1	Cryo-EM reveals how Hsp90 and FKBP immunophilins co-regulate the Glucocorticoid
2	Receptor
3	Chari M. Noddings ¹ , Jill L. Johnson ² , and David A. Agard ^{1†}
4	¹ Department of Biochemistry and Biophysics, University of California, San Francisco, San
5	Francisco, CA 94143, USA
6	² Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
7	[†] Correspondence to: <u>agard@msg.ucsf.edu</u>
8	
9	Abstract
10	Hsp90 is an essential molecular chaperone responsible for the folding and activation of
11	hundreds of 'client' proteins, including the glucocorticoid receptor (GR) ¹⁻³ . Previously, we
12	revealed that GR ligand binding activity is inhibited by Hsp70 and restored by Hsp90,
13	aided by co-chaperones ⁴ . We then presented cryo-EM structures mechanistically detailing
14	how Hsp70 and Hsp90 remodel the conformation of GR to regulate ligand binding ^{5,6} . <i>In</i>
15	vivo, GR-chaperone complexes are found associated with numerous Hsp90 co-chaperones,
16	but the most enigmatic have been the immunophilins FKBP51 and FKBP52, which further
17	regulate the activity of GR and other steroid receptors ⁷⁻⁹ . A molecular understanding of
18	how FKBP51 and FKBP52 integrate with the GR chaperone cycle to differentially regulate
19	GR activation in vivo is lacking due to difficulties reconstituting these interactions. Here,
20	we present a 3.01 ${ m \AA}$ cryo-EM structure of the GR:Hsp90:FKBP52 complex, revealing , for
21	the first time, that FKBP52 directly binds to the folded, ligand-bound GR using three novel
22	interfaces, each of which we demonstrate are critical for FKBP52-dependent potentiation
23	of GR activity in vivo. In addition, we present a 3.23 Å cryo-EM structure of the

24	GR:Hsp90:FKBP51 complex, which, surprisingly, largely mimics the GR:Hsp90:FKBP52
25	structure. In both structures, FKBP51 and FKBP52 directly engage the folded GR and
26	unexpectedly facilitate release of p23 through an allosteric mechanism. We also reveal that
27	FKBP52, but not FKBP51, potentiates GR ligand binding in vitro, in a manner dependent
28	on FKBP52-specific interactions. Altogether, we reveal how FKBP51 and FKBP52
29	integrate into the GR chaperone cycle to advance GR to the next stage of maturation and
30	how FKBP51 and FKBP52 compete for GR:Hsp90 binding, leading to functional
31	antagonism.
32	
33	Introduction
34	Hsp90 is required for the functional maturation of 10% of the eukaryotic proteome ¹⁰ .
35	Hsp90 'clients' are enriched in signaling proteins and transcription factors, such as steroid
36	hormone receptors (SHRs), making Hsp90 an important clinical target ¹ . SHRs, which include
37	GR, are hormone-regulated transcription factors that depend on Hsp90 for function throughout
38	their lifetimes ^{7,11-15} . We previously established in vitro reconstitution of the 'GR-chaperone
39	cycle', revealing that GR depends on Hsp90 for function due to constant inactivation of ligand
40	binding by Hsp70 and subsequent reactivation by Hsp90 ⁴ . In the GR-chaperone cycle, now
41	understood in atomic detail through cryo-EM, GR ligand binding is regulated by a cycle of three
42	distinct chaperone complexes ^{5,6} . In this chaperone cycle, GR is first inhibited by Hsp70 and
43	Hsp40, then loaded onto Hsp90:Hop (Hsp70/Hsp90 organizing protein co-chaperone) forming an
44	inactive 'GR-loading complex' (GR:Hsp70:Hsp90:Hop) ⁵ . Upon ATP hydrolysis by Hsp90, two
45	Hsp70s and Hop are released, and p23 is incorporated to form an active 'GR-maturation
46	complex' (GR:Hsp90:p23), restoring GR ligand binding with enhanced affinity ⁶ . The cryo-EM

structures of the GR-loading complex and GR-maturation complex reveal Hsp70 and Hsp90 47 locally unfold and refold the GR LBD in a controlled manner to directly regulate ligand binding. 48 49 In vivo, additional Hsp90 co-chaperones are found associated with the GR-chaperone cycle, including the large immunophilins, FKBP51 and FKBP52⁷. FKBP51 and FKBP52 are 50 51 peptidyl proline isomerases (PPIases) that contain an N-terminal FK1 domain with PPIase 52 activity, an FK2 domain lacking PPIase activity, and a C-terminal TPR domain, which canonically binds the EEVD motifs at the C-termini of Hsp90 and Hsp70¹⁶⁻¹⁹. Additionally, the 53 54 TPR domain contains a helical extension at the C-terminus (Helix 7e), which was previously 55 described to bind the C-terminal domain (CTD) closed dimer interface of Hsp90^{20,21}. Although 56 FKBP51 and FKBP52 are 70% similar in sequence, these co-chaperones have antagonistic functional effects on GR in vivo⁸. FKBP51 inhibits GR ligand binding, nuclear translocation, and 57 transcriptional activity, while FKBP52 potentiates each of these fundamental GR activities²²⁻³². 58 FKBP51 and FKBP52 have also been implicated in the regulation of all other SHRs^{8,9}. Due to 59 60 the critical importance of steroid hormone signaling in the cell, altered expression of FKBP51 61 and FKBP52 is associated with various endocrine-related disease states, including a wide variety of cancers, infertility, stress and anxiety disorders, and immune-related diseases^{8,9,33}. Despite 62 63 their importance, the absence of structures of FKBP co-chaperones bound to Hsp90:client complexes precludes a mechanistic understanding of how these co-chaperones integrate with 64 65 Hsp90:client complexes to regulate client function or how to design selective small-molecule 66 therapeutics³³⁻³⁸. Here we present a 3.01 Å cryo-EM structure of the GR:Hsp90:FKBP52 67 complex, revealing for the first time how FKBP52 integrates into the GR-chaperone cycle and 68 directly binds to the active client, potentiating GR activity in vitro and in vivo. We also present a 69 3.23 Å cryo-EM structure of the GR:Hsp90:FKBP51 complex, revealing how FKBP51 competes

with FKBP52 for GR:Hsp90 binding and demonstrating how FKBP51 can act a potent
antagonist to FKBP52.

- 72
- 73 **Results**

74 *GR:Hsp90:FKBP52 Structure Determination*

75 The GR:Hsp90:FKBP52 complex was prepared by *in vitro* reconstitution of the complete 76 GR-chaperone cycle. GR DBD-LBD (amino acids 418-777) (hereafter, GR for simplicity) with 77 an N-terminal maltose-binding protein (MBP) tag was incubated with Hsp70, Hsp40, Hop, 78 Hsp90, p23, and FKBP52, allowing GR to progress through the chaperone cycle to reach the 79 GR:Hsp90:FKBP52 complex (Extended Data Fig. 1a,b). The complex was stabilized with 80 sodium molybdate and then purified by affinity purification on MBP-GR followed by size exclusion chromatography and light crosslinking (Extended Data Fig. 1c,d). A 3.01 Å cryo-EM 81 82 reconstruction of the GR:Hsp90:FKBP52 complex was obtained using RELION and CryoSparc, 83 with atomic models built using Rosetta (Fig. 1a,b; Extended Data Fig. 1e, 2). The structure revealed a fully closed, nucleotide bound Hsp90 dimer (Hsp90A and Hsp90B) complexed with a 84 85 single GR and a single FKBP52, which occupied the same side of Hsp90 (Fig. 1a,b, ED. Fig. 3a). 86 Despite using a multi-domain GR construct, only the GR LBD was visible in the density map. 87

88 Hsp90 Stabilizes the GR LBD in a Folded, Ligand-Bound State

In the GR:Hsp90:FKBP52 complex, GR adopts a fully folded, ligand-bound
conformation (Extended Data Fig. 3b) distinct from that adopted in the GR:Hsp90:p23
maturation complex (discussed below). The folded GR is stabilized by Hsp90 at three major
interfaces (Fig. 1c-e, Extended Data Fig. 3c-f): (1) Hsp90 Src loop:GR hydrophobic patch, (2)

93	Hsp90 MD/CTD:GR Helix 1, and (3) Hsp90 lumen:GR pre-helix 1. In the first interface, the
94	Hsp90A Src loop (Hsp90 ³⁴⁵⁻³⁶⁰⁾ , flips out from the Hsp90 lumen, to interact with the previously
95	described hydrophobic patch formed by GR Helices 9/10 and the GR C-terminus ⁶
96	(approximately 767 $Å^2$ of buried surface area (BSA)) (Fig. 1c, Extended Data Fig. 3c). Along the
97	Src loop, Hsp90A F349,L351,F352,E353 contact GR helices 9/10 and the conserved, solvent exposed
98	Hsp90A ^{W320} interacts with GR ^{F774} on the GR C terminus. Notably, Hsp90A ^{W320,F349} also make
99	contact with GR in the GR-loading complex and GR-maturation complex, although at quite
100	different locations ^{5,6} . Additionally, there are multiple hydrogen bonds formed between the Hsp90
101	NTD/MD to GR Helix 10 and the GR C-terminus (GR ^{K777}).
102	Interface 2 is comprised of Hsp90 ^{Y604} packing against GR Helix 1 (GR ⁵³²⁻⁵³⁹) and
103	Hsp90 ^{Y627} sticking into a hydrophobic pocket on GR formed by Helices 3, 4, and 9
104	(approximately 345 Å ² BSA) (Fig. 1d, Extended Data Fig. 3d,e). This GR hydrophobic pocket
105	was previously identified in the androgen receptor (AR) as a druggable hydrophobic site (BF3) ³⁹ .
106	In interface 3, the unstructured GR pre-helix 1 region (GR ⁵¹⁹⁻⁵³¹) is threaded through the closed
107	Hsp90 lumen (approximately 758 Å ² BSA)(Fig. 1e, Extended Data Fig. 3f). Two hydrophobic
108	residues on GR (GR ^{P522,P526}) occupy two hydrophobic pockets within the Hsp90 lumen. The
109	interaction is further stabilized by multiple polar and hydrophobic interactions between GR pre-
110	helix 1 and the Hsp90A/B amphipathic helical hairpin (Hsp90 ⁶⁰⁶⁻⁶²⁸) and Hsp90 MD.
111	
112	FKBP52 Interacts with the Closed Hsp90
113	FKBP52 engages the closed Hsp90 at three major interfaces (Fig. 1f,g, Extended Data

