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Abstract: Nanotechnology has opened up a world of possibilities for the treatment of brain disorders.
Nanosystems can be designed to encapsulate, carry, and deliver a variety of therapeutic agents,
including drugs and nucleic acids. Nanoparticles may also be formulated to contain photosensi-
tizers or, on their own, serve as photothermal conversion agents for phototherapy. Furthermore,
nano-delivery agents can enhance the efficacy of contrast agents for improved brain imaging and
diagnostics. However, effective nano-delivery to the brain is seriously hampered by the formidable
blood–brain barrier (BBB). Advances in understanding natural transport routes across the BBB have
led to receptor-mediated transcytosis being exploited as a possible means of nanoparticle uptake. In
this regard, the oligopeptide Angiopep-2, which has high BBB transcytosis capacity, has been utilized
as a targeting ligand. Various organic and inorganic nanostructures have been functionalized with
Angiopep-2 to direct therapeutic and diagnostic agents to the brain. Not only have these shown great
promise in the treatment and diagnosis of brain cancer but they have also been investigated for the
treatment of brain injury, stroke, epilepsy, Parkinson’s disease, and Alzheimer’s disease. This review
focuses on studies conducted from 2010 to 2021 with Angiopep-2-modified nanoparticles aimed at
the treatment and diagnosis of brain disorders.
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1. Introduction

The blood–brain barrier (BBB) is a selectively permeable network of capillary endothe-
lial cells, astroglia, pericytes, and perivascular mast cells, which stringently regulates the
exchange of molecules between the blood and the cerebral tissue. The system functions in
protecting the central nervous system (CNS), providing nutrients to the brain, maintaining
homeostasis, and regulating communication to and from the CNS [1]. The former protective
capability is conferred by the presence of tight intercellular junctions that prevent the entry
of pathogens and toxins [2].

In line with the exclusion of foreign substances, the BBB is also a significant im-
pediment to the delivery of therapeutic and diagnostic agents to the brain. Moreover,
ATP-binding cassette (ABC) transporters of BBB endothelial cells can expel compounds that
may traverse the barrier back into the bloodstream [3]. Consequently, brain disorders are no-
toriously difficult to diagnose and treat both by conventional methods and nanotechnology.

Understanding the natural routes of transport, such as receptor-mediated transcytosis
(RMT), across the BBB has led to the ‘trojan horse’ concept being widely investigated.
This strategy involves modifying nanoparticles (NPs) with ligands that can bind specific
receptors at the apical membrane of brain endothelial cells and promote endocytosis. In
this way, the entry of the NP is masked through recognition of the ligand. Angiopep-2 is
one such ligand [1,4].

Angiopep-2 (TFFYGGSRGKRNNFKTEEY, molecular weight 2.4 kDa) is a 19-amino-
acid-long oligopeptide that binds to the low-density lipoprotein receptor-related protein-1
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(LRP1) [5]. Identified by Demeule and coworkers [6] as part of a family of Kunitz-domain-
derived peptides, Angiopep-2 showed greater transcytosis ability and parenchyma accu-
mulation than the protease inhibitor, aprotinin. Aprotinin was used as it possesses a Kunitz
protease inhibitor (KPI) domain, which renders it a good substrate for the low-density
lipoprotein receptor-related protein (LRP), which facilitates transport across the BBB.

This study established the framework for the application of Angiopep-2 in brain-
directed therapeutics. A representation of RMT of Angiopep-2 is provided in Figure 1.
Angiopep-2 has since been appended to anticancer drugs [7,8], a variety of NPs [9–13] and
has even been investigated in clinical trials. As a recent example, ANG1005, which consists
of three paclitaxel residues linked to Angiopep-2, showed patient benefits in a phase II
study of adults with recurrent brain metastases arising from breast cancer [14].
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release of the vesicle contents (d). Angiopep-2 detaches from the receptor and reaches brain cells. 
Adapted from [15] and [16]. 

Although drug–ligand conjugates have demonstrated efficacy [17], the association of 
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lation time, encourage cellular uptake, lower the effective dose required, and reduce drug-
induced side effects [18]. Interestingly, Angiopep-2-modified nanoparticles were recently 
shown to enhance transcytosis across the intestinal epithelium with potential for the de-
sign of oral delivery systems [19]. 

In addition to drugs [20], nanotechnology has opened up the possibility of directing 
other therapeutic agents to the brain. Functional therapeutic gene segments can be intro-
duced via appropriately designed nanoparticles [21,22]. Similarly, small interfering RNA 
(siRNA), which function in regulating gene expression via RNA-inference (RNAi) can be 
introduced to inhibit the expression of disease-causing genes in the brain [23,24].  

In other instances, micro RNA (miRNA) technology in the form of miRNA mimics 
and anti-miRNA oligonucleotides (anti-miRs) can be applied to either restore the function 

Figure 1. Schematic representation of receptor-mediated transcytosis (RMT) of Angiopep-2. When
introduced into the bloodstream, the peptide (a) binds to the low-density lipoprotein receptor-related
protein-1 (LRP1) (b) on the apical membrane of brain endothelial cells and initiates invagination of
the plasma membrane. The receptor–ligand complex is endocytosed via the intracellular vesicular
network (c) and routed to the basolateral membrane, where membrane fusion permits the release of
the vesicle contents (d). Angiopep-2 detaches from the receptor and reaches brain cells. Adapted
from [15,16].

