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Fig. 2 Diurnal rhythm of salivary cortisol in the placebo and YRC3780 groups. Mean diurnal rhythm of salivary cortisol concentration
measured at baseline (A) and weeks 2 (B), 4 (C), 6 (D), and 8 (E) of the placebo and YRC3780 ingestion period. Data are expressed as the mean
± SEM (placebo, n= 13; YRC3780, n= 14). *p < 0.05 vs. placebo using the Mann-Whitney U test.
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Table 2. Subjective sleep quality, mental health, and mood state before and during the ingestion period.

Ingestion period (weeks)

Baseline 2 4 6 8

PSQI Placebo 4.0 ± 1.8 4.0 ± 2.1 4.3 ± 2.0 3.8 ± 2.2 3.8 ± 2.0

YRC3780 4.4 ± 1.6 4.0 ± 1.8 4.2 ± 1.5 3.3 ± 1.6 3.5 ± 1.2

P value 0.613 0.953 0.917 0.815 0.881

AIS Placebo 4.3 ± 2.4 4.4 ± 2.5 4.2 ± 2.8 3.8 ± 2.0 4.1 ± 2.6

YRC3780 3.8 ± 2.4 3.6 ± 1.5 3.8 ± 2.6 2.1 ± 1.1a 2.6 ± 1.5

P value 0.604 0.759 0.771 0.031 0.134

GHQ-28 Placebo 4.3 ± 3.2 3.1 ± 2.6 3.7 ± 3.5 3.1 ± 4.2 3.5 ± 4.0

YRC3780 3.7 ± 3.2 2.7 ± 2.6 3.2 ± 3.6 2.5 ± 1.7 1.4 ± 1.4a

P value 0.460 0.617 0.503 0.538 0.038

POMS 2 TMD Placebo 46.3 ± 5.1 46.3 ± 9.4 43.2 ± 7.7 44.4 ± 10.3 43.1 ± 6.5

YRC3780 48.3 ± 7.8 45.4 ± 3.6 44.5 ± 5.9 43.0 ± 6.1 42.6 ± 4.2

P value 0.573 0.622 0.330 0.952 0.972

Values are means ± SD (n= 12–14). The p values in columns represent comparisons between YRC3780 and placebo by the Mann–Whitney U test.
PSQI Pittsburgh Sleep Quality Index, AIS Athens Insomnia Scale, GHQ-28 General Health Questionnaire, POMS 2 TMD Profile of Mood States 2nd Edition, Total
Mood Disturbance subscale.
The p values represent comparisons between YRC3780 and placebo by Mann-Whitney U test.
ap < 0.05 vs. placebo.
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with daily ingestion of YRC3780. In turn, the daily intake of
YRC3780 decreased the basal activity of the HPA axis and the
stress response, which have been reported to be influenced by
subjective and/or objective sleep quality [5, 6] and psychological

stress [7, 8]. Although objective sleep quality measured by
actigraphy was not significantly influenced by daily YRC3780
ingestion, subjective sleep quality measured by the AIS score
decreased at 6 weeks of ingestion compared with the placebo
group (Table 2). In addition, the YRC3780 group had a lower GHQ-
28 score at 8 weeks of ingestion (Table 2). Lower AIS and GHQ-28
scores indicate better sleep quality and a better mental state,
respectively. These results suggest that lower basal activity and
the stress reactivity of the HPA axis in the YRC3780 group was
associated with improved subjective sleep quality and mental
health.
Regarding the HR stress reactivity to the TSST, both the cortisol

responder and non-responder groups showed a similar tendency,
for an increased HR just after starting the TSST. Nevertheless, the
cortisol stress levels following the TSST were markedly different
between cortisol responders and non-responders (Fig. 3). Both the
HPA axis and SAM systems are major physiological responses to
various stressors. These two stress response systems activate
different brain networks and reaction times [1]. In the first phase
of the stress response, the SAM system is rapidly activated, and HR
is increased just after exposure to stressors. In the second phase,
the HPA axis is activated and glucocorticoid hormone is secreted.
The HPA axis stress reaction is influenced and modulated by
various factors such as age, sex, early life environment, genetic
factors, and HPA basal activity [1–4]. Thus, the rapid stress
response pathway, the SAM system, might respond independently
of the HPA axis response or may be more sensitive to stressors as
compared with the HPA axis.
The gut microbiota has been reported to undergo changes,

with improvement in the intestinal environment even after
ingestion of heat-killed lactic acid bacteria [35–37]. In the present
study, the daily intake of YRC3780 and placebo had no effect on
the fecal microbiota throughout the experiment, which provides
further evidence supporting the instability of YRC3780 in the
presence of low pH and bile salts, and that it cannot reach the
intestines alive (data not shown). Therefore, the lack of impact of
YRC3780 on the fecal microbiota is consistent with previous
observations. Although the specific bacterial species affecting the
HPA axis have not yet been identified, changes in the composition
of the intestinal bacteria may potentiate the basal activity of the
HPA axis and the reactivity to stress. Indeed, short-chain fatty acids
such as butyric acid produced by intestinal bacteria are
considered a factor in the HPA axis stress response [22]. However,
in the present study, the fecal microbiota and butyric acid content
in the feces did not change (data not shown), suggesting that
short-chain fatty acids did not contribute to our finding of lower
cortisol concentrations in the YRC3780 group.
The immune system is also a factor in the stress response.