114 Fig. 4a-c): (1) FKBP52 TPR H7e:Hsp90A/B CTDs, (2) FKBP52 TPR:Hsp90B MEEVD, and (3)

115 FKBP52 TPR:Hsp90B CTD. In Interface 1, the extended TPR C-terminal H7e (FKBP52³⁸⁷⁻⁴²⁴)

116	binds in a hydrophobic cleft formed by the Hsp90A/B CTDs at the closed dimer interface
117	(approximately 1109 Å ² BSA)(Fig. 1f, Extended Data Fig. 4a). As compared to the crystal
118	structure, H7e breaks at positions FKBP52 ⁴¹¹⁻⁴¹⁴ to allow hydrophobic residues
119	(FKBP52 ^{L410,Y411,M414,F415,L418}) to flip into the hydrophobic cleft formed by the Hsp90 CTDs,
120	consistent with the FKBP51 H7e:Hsp90 interaction observed by cryo-EM ²⁰ . Mutating the
121	corresponding conserved residues on FKBP51 H7e (FKBP51 ^{M412,F413} corresponding to FKBP52
122	^{M414,F415}) abolishes FKBP51:Hsp90 binding, indicating the importance of this binding site ²⁰ . The
123	interface is further stabilized by multiple hydrogen bonds and salt bridges from Hsp90A/B to
124	H7e flanking the helix break (Extended Data Fig. 4a). Furthermore, a portion of the Hsp90B
125	MEEVD linker (Hsp90B ⁷⁰⁰⁻⁷⁰⁶) binds along FKBP52 H7e (Extended Data Fig. 4a).
126	In Interface 2, the C-terminal MEEVD peptide motif of Hsp90B binds in the FKBP52
127	TPR helical bundle (approximately 779 Å ² BSA) (Fig. 1g, Extended Data Fig. 4b), with multiple
128	hydrogen bonds, salt bridges, and hydrophobic interactions, analogous to FKBP51:Hsp90 ^{MEEVD}
129	structures ^{19,20} . However, the MEEVD peptide binds in an opposite orientation relative to the
130	FKBP52:Hsp90 ^{MEEVD} crystal structure ¹⁸ , which may have been incorrectly modeled as
131	previously suggested ^{19,40} . Interface 3 is comprised of the FKBP52 TPR helices 5/6 binding to the
132	Hsp90B CTD, stabilized by multiple hydrogen bonds (approximately 193 $Å^2$ BSA) (Extended
133	Data Fig. 4c), also observed in the FKBP51:Hsp90 cryo-EM structure ²⁰ . While the interactions
134	between FKBP52 TPR/H7e:Hsp90 are conserved in the FKBP51:Hsp90 structure, the positions
135	of the FKBP52 FK1 and FK2 domains are significantly altered (Extended Data Fig. 4d), owing
136	to the presence of the bound GR client, as discussed below.
137	

138 FKBP52 Directly Interacts with GR, which is Functionally Important In Vivo

139	Unexpectedly, FKBP52 directly and extensively interacts with GR, with all three
140	FKBP52 domains wrapping around GR, cradling the folded, ligand-bound receptor near the GR
141	ligand-binding pocket (Fig. 2a). The tertiary structure within each FKBP52 domain closely
142	matches isolated domains from FKBP52 crystal structures; however, the interdomain angles are
143	significantly different (Extended Data Fig. 4d), likely owing to the extensive interaction with
144	GR. There are three major interfaces between FKBP52 and GR (Fig. 2b-d): (1) FKBP52
145	FK1:GR, (2) FKBP52 FK2:GR, and (3) FKBP52 FK2-TPR linker:GR Helix 12.
146	In interface 1, FKBP52 FK1 interacts with a large surface on GR, canonically used for
147	GR dimer formation, consisting of the GR post-helix 1 strand (helix 1-3 loop), helix 5, and β 1,2
148	(approximately 280 $Å^2$ BSA) (Fig. 2b). 3D variability analysis in CryoSparc reveals that the
149	interaction between FKBP52 FK1 and GR is highly dynamic, even as the other FKBP52
150	domains (FK2, TPR) remain stably associated with GR (Supplemental Movies 1-2). At the
151	FK1:GR interface, GR ^{Y545} on the post-Helix 1 strand interacts with a hydrophobic surface
152	formed by the FKBP52 ⁸¹⁻⁸⁸ loop and forms a hydrogen bond with FKBP52 ^{Y113} . Supporting this
153	interaction, residues in the GR post-helix 1 strand (GR ⁵⁴⁴⁻⁵⁴⁶) have previously been implicated in
154	FKBP51/52-dependent regulation of GR activity ^{41,42} .
155	In addition, the FKBP52 proline-rich loop (β 4- β 5 loop or 80S loop) contacts GR Helix 5
156	and β 1,2. 3D variability analysis in CryoSparc reveals that the proline-rich loop positioning is
157	flexible, deviating from the position in the crystal structure (PDB ID: 4LAV) ⁴³ and adopting
158	different interfaces with GR (Supplemental Movies 3-4). In the consensus 3D refinement map,
159	the proline-rich loop adopts a position similar to the crystal structure, and FKBP52A116,S118,P119

160 interact with the tip of GR Helix 5 and β 1,2. The FKBP52^{P119L} mutation has been shown to

161 reduce GR and AR activation *in vivo*, while FKBP52^{A116V} has been shown to increase AR

162	activation <i>in vivo</i> ²⁹ . We also demonstrate that the FKBP52 ^{S118A} mutation significantly reduces
163	FKBP52-dependent GR potentiation in vivo (Fig. 2e), further demonstrating the functional
164	significance of this interaction site. In addition, S118 has been identified as a phosphorylation
165	site on FKBP52, but not FKBP51 (qPTM database ⁴⁴) (possibly due to the unique adjacent
166	proline on FKBP52 (P119) which could act as a signal for proline-directed protein kinases).
167	Phosphorylation at FKBP52 ^{S118} may help promote the interaction between the proline-rich loop
168	and GR, which could also explain the large effect of the FKBP52 ^{S118A} mutation <i>in vivo</i> .
169	While the FKBP52 FK1 domain is known to have PPIase enzymatic activity, GR is not
170	bound in the PPIase active site and accordingly, no GR prolines were found to have been
171	isomerized compared to other GR structures (PDB ID: 1M2Z ⁴⁵ , 7KRJ ⁶). Consistent with this,
172	mutation of GR prolines does not disrupt FKBP52-dependent regulation of GR ⁴² . Additionally,
173	mutations that disrupt PPIase activity do not affect FKBP52-dependent GR potentiation in vivo ²⁹ .
174	Conversely, PPIase inhibitors have been shown to block the FKBP52-dependent potentiation of
175	GR <i>in vivo</i> ²³ . This can now be understood, as docking of PPIase inhibitors (FK506, rapamycin)
176	into the PPIase active site demonstrate that the inhibitors would sterically block the FKBP52
177	FK1:GR interface (Extended Data Fig. 4e), which was previously hypothesized ^{23,29} .
178	Interface 2 is comprised of the FKBP52 FK2 ^{Y161} sticking into a shallow hydrophobic
179	pocket formed by GR Helix 3 and the Helix 11-12 loop (GR ^{T561, M565,E748}) and a hydrogen bond
180	between the FKBP52 backbone and GR^{E748} (approximately 125 Å ² BSA) (Fig. 2c). Supporting
181	this interaction, we show that the FKBP52 ^{Y161D} mutation significantly reduces FKBP52-
182	dependent GR potentiation in vivo, demonstrating the importance of this interaction (Fig. 2e). In
183	interface 3, the solvent exposed, conserved W259 on the FKBP52 FK2-TPR linker makes
184	electrostatic and hydrophobic interactions with GR Helix 12 (approximately 235 $Å^2$ BSA) (Fig.

185	2d), which adopts the canonical agonist-bound position even in the absence of a stabilizing
186	coactivator peptide interaction ⁴⁵ (Extended Data Fig. 3b). We show that the corresponding
187	FKBP52 ^{W259D} mutation significantly reduces FKBP52-dependent GR potentiation <i>in vivo</i> ,
188	demonstrating the functional importance of this single residue (Fig. 2e). Interestingly,
189	FKBP52 ^{W259} is also conserved in the FKBP-like co-chaperone XAP2 and a recent structure
190	reveals XAP2 engages with an Hsp90-client using the analogous XAP2 ^{W168} , suggesting this
191	residue is critical more broadly for FKBP cochaperone:client engagement ⁴⁶ . At interface 3,
192	FKBP52 ^{K254,E257,Y302,Y303} make further polar interactions between the FK2-TPR linker and GR
193	Helix 12 (Fig. 2d). While a significant portion of the GR Helix 12 co-activator binding site is
194	available in the FKBP52-bound GR, the N-terminus of a co-activator peptide would sterically
195	clash with the FKBP52 TPR based on the GR:co-activator peptide structure ⁴⁵ (Extended Data
196	Fig. 5b). Thus, coactivator binding in the nucleus could help release GR from its complex with
197	Hsp90:FKBP52. We also find that the residues at the FKBP52:GR interfaces are conserved
198	across metazoans (Fig. 2f,g), in agreement with our results that single point mutations at each of
199	the three FKBP52:GR interfaces has a significant effect on GR function in vivo.

200

201 FKBP52 Advances GR to the Next Stage of Maturation

We previously described another GR-chaperone complex, the GR-maturation complex (GR:Hsp90:p23)⁶, which has important similarities and differences when compared to the GR:Hsp90:FKBP52 complex. Both the GR-maturation complex and the GR:Hsp90:FKBP52 complex are comprised of a closed Hsp90 dimer and a folded, ligand-bound GR (Fig. 3a). In the GR:Hsp90:FKBP52 complex, GR is rotated by approximately 45° relative to the GR-maturation complex (Fig. 3a). The Hsp90A Src loop interacts with the GR pre-Helix 1 strand in the

208	maturation complex, but flips out to stabilize the rotated GR position in the GR:Hsp90:FKBP52
209	complex, by interacting with the GR hydrophobic patch (GR Helices 9/10)(Fig. 3b,c). In both
210	complexes, the pre-Helix 1 strand of GR is threaded through the Hsp90 lumen; however, in the
211	GR:Hsp90:FKBP52 complex, GR has translocated through the Hsp90 lumen by two residues,
212	positioning two prolines (GR ^{P522,P526}) in the hydrophobic pockets in the Hsp90 lumen rather than
213	two leucines (GR ^{L525,L528}) (Fig. 3d). This translocation positions the GR LBD further from
214	Hsp90, likely allowing enough space for the observed GR rotation. The rotation of GR may also
215	facilitate GR LBD dimerization, which is on pathway to activation (Extended Data Fig. 5c).
216	Despite the translocation and rotation of GR, Hsp90 uses the same surfaces to bind GR (Hsp90B
217	amphipathic helical hairpin, Hsp90A Src loop, Hsp90A ^{W320}); however, the GR contact surfaces
218	are different.

219

220 FKBP52 Competes with p23 for GR:Hsp90 Binding through Allostery

221 Surprisingly, FKBP52 competes with p23 to bind the GR:Hsp90 complex, although there 222 is no direct steric conflict between FKBP52 and p23 binding (Fig. 3a). During 3D classification 223 on the cryo-EM dataset, GR:Hsp90:p23 complexes were observed at low abundance; however, 224 the GR:Hsp90:FKBP52 complexes showed no apparent p23 density (Extended Data Fig. 2), 225 despite p23 being present at high concentration in the reconstitution mix. Furthermore, FKBP52 226 was found only associated with the rotated GR position, while the GR position in the p23-227 containing classes was only consistent with the GR-maturation complex. Thus, FKBP52 appears 228 to specifically bind the rotated GR position, which is not compatible with p23 binding. This is 229 consistent with mass spectrometry studies, demonstrating FKBP52 competes off p23 to form a 230 stable GR:Hsp90:FKBP52 complex⁴⁷. In the rotated GR position, the Hsp90A Src loop flips out

of the Hsp90 lumen to bind the GR hydrophobic patch, which was previously engaged by the
p23 tail-helix (Fig. 3a-c). Thus, rotation of GR dictates the accessibility of the hydrophobic patch
to either Hsp90 or p23. FKBP52 stabilizes the rotated position of GR and therefore favors Hsp90
binding to GR over p23 and this in turn leads to p23 dissociation.

235

236 FKBP52 Potentiates GR Ligand Binding In Vitro

237 To quantitatively assess the functional significance of FKBP52 on GR activation, we 238 added FKBP52 to the *in vitro* reconstituted GR-chaperone cycle, using the GR DBD-LBD 239 construct (residues 418-777) and monitored GR ligand binding, as previously described^{4,6}. 240 Addition of FKBP52 to the GR chaperone cycle resulted in the enhancement of GR ligand 241 binding above the already enhanced GR + chaperones control reaction at equilibrium (Fig. 3e), 242 strongly suggesting FKBP52 potentiates the GR ligand binding affinity beyond the minimal chaperone mixture, consistent with reports *in vivo*²³. We hypothesized that FKBP52 functions in 243 244 a similar manner to the p23 tail-helix in stabilizing the ligand-bound GR. As previously 245 described, removal of the p23 tail-helix (p23 Δ helix) resulted in a decrease in GR ligand binding activity in the GR-chaperone system⁶; however, addition of FKBP52 to the reaction fully rescued 246 247 GR ligand binding in the p23∆helix background (Fig. 3e), suggesting FKBP52 functions in a 248 similar manner to the p23 tail-helix in stabilizing the ligand-bound GR. Additionally, in the 249 p23Ahelix background, FKBP52 potentiated ligand binding to a greater extent than in the 250 wildtype p23 background. We hypothesize that removing the p23 tail-helix alleviates the 251 competition between p23 and FKBP52, allowing p23 to remain bound to the GR:Hsp90:FKBP52 252 complex. Given that p23 is known to stabilize the closed Hsp90 conformation^{6,48}, the enhanced 253 ligand binding in the p23∆helix background may be due to stabilization of closed Hsp90 by p23.

Interestingly, FKBP52 also affected GR ligand binding independent of Hsp90, with addition of
 FKBP52 to GR resulting in enhanced ligand binding, likely due to an Hsp90-independent
 chaperoning effect^{16,49} (Extended Data Fig. 5d).

257

258 FKBP52 Functionally Replaces p23 In Vitro when Hsp90 Closure is Stabilized

259 Given that FKBP52 can functionally replace the p23 tail-helix, we wondered whether 260 FKBP52 could also functionally replace p23 altogether. p23 is known to stabilize Hsp90 NTD closure through the globular p23 domain^{6,48} in addition to stabilizing the ligand-bound GR 261 262 through the p23 tail-helix. Omitting p23 from the GR-chaperone cycle drastically reduces GR ligand binding, as previously described^{4,6}. The addition of FKBP52 in place of p23 results in a 263 264 modest increase in ligand binding but does not fully rescue ligand binding activity (Fig. 3f). We 265 reasoned this could be due to the inability of FKBP52 to sufficiently stabilize Hsp90 closure, as previously suggested⁵⁰. Therefore, we added molybdate to these reactions, which stabilizes NTD 266 267 closure by acting as a γ -phosphate analogue in the Hsp90 NTD ATP-binding site^{6,51}. Addition of 268 molybdate to the reaction lacking p23 resulted in a small increase in GR ligand binding but did 269 not fully rescue ligand binding activity. However, addition of molybdate to the reactions 270 containing FKBP52 without p23 resulted in a full reactivation of ligand binding and even 271 potentiated ligand binding over the control GR + chaperones reaction (Fig. 3f), much like with 272 p23∆helix. Thus, FKBP52 is able to functionally replace p23 if Hsp90 NTD closure is stabilized. 273 Taken together, these results suggest FKBP52 can stabilize the ligand-bound GR, like p23, but 274 cannot stabilize the closed Hsp90 NTD conformation, which requires p23.

275

276 GR:Hsp90:FKBP51 Structure Determination

277	In vivo the interplay between FKBP52 and the highly similar FKBP51 have profound
278	implications for GR activity. FKBP51 is functionally antagonistic to FKBP52-dependent
279	potentiation of GR in vivo, thus the relative ratios of FKBP51 and FKBP52 dictate GR activity
280	levels ^{23,28,52} . In order to understand mechanistically how FKBP51 antagonizes FKBP52, we
281	prepared the analogous GR:Hsp90:FKBP51 complex (Extended Data Fig. 1c-e). We obtained a
282	3.23 Å cryo-EM reconstruction of GR:Hsp90:FKBP51 using RELION and CryoSparc, with
283	atomic models built using Rosetta (Fig. 4a,b, Extended Data Fig. 6). Contrary to our
284	expectations, the FKBP51-containing structure appears nearly identical to the FKBP52-
285	containing structure. The GR:Hsp90:FKBP51 structure reveals a fully closed, nucleotide bound
286	Hsp90 dimer complexed with a single GR and a single FKBP51, which occupy the same side of
287	Hsp90 (Fig. 4a,b, Extended Data Fig. 7a). The FKBP51:Hsp90 interactions are analogous to the
288	FKBP52:Hsp90 interactions, including the Hsp90B MEEVD:TPR interface and the Hsp90
289	CTD:TPR Helix 7e interface, also seen in the Hsp90:FKBP51:p23 structure ²⁰ (Fig. 4b, Extended
290	Data Fig. 7b-d). The GR:Hsp90 interfaces are nearly identical when comparing the FKBP51 and
291	FKBP52-containing complexes, including the Hsp90 Src loop:GR hydrophobic patch interface
292	and the Hsp90 lumen:GR pre-Helix 1 strand interface (Fig. 4b, Extended Data Fig. 7e-g).
293	FKBP51 also directly binds GR in an analogous manner to FKBP52 (Fig. 4c-e). FKBP51
294	binds the folded, ligand-bound, rotated GR using the same three major interfaces (1) FKBP51
295	FK1:GR, (2) FKBP51 FK2:GR Helix 3, and (3) FKBP51 FK2-TPR linker:GR Helix 12. The
296	GR:FKBP52 interaction residues are largely conserved for GR:FKBP51 (Fig. 2f). As with the
297	FKBP52-containing structure, no GR prolines appear to be isomerized and the PPIase inhibitors
298	rapamycin and FK506 sterically clash with the GR backbone. Interestingly, the small FKBP51-
299	specific inhibitor, SAFit2 (PDB ID: 6TXX) ^{34,53} , does not clash with the GR backbone and may