Chronic stress, such as achieved via stress promotion tests, causes a
decrease in natural killer (NK) cell activity, a tendency toward Th2
cell dominance [38–40], and NK in acute stress such as video
speech. An increase in cytotoxic T cells (CD8+ T cells) and a
decrease in regulatory T cells levels [40–43] have also been
confirmed. In addition, inflammatory cytokines have been reported

Table 3. Actigraphy-measured sleep efficiency before and during the ingestion period.

Ingestion period (week)

Baseline 2 4 6 8

Placebo 87 ± 8 87 ± 7 87 ± 8 87 ± 7 86 ± 8

YRC3780 83 ± 5 84 ± 7 83 ± 6 83 ± 5 84 ± 6

P value 0.139 0.264 0.198 0.068 0.242

Data are expressed as means ± SD. Sleep efficiency was defined as the ratio of TST to SPT as a percentage. The SPT was defined as the length of the sleep
interval from the first epoch counted as sleep to the last epoch counted as sleep in the main sleep interval. TST was defined as the total number of minutes
counted as sleep in the main sleep interval, in hours. The p values represent comparisons between YRC3780 and placebo by the Mann–Whitney U test.
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to exacerbate depression by attenuating serotonin production [39]
and reducing regulatory T cell activity [44]. Thus, it is possible that
the immune system and the stress response are closely associated
with changes in the basal activity of the HPA axis and the stress
response induced in the YRC3780 group. Moreover, YRC3780
enhances NK cell activity, which promotes IL-2 production in colon
cancer-bearing mice [27]. In addition, YRC3780 modifies the Th1/
Th2 balance and promotes regulatory T cell induction in ovalbumin-
sensitized mice. Furthermore, a previous study in patients with
birch pollinosis showed that YRC3780 ingestion could relieve
allergy symptoms, decreased plasma thymus and activation-
regulated chemokines and elevated plasma interferon-gamma
levels. Therefore, it is possible that daily intake of YRC3780 boosts
the immune system. If so, in the present study, the YRC3780 group
might have experienced enhanced NK cell function and improved
Th1/Th2 cell balance. It is plausible to assume that YRC3780 results
in increased immune function that decreases the HPA axis response
to chronic and acute stress (e.g., TSST).
With respect to the neural pathways involved from the gut to the

central nervous system, 5-HT produced by interaction with
intestinal chromaffin cells localized in the small intestine acts on
5-HT receptors of the vagus nerve or the of the spinal cord nerve
terminal and transmits information to the brain [13]. Yoshikawa
et al. [45] reported that ingestion of killed L. brevis SBC8803 cells
stimulates 5-HT production and release from intestinal chromaffin
cells in vitro and result in increased sleep quality in vivo. The
immunomodulatory effects of YRC3780 result from its interaction
with immune cells in the small intestine, which might be involved
in 5-HT production, as in the L. brevis SBC8803 strain, which
stimulates excessive production of inflammatory cytokines. Taken
together, these findings indicate that the daily intake of YRC3780
alleviates chronic stress and acute stress in daily living conditions by
regulating the immune system. Further studies are needed to
evaluate whether the daily intake of YRC3780 could stimulate
intraluminal 5-HT release from intestinal cells.
There are some limitations to the present study. The present

study only examined healthy young male subjects. Previous
studies have reported that the stress reactivity of the HPA axis to
the TSST differs between males and females [46]. In addition, the
stress reactivity of the HPA axis is altered by ageing [46]. Further
studies are needed to assess whether daily intake of YRC3780
alters HPA axis functions in females and older subjects and to
determine whether YRC3780 intake affects other stress-related
hormones and hormone-releasing factors [47, 48]. In the present
study, YRC3780 did not have an impact on the gut microbiome
(Fig.4). However, the abundance of the microbiome is associated
to the degree of anxiety and depression [49], which could be basis
of the onset of the response to stress. Further studies might be
needed to clarify the effect of YRC3780 on objective and
subjective stress responses.
This study found that daily YRC3780 intake alters morning

HPA axis basal activity, and improves subjective sleep quality,
mental health, and HPA axis reactivity to acute psychological
stress.
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