300	be accommodated in this complex with only side chain rotations, consistent with in vivo data
301	from Baischew et al. 2022 (Extended Data Fig. 7h). Furthermore, the FKBP51 FK1 domain and
302	FK1 proline-rich loop are highly dynamic, as revealed by CryoSparc 3D variability analysis,
303	analogous to the FKBP52-containing structure (Supplemental Movies 5-6). However, in the
304	GR:Hsp90:FKBP51 consensus map and corresponding atomic model, the FK1 domain contacts
305	GR at a different angle relative to the GR:Hsp90:FKBP52 model; thus, the FK1:GR interface is
306	distinct between the two complexes, specifically at the functionally important, but divergent,
307	residue 119 in the proline-rich loop (FKBP51 ^{L119} , FKBP52 ^{P119}) (Fig. 2b, 3c) ²⁹ , which we
308	investigated further below.
309	
310	Functional Difference Between FKBP51 and FKBP52 Depends on Residue 119
311	To quantitatively assess the functional effect of FKBP51 on GR in vitro, we added
312	FKBP51 to the GR-chaperone cycle and measured ligand binding activity. FKBP51 had no effect
313	on the GR equilibrium value, unlike FKBP52, which potentiates GR ligand binding (Extended
314	Data Fig. 8a). However, we found FKBP51 can functionally replace the p23 tail-helix or p23 (if
315	molybdate is added), just as we observed with FKBP52 (Fig. 4f, Extended Data Fig. 8b).
316	However, FKBP51 does not potentiate GR ligand binding in any of these conditions, unlike
317	FKBP52, recapitulating in vivo findings.
318	The residues responsible for the functional difference between FKBP51 and FKBP52 in
319	vivo have been suggested to come from the proline-rich loop on the FK1 domain, specifically the
320	divergent residue 119 (FKBP51 ^{L119} , FKBP52 ^{P119}) ²⁹ . To assess whether this residue is responsible
321	for the functional difference between FKBP51 and FKBP52 in vitro, we swapped residue 119 in
322	FKBP51 and FKBP52 and added these mutants (FKBP51 L119P, FKBP52 P119L) to the in vitro

323	reconstituted GR-chaperone cycle. We then measured ligand binding activity in the p23∆helix
324	background, where the largest potentiation due to FKBP52 is observed. Surprisingly, the residue
325	119 swapped mutants almost fully reversed the effects of FKBP51 and FKBP52 on GR—
326	FKBP51 L119P potentiated GR ligand binding over the GR + chaperones control reaction, while
327	FKBP52 P119L showed significantly less potentiation of ligand binding compared to wildtype
328	FKBP52 (Fig. 4f). These results are consistent with the effects of the FKBP51/52 residue 119
329	swapped mutants in vivo ²⁹ . Thus, residue 119 on the proline-rich loop provides a critical
330	functional difference between the activities of FKBP51 and FKBP52 toward GR in vitro and in
331	vivo, likely driven via the differential positioning of the loop seen in our consensus structures.
332	
333	Discussion
334	We present the first structures of the FKBP51 and FKBP52 co-chaperones bound to an
334 335	We present the first structures of the FKBP51 and FKBP52 co-chaperones bound to an Hsp90-client complex. The 3.01 Å GR:Hsp90:FKBP52 structure reveals that FKBP52 directly
334 335 336	We present the first structures of the FKBP51 and FKBP52 co-chaperones bound to an Hsp90-client complex. The 3.01 Å GR:Hsp90:FKBP52 structure reveals that FKBP52 directly and extensively binds the client using three novel interfaces that stabilize the folded, ligand-
334 335 336 337	We present the first structures of the FKBP51 and FKBP52 co-chaperones bound to an Hsp90-client complex. The 3.01 Å GR:Hsp90:FKBP52 structure reveals that FKBP52 directly and extensively binds the client using three novel interfaces that stabilize the folded, ligand- bound conformation of GR. We show for the first time, that FKBP52 enhances GR ligand
334 335 336 337 338	We present the first structures of the FKBP51 and FKBP52 co-chaperones bound to an Hsp90-client complex. The 3.01 Å GR:Hsp90:FKBP52 structure reveals that FKBP52 directly and extensively binds the client using three novel interfaces that stabilize the folded, ligand- bound conformation of GR. We show for the first time, that FKBP52 enhances GR ligand binding <i>in vitro</i> , consistent with <i>in vivo</i> reports, and that each of the three observed GR:FKBP52
334 335 336 337 338 339	We present the first structures of the FKBP51 and FKBP52 co-chaperones bound to an Hsp90-client complex. The 3.01 Å GR:Hsp90:FKBP52 structure reveals that FKBP52 directly and extensively binds the client using three novel interfaces that stabilize the folded, ligand- bound conformation of GR. We show for the first time, that FKBP52 enhances GR ligand binding <i>in vitro</i> , consistent with <i>in vivo</i> reports, and that each of the three observed GR:FKBP52 interfaces is critical for FKBP52-dependent potentiation <i>in vivo</i> . We also provide a 3.23 Å
 334 335 336 337 338 339 340 	We present the first structures of the FKBP51 and FKBP52 co-chaperones bound to an Hsp90-client complex. The 3.01 Å GR:Hsp90:FKBP52 structure reveals that FKBP52 directly and extensively binds the client using three novel interfaces that stabilize the folded, ligand- bound conformation of GR. We show for the first time, that FKBP52 enhances GR ligand binding <i>in vitro</i> , consistent with <i>in vivo</i> reports, and that each of the three observed GR:FKBP52 interfaces is critical for FKBP52-dependent potentiation <i>in vivo</i> . We also provide a 3.23 Å GR:Hsp90:FKBP51 structure, unexpectedly demonstrating FKBP51 binds to the GR:Hsp90
 334 335 336 337 338 339 340 341 	We present the first structures of the FKBP51 and FKBP52 co-chaperones bound to an Hsp90-client complex. The 3.01 Å GR:Hsp90:FKBP52 structure reveals that FKBP52 directly and extensively binds the client using three novel interfaces that stabilize the folded, ligand- bound conformation of GR. We show for the first time, that FKBP52 enhances GR ligand binding <i>in vitro</i> , consistent with <i>in vivo</i> reports, and that each of the three observed GR:FKBP52 interfaces is critical for FKBP52-dependent potentiation <i>in vivo</i> . We also provide a 3.23 Å GR:Hsp90:FKBP51 structure, unexpectedly demonstrating FKBP51 binds to the GR:Hsp90 complex in a similar manner to FKBP52. The FKBP51 interaction with closed Hsp90 is distinct
 334 335 336 337 338 339 340 341 342 	We present the first structures of the FKBP51 and FKBP52 co-chaperones bound to an Hsp90-client complex. The 3.01 Å GR:Hsp90:FKBP52 structure reveals that FKBP52 directly and extensively binds the client using three novel interfaces that stabilize the folded, ligand- bound conformation of GR. We show for the first time, that FKBP52 enhances GR ligand binding <i>in vitro</i> , consistent with <i>in vivo</i> reports, and that each of the three observed GR:FKBP52 interfaces is critical for FKBP52-dependent potentiation <i>in vivo</i> . We also provide a 3.23 Å GR:Hsp90:FKBP51 structure, unexpectedly demonstrating FKBP51 binds to the GR:Hsp90 complex in a similar manner to FKBP52. The FKBP51 interaction with closed Hsp90 is distinct
 334 335 336 337 338 339 340 341 342 343 	We present the first structures of the FKBP51 and FKBP52 co-chaperones bound to an Hsp90-client complex. The 3.01 Å GR:Hsp90:FKBP52 structure reveals that FKBP52 directly and extensively binds the client using three novel interfaces that stabilize the folded, ligand- bound conformation of GR. We show for the first time, that FKBP52 enhances GR ligand binding <i>in vitro</i> , consistent with <i>in vivo</i> reports, and that each of the three observed GR:FKBP52 interfaces is critical for FKBP52-dependent potentiation <i>in vivo</i> . We also provide a 3.23 Å GR:Hsp90:FKBP51 structure, unexpectedly demonstrating FKBP51 binds to the GR:Hsp90 complex in a similar manner to FKBP52. The FKBP51 interaction with closed Hsp90 is distinct from a previous NMR model ⁵⁴ , but consistent with a recent cryo-EM structure demonstrating FKBP51 binds closed Hsp90 ²⁰ . Thus, these structures provide a molecular explanation for the

345 A recent study by Baischew et al. 2022 using *in vivo* chemical crosslinking validates our 346 structures remarkably well, recapitulating all three major GR:FKBP51/52 contacts as well as the 347 FKBP-mediated rotated GR position. Given that the *in vivo* crosslinking between GR and 348 FKBP51/52 was performed in the absence of ligand, together our findings demonstrate that 349 FKBP51 and FKBP52 bind the apo GR LBD in a similar, if not nearly identical manner to the 350 ligand-bound GR LBD observed here in our structures. While our high-resolution 351 reconstructions unambiguously contain ligand, apo GR:Hsp90:FKBP51/52 complexes likely 352 exist in our dataset, but are less well-ordered (consistent with the results from the GR-maturation 353 complex structure⁶). Baischew et al. 2022 provides further *in vivo* validation of our structural 354 models by demonstrating FK506 inhibits FKBP51-dependent regulation of GR in vivo, while 355 SAFit2 does not (Extended Data Fig. 4e, 7h), and that the FKBP51/52 FK1 domain is 356 dynamically associated with GR relative to the other domains (Supplementary Movies 1-6). 357 Altogether, these studies complement each other extraordinarily well, demonstrating, for the first 358 time, direct association of FKBP51 and FKBP52 with the GR LBD in vivo and in vitro at single-359 residue resolution.

360 Surprisingly, our structures also demonstrate that FKBP51 and FKBP52 compete with 361 p23 to bind the GR:Hsp90 complex through an allosteric mechanism. Previous reports showed 362 FKBP51 and p23 could simultaneously bind the closed Hsp90 in the absence of client²⁰. We 363 demonstrate that the position of the client can dictate which co-chaperone is bound, with the 364 FKBPs and p23 binding to distinct GR positions. FKBP51 and FKBP52 both stabilize a rotated 365 position of GR relative to the GR-maturation complex. One functional consequence of this 366 rotated position may be to promote GR dimerization, which is a required step in GR activation. 367 The rotated GR position relieves this steric hindrance to dimerization in the GR-maturation

368 complex and would allow the GR LBD to dimerize once FKBP51/52 release (Extended Data 369 Fig. 5c). Indeed, a previous report has suggested FKBP51/52 promote AR dimerization in vivo⁵⁵, 370 raising the possibility that the FKBPs promote this next step in SHR maturation. 371 Our structures also contribute to an emerging theme in which Hsp90 cochaperones bind to distinct Hsp90 conformations, while simultaneously binding to specific client 372 conformations^{5,6,46,51,56}. FKBP51 and FKBP52 each wrap around the folded, ligand-bound client 373 374 using all three FKBP domains, while the FKBP TPR Helix 7e binds the closed Hsp90 conformation. The Helix 7e is found in many TPR-containing co-chaperones²⁰, however, our 375 376 structures, along with others, reveal the TPR Helix 7e can bind Hsp90 in distinct positions due to sequence divergence of H7e at the Hsp90 binding site^{46,56}. Although the FKBPs directly contact 377 378 GR, they do not appear to isomerize GR prolines or engage the GR NLS1 (nuclear localization signal 1) (GR⁴⁶⁷⁻⁵⁰⁵)⁵⁷ to regulate GR activity, as previously hypothesized^{13,58-60} 379 380 While FKBP51 binds similarly to FKBP52, competing with p23 and stabilizing the 381 rotated GR, we find that FKBP51 does not significantly enhance GR ligand binding *in vitro*, like 382 FKBP52, consistent with *in vivo* reports^{23 27}. Interestingly, we find residue 119 on FKBP51/52 is 383 critical for enhancement of ligand binding *in vitro*, also consistent with *in vivo* reports²⁹. NMR 384 studies have found the proline at residue 119 on FKBP52 decreases dynamics of the proline-rich 385 loop (also called 80S loop or β 4- β 5 loop) relative to the leucine at FKBP51⁶¹. Analysis of 386 dynamics of our structures using 3D variability analysis demonstrates that the proline-rich loop is highly dynamic in its interaction with GR. Thus, the dynamics of this loop may dictate the 387 388 specificity and/or stability of this interaction, leading to distinct regulation of GR activity. 389 Based on our structures of the GR:Hsp90:FKBP51 and GR:Hsp90:FKBP52 complexes, 390 we propose additional steps in the GR-chaperone cycle that account for FKBP51/52

391 incorporation and subsequent regulation of GR activity in the cell (Fig. 5). In the cytosol, GR 392 cycles between Hsp70 and Hsp90, which locally unfold and refold GR to directly control ligand 393 binding, as previously described⁴⁻⁶. Once the folded, ligand-bound GR reaches the GR-394 maturation complex (GR:Hsp90:p23), either FKBP51 or FKBP52 can bind the complex and 395 compete with p23 to advance GR to the next stage of maturation. Given that the folded GR is 396 strongly stabilized and tightly associated with Hsp90 and the FKBPs, we suggest that it is 397 unlikely that ligand binding or unbinding happens in the context of FKBP-bound complexes. 398 Instead, we propose that ligand binds prior to the formation of either the GR-maturation complex 399 or the GR:Hsp90:FKBP complexes, and that unbinding mostly occurs by recycling GR back to Hsp70, as previously described⁴⁻⁶. 400

401 After reaching the GR-maturation complex, the functional outcome for GR is dictated by 402 FKBP51 and FKBP52, which compete to bind the GR:Hsp90 complex. FKBP52 stabilizes the 403 ligand-bound GR, resulting in enhanced ligand affinity, and facilitates rapid GR nuclear translocation on dynein^{22,24,25,62}, allowing GR to proceed with dimerization and activation of 404 405 transcription in the nucleus. In contrast, FKBP51 binding keeps GR sequestered in the cytosol 406 and recycles GR back to the chaperone cycle, inhibiting GR translocation and transcription 407 activation. Interestingly, the expression of FKBP51, but not FKBP52, is upregulated by GR (as 408 well as PR and AR), leading to a short negative feedback loop, which may help dampen chronic GR activation and signaling^{27,63-67}. Thus, the relative concentrations of FKBP51 and FKBP52 in 409 the cell dictate the level of GR activity in vivo^{23,28,52}. 410

Beyond GR, FKBP51/52 are known to regulate the entire SHR class and given the
sequence and structural conservation of the SHR LBDs at the FKBP contact sites, we propose
FKBP51 and FKBP52 engage with the rest of the SHRs in a similar manner to GR (Extended

- 414 Data Fig. 9a,b). Thus, FKBP51/52 can fine-tune the activity of these critical and clinically
- 415 important signaling molecules and allow for crosstalk between the hormone signaling pathways.
- 416 Altogether, we demonstrate how Hsp90 provides a platform for the FKBP co-chaperones to
- 417 engage Hsp90 clients after Hsp90-dependent folding and promote the next step of client
- 418 maturation, providing a critical layer of functional regulation.
- 419

420 Acknowledgements

421 We thank members of the Agard Lab, past and present, including Ray Wang for the suggestion 422 of this project and Elaine Kirschke for helpful discussions. We thank members of the José-Maria 423 Carazo lab for continuous flexibility analysis on the cryo-EM datasets. We thank Jason 424 Gestwicki for noting the potential importance of differential phosphorylation on the FKBPs. We 425 thank David Bulkley, Glenn Gilbert, Zanlin Yu, and Eric Tse from the W.M. Keck Foundation 426 Advanced Microscopy Laboratory at the University of California, San Francisco (UCSF) for EM 427 facility maintenance and help with data collection. We also thank Matt Harrington and Joshua 428 Baker-LePain for computational support with the UCSF Wynton cluster. C.M.N. is a National 429 Cancer Institute Ruth L. Kirschstein Predoctoral Individual NRSA Fellow (F31CA265084-02). 430 The work was supported by NIH grants R35GM118099 (D.A.A.), S100D020054 (D.A.A.), S100D021741 (D.A.A.), P20GM104420 (J.L.J.), and R01GM127675 (J.L.J.). 431

432

433 Author Contributions

- 434 C.M.N. designed and executed biochemical experiments, cryo-EM sample preparation, data
- 435 collection, data processing, and model building. J.L.J. executed yeast in vivo assays and
- 436 interpreted the results. C.M.N. and D.A.A. conceived the project, interpreted the results, and
- 437 wrote the manuscript.
- 438
- 439 **Competing Interests**
- 440 The authors declare no competing interests.

441 **References**

442	1	Taipale, M., Jarosz, D. F. & Lindquist, S. HSP90 at the hub of protein homeostasis:
443		emerging mechanistic insights. 11 , 515-528, doi:10.1038/nrm2918 (2010).
444	2	Schopf, F. H., Biebl, M. M. & Buchner, J. The HSP90 chaperone machinery. <i>Nature</i>
445		Reviews Molecular Cell Biology 18 , 345-360, doi:10.1038/nrm.2017.20 (2017).
446	3	Taipale, M. et al. Quantitative analysis of HSP90-client interactions reveals principles of
447		substrate recognition. <i>Cell</i> 150 , 987-1001, doi:10.1016/j.cell.2012.06.047 (2012).
448	4	Kirschke, E., Goswami, D., Southworth, D., Griffin, P. & Agard, D. Glucocorticoid
449		Receptor Function Regulated by Coordinated Action of the Hsp90 and Hsp70 Chaperone
450		Cycles. <i>Cell</i> 157 , 1685-1697, doi:10.1016/j.cell.2014.04.038 (2014).
451	5	Wang, R. Y. et al. Structure of Hsp90-Hsp70-Hop-GR reveals the Hsp90 client-loading
452		mechanism. Nature 601, 460-464, doi:10.1038/s41586-021-04252-1 (2022).
453	6	Noddings, C. M., Wang, R. Y., Johnson, J. L. & Agard, D. A. Structure of Hsp90-p23-GR
454		reveals the Hsp90 client-remodelling mechanism. <i>Nature</i> 601 , 465-469,
455		doi:10.1038/s41586-021-04236-1 (2022).
456	7	Pratt, W. B. & Toft, D. O. Steroid Receptor Interactions with Heat Shock Protein and
457		Immunophilin Chaperones. Endocrine Reviews 18, 306-360, doi:10.1210/edrv.18.3.0303
458		(1997).
459	8	Storer, C. L., Dickey, C. A., Galigniana, M. D., Rein, T. & Cox, M. B. FKBP51 and FKBP52 in
460		signaling and disease. 22 , 481-490, doi:10.1016/j.tem.2011.08.001 (2011).
461	9	Zgajnar, N. R. et al. Biological Actions of the Hsp90-binding Immunophilins FKBP51 and
462		FKBP52. <i>Biomolecules</i> 9 , doi:10.3390/biom9020052 (2019).
463	10	Zhao, R. et al. Navigating the chaperone network: an integrative map of physical and
464		genetic interactions mediated by the hsp90 chaperone. Cell 120 , 715-727,
465		doi:10.1016/j.cell.2004.12.024 (2005).
466	11	Picard, D. et al. Reduced levels of hsp90 compromise steroid receptor action in vivo.
467		Nature 348 , 166-168, doi:10.1038/348166a0 (1990).
468	12	Morishima, Y., Murphy, P. J., Li, D. P., Sanchez, E. R. & Pratt, W. B. Stepwise assembly of
469		a glucocorticoid receptor.hsp90 heterocomplex resolves two sequential ATP-dependent
470		events involving first hsp70 and then hsp90 in opening of the steroid binding pocket. J
471		<i>Biol Chem</i> 275 , 18054-18060, doi:10.1074/jbc.M000434200 (2000).
472	13	Smith, D. F. & Toft, D. O. Minireview: the intersection of steroid receptors with
473		molecular chaperones: observations and questions. Mol Endocrinol 22, 2229-2240,
474		doi:10.1210/me.2008-0089 (2008).
475	14	Nathan, D. F. & Lindquist, S. Mutational analysis of Hsp90 function: interactions with a
476		steroid receptor and a protein kinase. Mol Cell Biol 15, 3917-3925,
477		doi:10.1128/mcb.15.7.3917 (1995).
478	15	Weikum, E. R., Knuesel, M. T., Ortlund, E. A. & Yamamoto, K. R. Glucocorticoid receptor
479		control of transcription: precision and plasticity via allostery. doi:10.1038/nrm.2016.152
480		(2017).
481	16	Pirkl, F. & Buchner, J. Functional analysis of the hsp90-associated human peptidyl prolyl
482		Cis/Trans isomerases FKBP51, FKBP52 and cyp40. 308 , 795-806,
483		doi:10.1006/jmbi.2001.4595 (2001).

_		
484	17	Sinars, C. R. <i>et al.</i> Structure of the large FK506-binding protein FKBP51, an Hsp90-
485		binding protein and a component of steroid receptor complexes. Proc Natl Acad Sci U S
486		A 100, 868-873, doi:10.1073/pnas.0231020100 (2003).
487	18	Wu, B. et al. 3D structure of human FK506-binding protein 52: implications for the
488		assembly of the glucocorticoid receptor/Hsp90/immunophilin heterocomplex. <i>Proc Natl</i>
489		Acad Sci U S A 101 . 8348-8353. doi:10.1073/pnas.0305969101 (2004).
490	19	Kumar R Moche M Winhlad B & Payloy P E Combined x-ray crystallography and
/01	10	computational modeling approach to investigate the Hsn90 C-terminal pentide hinding
491		to EKBD51 Sci Ren 7 14288 doi:10.1038/s/1508-017-14731-7 (2017)
492	20	Let K <i>et al.</i> The structure of an Hsn90-immunonhilin complex reveals cochanerone
404	20	recognition of the client maturation state. Mol Call 91 , 2406, 2509, o2405
494 405		dei:10.1016/i meleel 2021.07.022 (2021)
495	24	doi:10.1016/J.molcei.2021.07.023 (2021).
496	21	Cheung-Flynn, J., Roberts, P. J., Riggs, D. L. & Smith, D. F. C-terminal sequences outside
497		the tetratricopeptide repeat domain of FKBP51 and FKBP52 cause differential binding to
498		Hsp90. <i>J Biol Chem</i> 278 , 17388-17394, doi:10.1074/jbc.M300955200 (2003).
499	22	Galigniana, M. D., Radanyi, C., Renoir, J. M., Housley, P. R. & Pratt, W. B. Evidence that
500		the peptidylprolyl isomerase domain of the hsp90-binding immunophilin FKBP52 is
501		involved in both dynein interaction and glucocorticoid receptor movement to the
502		nucleus. <i>J Biol Chem</i> 276 , 14884-14889, doi:10.1074/jbc.M010809200 (2001).
503	23	Riggs, D. L. et al. The Hsp90-binding peptidylprolyl isomerase FKBP52 potentiates
504		glucocorticoid signaling in vivo. The EMBO Journal 22, 1158-1167,
505		doi:10.1093/emboj/cdg108 (2003).
506	24	Wochnik, G. M. et al. FK506-binding Proteins 51 and 52 Differentially Regulate Dynein
507		Interaction and Nuclear Translocation of the Glucocorticoid Receptor in Mammalian
508		Cells. Journal of Biological Chemistry 280 , 4609-4616, doi:10.1074/jbc.m407498200
509		(2005).
510	25	Tatro, E. T., Everall, I. P., Kaul, M. & Achim, C. L. Modulation of glucocorticoid receptor
511		nuclear translocation in neurons by immunophilins FKBP51 and FKBP52: Implications for
512		major depressive disorder. <i>Brain Research</i> 1286 , 1-12.
513		doi:10.1016/i brainres 2009.06.036 (2009)
514	26	Echeverría P C <i>et al</i> Nuclear import of the glucocorticoid recentor-hsn90 complex
515	20	through the nuclear nore complex is mediated by its interaction with Nun62 and
516		importin beta Malecular and cellular biology 29 4788-4797 doi:10.1128/MCB.00649-
517		
517 E10	77	Danny W. R. Valantina, D. L. Boynalds, P. D. Smith, D. E. & Scammall, L. C. Squirral
510	27	menkov immunenhilin EKDE1 is a notent inhibitor of glussessticoid resenter hinding
213		Fredering low: 141 , 4107, 4112, doi:10.1210/orde.141.11.7785 (2000)
520	20	Endocrinology 141 , 4107-4113, doi:10.1210/endo.141.11.7785 (2000).
521	28	Davies, T. H., Ning, Y. M. & Sanchez, E. R. Differential control of glucocorticoid receptor
522		normone-binding function by tetratricopeptide repeat (TPR) proteins and the
523		immunosuppressive ligand FK506. <i>Biochemistry</i> 44 , 2030-2038, doi:10.1021/bi048503v
524		(2005).
525	29	Riggs, D. L. et al. Noncatalytic role of the FKBP52 peptidyl-prolyl isomerase domain in
526		the regulation of steroid hormone signaling. Mol Cell Biol 27, 8658-8669,
527		doi:10.1128/MCB.00985-07 (2007).

528 529	30	Wolf, I. M. <i>et al.</i> Targeted ablation reveals a novel role of FKBP52 in gene-specific regulation of glucocorticoid receptor transcriptional activity. <i>J Steroid Biochem Mol Biol</i>
530		113 , 36-45, doi:10.1016/j.jsbmb.2008.11.006 (2009).
531	31	Hinds, T. D., Stechschulte, L. A., Elkhairi, F. & Sanchez, E. R. Analysis of FK506, timcodar
532		(VX-853) and FKBP51 and FKBP52 chaperones in control of glucocorticoid receptor
533		activity and phosphorylation. <i>Pharmacol Res Perspect</i> 2 , e00076, doi:10.1002/prp2.76
534		(2014).
535	32	Vandevyver, S., Dejager, L. & Libert, C. On the trail of the glucocorticoid receptor: into
536		the nucleus and back. <i>Traffic</i> 13 , 364-374, doi:10.1111/j.1600-0854.2011.01288.x
537		(2012).
538	33	Kolos, J. M., Voll, A. M., Bauder, M. & Hausch, F. FKBP Ligands-Where We Are and
539		Where to Go? <i>Front Pharmacol</i> 9 , 1425, doi:10.3389/fphar.2018.01425 (2018).
540	34	Gaali, S. <i>et al.</i> Selective inhibitors of the FK506-binding protein 51 by induced fit. <i>Nat</i>
541		<i>Chem Biol</i> 11 , 33-37, doi:10.1038/nchembio.1699 (2015).
542	35	Guy, N. C., Garcia, Y. A. & Cox, M. B. Therapeutic Targeting of the FKBP52 Co-Chaperone
543		in Steroid Hormone Receptor-Regulated Physiology and Disease. Curr Mol Pharmacol 9,
544		109-125, doi:10.2174/1874467208666150519114115 (2015).
545	36	Feng, X., Pomplun, S. & Hausch, F. Recent Progress in FKBP Ligand Development. Curr
546		<i>Mol Pharmacol</i> 9 , 27-36, doi:10.2174/1874467208666150519113313 (2015).
547	37	Sabbagh, J. J. et al. Targeting the FKBP51/GR/Hsp90 Complex to Identify Functionally
548		Relevant Treatments for Depression and PTSD. ACS Chem Biol 13, 2288-2299,
549		doi:10.1021/acschembio.8b00454 (2018).
550	38	Bauder, M. et al. Structure-Based Design of High-Affinity Macrocyclic FKBP51 Inhibitors.
551		<i>J Med Chem</i> 64 , 3320-3349, doi:10.1021/acs.jmedchem.0c02195 (2021).
552	39	Estebanez-Perpina, E. et al. A surface on the androgen receptor that allosterically
553		regulates coactivator binding. Proc Natl Acad Sci U S A 104, 16074-16079,
554		doi:10.1073/pnas.0708036104 (2007).
555	40	Blundell, K. L., Pal, M., Roe, S. M., Pearl, L. H. & Prodromou, C. The structure of FKBP38
556		in complex with the MEEVD tetratricopeptide binding-motif of Hsp90. PLoS One 12,
557		e0173543, doi:10.1371/journal.pone.0173543 (2017).
558	41	Fuller, P. J., Smith, B. J. & Rogerson, F. M. Cortisol resistance in the New World revisited.
559		Trends Endocrinol Metab 15, 296-299, doi:10.1016/j.tem.2004.07.001 (2004).
560	42	Cluning, C. et al. The helix 1-3 loop in the glucocorticoid receptor LBD is a regulatory
561		element for FKBP cochaperones. Mol Endocrinol 27, 1020-1035, doi:10.1210/me.2012-
562		1023 (2013).
563	43	Bracher, A. et al. Crystal structures of the free and ligand-bound FK1-FK2 domain
564		segment of FKBP52 reveal a flexible inter-domain hinge. J Mol Biol 425, 4134-4144,
565		doi:10.1016/j.jmb.2013.07.041 (2013).
566	44	Yu, K. et al. qPTM: an updated database for PTM dynamics in human, mouse, rat and
567		yeast. Nucleic Acids Res, doi:10.1093/nar/gkac820 (2022).
568	45	Bledsoe, R. K. et al. Crystal Structure of the Glucocorticoid Receptor Ligand Binding
569		Domain Reveals a Novel Mode of Receptor Dimerization and Coactivator Recognition.
570		110 , 93-105, doi:10.1016/s0092-8674(02)00817-6 (2002).

571 572	46	Gruszczyk, J. <i>et al.</i> Cryo-EM structure of the agonist-bound Hsp90-XAP2-AHR cytosolic complex. <i>Nat Commun</i> 13 , 7010. doi:10.1038/s41467-022-34773-w (2022).
573	47	Ebong I-O Beilsten-Edmands V Patel N A Morgner N & Rohinson C V The
574	.,	interchange of immunophilins leads to parallel pathways and different intermediates in
575		the assembly of Hsp90 glucocorticoid receptor complexes. 2 , 16002,
576		doi:10.1038/celldisc.2016.2 (2016).
577 578	48	Ali, M. M. U. <i>et al.</i> Crystal structure of an Hsp90–nucleotide–p23/Sba1 closed chaperone complex. <i>Nature</i> 440 , 1013-1017, doi:10.1038/nature04716 (2006).
579	49	Bose, S., Weikl, T., Bugl, H. & Buchner, J. Chaperone function of Hsp90-associated
580		proteins. <i>Science</i> 274 , 1715-1717, doi:10.1126/science.274.5293.1715 (1996).
581	50	Kaziales, A., Barkovits, K., Marcus, K. & Richter, K. Glucocorticoid receptor complexes
582		form cooperatively with the Hsp90 co-chaperones Pp5 and FKBPs. Sci Rep 10, 10733,
583		doi:10.1038/s41598-020-67645-8 (2020).
584	51	Verba, K. A. <i>et al.</i> Atomic structure of Hsp90-Cdc37-Cdk4 reveals that Hsp90 traps and
585 586		stabilizes an unfolded kinase. <i>Science</i> 352 , 1542-1547, doi:10.1126/science.aaf5023
587	52	Revnolds P. D. Ruan V. Smith D. F. & Scammell, J. G. Glucocorticoid Resistance in the
588	52	Squirrel Monkey Is Associated with Overexpression of the Immunonhilin EKBP51 1 84
589		663-669 doi:10.1210/icem 84.2.5429 (1999)
590	53	Draxler S W <i>et al</i> Hybrid Screening Approach for Very Small Fragments: X-ray and
591	55	Computational Screening on FKBP51 Journal of Medicinal Chemistry 63 5856-5864
592		doi:10.1021/acs.jmedchem.0c00120 (2020).
593	54	Oroz, J. et al. Structure and pro-toxic mechanism of the human Hsp90/PPIase/Tau
594		complex. <i>Nature Communications</i> 9 , doi:10.1038/s41467-018-06880-0 (2018).
595	55	Maeda, K. et al. FKBP51 and FKBP52 regulate androgen receptor dimerization and
596		proliferation in prostate cancer cells. <i>Mol Oncol</i> 16 , 940-956, doi:10.1002/1878-
597		0261.13030 (2022).
598 599	56	Jaime-Garza, M. <i>et al.</i> Hsp90 provides a platform for kinase dephosphorylation by PP5. <i>bioRxiv</i> (2022).
600	57	Savory, I. G. A. <i>et al.</i> Discrimination between NI1- and NI2-Mediated Nuclear
601 602		Localization of the Glucocorticoid Receptor. 19 , 1025-1037, doi:10.1128/mcb.19.2.1025
602	го	(1999).
603	58	Pratt, W. B., Galigniana, M. D., Harrell, J. M. & Derranco, D. B. Role of hsp90 and the
604 COF		nsp90-binding immunophilins in signalling protein movement. <i>Cell Signal</i> 16 , 857-872,
605	50	doi:10.1016/J.Cellsig.2004.02.004 (2004).
606	59	Sivils, J. C., Storer, C. L., Galigniana, M. D. & Cox, M. B. Regulation of steroid normone
607		receptor function by the 52-kDa FK506-binding protein (FKBP52). Curr Opin Pharmacol
608	60	11 , 314-319, doi:10.1016/j.coph.2011.03.010 (2011).
609	60	Rein, T. Peptidylprolylisomerases, Protein Folders, or Scattolders? The Example of
610	64	FKBP51 and FKBP52. <i>Bioessays</i> 42 , e1900250, doi:10.1002/bies.201900250 (2020).
611 642	61	iviustati, S. Ivi., Leiviaster, D. M. & Hernandez, G. Differential conformational dynamics in
612		the closely nomologous FK506-binding domains of FKBP51 and FKBP52. Biochem J 461 ,
613		115-123, doi:10.1042/BJ20140232 (2014).

614 615	62	Galigniana, M. D., Echeverria, P. C., Erlejman, A. G. & Piwien-Pilipuk, G. Role of molecular chaperones and TPR-domain proteins in the cytoplasmic transport of steroid
616		receptors and their passage through the nuclear pore. <i>Nucleus</i> 1 , 299-308.
617		doi:10.4161/nucl.1.4.11743 (2010).
618	63	Baughman, G., Wiederrecht, G. J., Chang, F., Martin, M. M. & Bourgeois, S. Tissue
619		distribution and abundance of human FKBP51, and FK506-binding protein that can
620		mediate calcineurin inhibition. Biochem Biophys Res Commun 232, 437-443,
621		doi:10.1006/bbrc.1997.6307 (1997).
622	64	Jaaskelainen, T., Makkonen, H. & Palvimo, J. J. Steroid up-regulation of FKBP51 and its
623		role in hormone signaling. Curr Opin Pharmacol 11, 326-331,
624		doi:10.1016/j.coph.2011.04.006 (2011).
625	65	Zannas, A. S. & Binder, E. B. Gene-environment interactions at the FKBP5 locus: sensitive
626		periods, mechanisms and pleiotropism. Genes Brain Behav 13, 25-37,
627		doi:10.1111/gbb.12104 (2014).
628	66	Zannas, A. S., Wiechmann, T., Gassen, N. C. & Binder, E. B. Gene-Stress-Epigenetic
629		Regulation of FKBP5: Clinical and Translational Implications. <i>Neuropsychopharmacology</i>
630		41 , 261-274, doi:10.1038/npp.2015.235 (2016).
631	67	Cheung, J. & Smith, D. F. Molecular chaperone interactions with steroid receptors: an
632		update. <i>Mol Endocrinol</i> 14 , 939-946, doi:10.1210/mend.14.7.0489 (2000).
633		
634		

Figure 1 | Architecture of the GR:Hsp90:FKBP52 complex

a, Composite cryo-EM map of the GR:Hsp90:FKBP52 complex. Hsp90A (dark blue), Hsp90B (light blue), GR (yellow), FKBP52 (teal). Color scheme is maintained throughout. **b**, Atomic model in cartoon representation with boxes corresponding to the interfaces shown in detail in **b-g**. **c**, Interface 1 of the Hsp90:GR interaction, depicting the Hsp90A Src loop (Hsp90A³⁴⁵⁻³⁶⁰) interacting with the GR hydrophobic patch. GR is in surface representation. **d**, Interface 2 of the Hsp90:GR interaction, depicting GR_{Helix 1} (GR⁵³²⁻⁵³⁹) packing against the entrance to the Hsp90 lumen. Hsp90A/B are in surface representation. **e**, Interface 3 of the Hsp90:GR interaction, depicting GR_{pre-Helix 1} (GR⁵¹⁹⁻⁵³¹) threading through the Hsp90 lumen. Hsp90A/B are in surface representation. **f**, Interface 1 of the Hsp90:FKBP52 interaction, depicting FKBP52 TPR H7e (FKBP52³⁸⁷⁻⁴²⁴) interacting with the Hsp90A/B CTD dimer interface. Hsp90A/B are in surface representation. **g**, Interface 2 of the Hsp90:FKBP52 interaction, depicting FKBP52 interaction, depicting FKBP52 interaction, depicting FKBP52 interaction, depicting the Hsp90B/B MEEVD motif (Hsp90B⁷⁰⁰⁻⁷⁰⁶) binding in the helical bundle of the FKBP52 TPR domain. FKBP52 is in surface representation.

Figure 2 | The GR:FKBP52 interaction and functional significance

a, Atomic model depicting the three interfaces between GR (yellow) and FKBP52 (teal) in the GR:Hsp90:FKBP52 complex. The FKBP52 proline-rich loop and PPlase site catalytic site are highlighted in gray. **b**, Interface 1 between GR (yellow) and the FKBP52 FK1 domain (teal), showing interacting side chains and hydrogen bonds (dashed pink lines). **c**, Interface 2 between GR (yellow) and the FKBP52 FK2 domain (teal), showing interacting side chains and hydrogen bonds (dashed pink lines). **d**, Interface 3 between GR (yellow) and the FKBP52 FK2-TPR linker (teal), showing interacting side chains and hydrogen bonds (dashed pink lines). **e**, GR activation assay in wild-type yeast strain JJ762 expressing FKBP52 ("52") or FKBP52 mutants. The fold increase in GR activities compared to the empty vector (e.v.) control are shown (mean±SD). n=3 biologically independent samples per condition. Significance was evaluated using a one-way ANOVA (F_(6,14) = 67.82; p < 0.0001) with *post-hoc* Dunnett's multiple comparisons test (n.s. P ≥ 0.05; * P ≤ 0.05; * P ≤ 0.01; *** P ≤ 0.001). P-values: p(e.v. vs. 52) < 0.0001, p(52 vs. 52\DeltaFK1) < 0.0001, p(52 vs. 52 S118A) < 0.0001, p(52 vs. 52 Y161D) = 0.0001, p(52 vs. 52 W259D) = 0.0002. **f**, Sequence alignment of eukaryotic FKBP52 showing conserved residues involved in the GR:FKBP52 interaction (denoted by a black asterisk). The bottom aligned sequence is human FKBP51. The alignment is colored according to the ClustalW convention. **g**, GR protein sequence conservation mapped onto the GR atomic model from the GR:Hsp90:FKBP52 complex. Residue conservation is depicted from most variable (cyan) to most conserved residues (maroon).

Figure 3 | FKBP52 competes with p23 to bind GR:Hsp90

a, Atomic model of the GR-maturation complex (top) and the GR:Hsp90:FKBP52 complex (bottom) with boxes corresponding to the interfaces shown in detail in b-d. FKBP52 complets off p23 and re-positions GR at an approximately 45° rotated position. Hsp90A (dark blue), Hsp90B (light blue), GR (yellow), p23 (green), FKBP52 (teal). b, Position of the Hsp90A Src loop in the GR-maturation complex (Hsp90A, cyan) versus the GR:Hsp90:FKBP52 complex (Hsp90A, dark blue). The Hsp90A Src loop flips up in the GR:Hsp90:FKBP52 complex to interact with the hydrophobic patch on the rotated GR (yellow, surface representation). Hsp90A Src loop residues interacting with the GR hydrophobic patch are shown. c, Interface between the p23 tail-helix (green) and the GR hydrophobic patch (yellow, surface representation) in the GR-maturation complex (top). The p23 tail-helix is replaced by the Hsp90A Src loop (dark blue) in the GR:Hsp90:FKBP52 complex (bottom), which flip up to interact with the GR hydrophobic patch (yellow, surface representation complex (top) versus the GR_{pre-Helix 1} (GR⁵¹⁹⁻⁵³¹) threading through the Hsp90 lumen in the GR-maturation complex (top) versus the GR_{pre-Helix 1} (GR⁵¹⁹⁻⁵³¹) threading through the Hsp90 lumen in the GR-maturation complex (top) versus the GR_{pre-Helix 1} (GR⁵¹⁹⁻⁵³¹) threading through the Hsp90 lumen in the GR-maturation complex (top) versus the GR_{pre-Helix 1} (GR⁵¹⁹⁻⁵³¹) threading through the Hsp90 lumen in the GR-maturation complex (top) versus the GR_{pre-Helix 1} (GR⁵¹⁹⁻⁵³¹) threading through the Hsp90 lumen hydrophobic pockets in both complexes. e, Equilibrium binding of 10nM fluorescent dexamethasone to 100nM GR DBD-LBD with chaperones and FKBP52 ("52"). "Chaperones"= 15uM Hsp70, Hsp90, Hop, and p23 or p23Ahelix, 2uM Ydj1 and Bag-1. Significance was evaluated using a one-way ANOVA (F_(3,8) = 541.2; p < 0.0001) with *post-hoc* Šidák's test (n.s. P ≥ 0.05; * P ≤ 0.01; *** P ≤ 0.001; *** P ≤ 0.0001, p(Chaperones w/ p23Ahelix + 52) < 0.0001, p(Chaperones w/ p23Ahelix + 52) < 0.0001, p

Figure 4 | Architecture of the GR:Hsp90:FKBP51 complex

a, Composite cryo-EM map of the GR:Hsp90:FKBP51 complex. Hsp90A (dark blue), Hsp90B (light blue), GR (yellow), FKBP51 (purple). Color scheme is maintained throughout. **b**, Atomic model in cartoon representation with boxes corresponding to the interfaces shown in detail in **c-e**. **c**, Interface 1 between GR (yellow) and the FKBP51 FK1 domain (purple), showing interacting side chains and hydrogen bonds (dashed pink lines). **d**, Interface 2 between GR (yellow) and the FKBP51 FK2 domain (purple), showing interacting side chains and hydrogen bonds (dashed pink lines). **e**, Interface 3 between GR (yellow) and the FKBP51 FK2 domain (purple), showing interacting side chains and hydrogen bonds (dashed pink lines). **e**, Interface 3 between GR (yellow) and the FKBP51 FK2-TPR linker (yellow), showing interacting side chains and hydrogen bonds (dashed pink lines). **f**, Equilibrium binding of 10nM fluorescent dexamethasone to 100nM GR DBD-LBD with chaperones, FKBP51 ("51"), FKBP52 ("52"), or mutants. "Chaperones"= 15uM Hsp70, Hsp90, Hop, and p23 or p23\Deltahelix, 2uM Ydj1 and Bag-1. Significance was evaluated using a one-way ANOVA (F_(5,12) = 404.1; p < 0.0001) with *post-hoc* Šídák's test (n.s. $P \ge 0.05$; ** $P \le 0.01$; **** $P \le 0.001$; **** $P \le 0.0001$). See **Methods** for p-values.

available under aCC-BY-INC-IND 4.0 International license.

Figure 5 | Mechanism of GR regulation by FKBP51 and FKBP52 in the GR chaperone cycle in vivo

Schematic of the GR chaperone cycle in the cell. Starting on the top left, GR (yellow, cartoon representation) is in dynamic equilibrium between cortisol-bound and unbound (apo) states. Hsp70 (orange) binds GR and locally unfolds GR to inhibit cortisol-binding, stabilizing GR in a partially unfolded, apo state. Hsp70 transfers the partially unfolded GR to Hsp90 (light and dark blue):Hop (pink) to form the GR-loading complex (Wang et al. 2022), in which GR is stabilized in a partially unfolded, apo state with the cortisol-binding pocket accessible. Cortisol (pink), which enters the cell through diffusion, binds to GR during the transition from the GR-loading complex to the GR-maturation complex when Hsp90 refolds the GR to a native conformation, sealing the cortisol-binding pocket through the refolding of the GR Helix 1 region (Noddings et al. 2022). In the GR-maturation complex, the cortisol-bound, folded GR is stabilized by Hsp90 and p23 (green), and is protected from Hsp70 rebinding. Depending on the relative concentrations of the FKBPs, either FKBP51 (purple) or FKBP52 (teal) can bind the GR:Hsp90:p23 complex, competing off p23, and stabilizing the rotated position of GR. FKBP51 sequesters GR:Hsp90 in the cytosol until ATP hydrolysis on Hsp90 allows release of GR back to the chaperone cycle. In contrast, FKBP52 promotes rapid nuclear translocation of GR:Hsp90 by acting as an adapter to the dynein/dynactin motor complex. Once in the nucleus, the cortisol-bound GR can dimerize, nucleate the assembly of transcriptional regulatory complexes, and activate the transcription of thousands of genes, including the gene for FKBP51 (*FKBP5*), leading to a negative feedback loop that regulates GR activity in the cell. The GR chaperone cycle also occurs in the absence of ligand and evidence supports preferential binding of FKBP51 over FKBP52 to apo GR:Hsp90 complexes, insuring the apo (inactivated) GR is not improperly translocated to the nucleus to regulate transcription.