Although drug–ligand conjugates have demonstrated efficacy [17], the association
of drugs with BBB ligand-decorated NPs has, in theory, greater benefits. Not only can
the drug-loaded nanostructure traverse the BBB but also it has the potential to improve
circulation time, encourage cellular uptake, lower the effective dose required, and reduce
drug-induced side effects [18]. Interestingly, Angiopep-2-modified nanoparticles were
recently shown to enhance transcytosis across the intestinal epithelium with potential for
the design of oral delivery systems [19].

In addition to drugs [20], nanotechnology has opened up the possibility of directing
other therapeutic agents to the brain. Functional therapeutic gene segments can be intro-
duced via appropriately designed nanoparticles [21,22]. Similarly, small interfering RNA
(siRNA), which function in regulating gene expression via RNA-inference (RNAi) can be
introduced to inhibit the expression of disease-causing genes in the brain [23,24].

In other instances, micro RNA (miRNA) technology in the form of miRNA mimics
and anti-miRNA oligonucleotides (anti-miRs) can be applied to either restore the function
of beneficial miRNA or attenuate that of disease-causing miRNA, such as onco-miRs [25].
In the medical field, nanodevices to transport and deliver contrast agents are important
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diagnostic tools, improving the efficacy of current imaging systems [26]. This review
explores the prospects for nanotherapeutics directed towards the brain, which involve
Angiopep-2 as a homing device. The major potential applications of Angiopep-2 decorated
NPs is broadly outlined in Figure 2.
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2. Angiopep-2-Decorated Nanoparticles

Angiopep-2 has been appended to a wide variety of nanostructures for the delivery
of therapeutic agents to treat brain disorders, which include cancer, brain injury, stroke,
epilepsy, fungal infections, Alzheimer’s disease (AD), and Parkinson’s disease (PD). These
encompass both organic and inorganic nanoparticles (Figure 3).

Liposomes are arguably the most common nano-delivery agents. First described in
the 1960s by Bangham and coworkers [27], liposomes are spherical lipid vesicles composed
of a phospholipid bilayer that can encapsulate therapeutic agents within the aqueous core.
Liposomes are versatile in that they are amenable to several useful modifications, including
the appendage of ligands, such as Angiopep-2, on the surface. Danyu and coworkers [28]
showed that Angiopep-2 liposomes loaded with the anticancer drug, doxorubicin, had
glioma targeting therapeutic effects with reduced toxicity.

Cationic lipids can be incorporated into liposome formulations to confer a net positive
charge that permits convenient electrostatic binding of nucleic acids [29]. Conveniently,
cationic liposomes are amenable to carrying both drugs and genes [30]. Angiopep-2-
functionalized cationic liposomes were shown to effectively deliver siRNA against Golgi
phosphoprotein 3 (GOLPH3) specifically to glioma and inhibit its growth in U87-GFP-Luci-
bearing BALB/c mouse models [31].

Stealth properties can be conferred using polymer shrouds, such as polyethylene glycol
(PEG). Xuan and colleagues [32] demonstrated that the encapsulation of dibenzazepine in
PEGylated Angiopep-2-modified liposomes enhanced its cytotoxicity against glioblastoma
stem cells. More recently, PEGylated Angiopep-2-modified liposomes were shown to
promote the anti-glioma effect of arsenic trioxide [33].

An alternative to liposomes is solid lipid NPs (SLNPs). SLNPs are prepared from
emulsifier-stabilized lipids that are solid at room temperature [34]. Angiopep-2-grafted
SLNPs encapsulating the chemotherapeutic drug, docetaxel showed selective targeting and
higher accumulation in the brain than the marketed drug formulation [35].
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Angiopep-2 has also been appended to polymer-based NPs. Polymer-based NPs
are colloidal systems formulated from natural, synthetic, or semi-synthetic polymers.
Polymeric NPs differ in characteristics based on the type of polymer employed. However,
they are generally stable in biological fluids and are versatile enough to regulate the
stimuli-induced controlled release of their therapeutic payloads [36].

Parashar and coworkers [37] recently reported on an Angiopep-2-anchored lipoprotein-
coated e-caprolactone nanoparticle to deliver the anti-epilepsy drug, carbamazepine, as an
alternative to the standard oral and intravenous routes. Functionalization of a trileucine-
stabilized β-poly(l-malic acid) nanoplatform with Angiopep-2 resulted in more effective
infiltration of the brain parenchyma than those modified with the brain-shuttle peptide,
MiniAp-4, and the transferrin receptor ligands, cTfRL and B6 [38].

Micelles are made up of amphiphilic macromolecules, notably polymers, which form
through self-assembly in solution. The hydrophobic segments converge to form a core,
while the hydrophilic components form an outer shell. Such micelles are intrinsically
stealth NPs capable of evading the reticuloendothelial system [39]. Radiolabeled Angiopep-
2-anchored poly (ethylene glycol)-block-poly (d,l-lactide acid) (PEG-PLA) micelles demon-
strated high brain accumulation for up to 24 h after intravenous administration in mice [40].

Similarly, Angiopep-2-modified PEG-co-poly(ε-caprolactone) (PEG-PCL) NPs accu-
mulated at higher levels in the brain cortical layer, lateral ventricle, third ventricles and
hippocampus than did unmodified nanoparticles [41]. In the category of polymer NPs,
are the dendrimers. Dendrimers are radially symmetrical hyperbranched artificial macro-
molecules typified by a combination of many functional groups and a compact structure.
Surface modification, such as the introduction of the Angiopep-2 moiety, is relatively sim-



Polymers 2022, 14, 712 5 of 21

ple. Moreover, a high level of control can be exerted over dendritic architectures, making
them suitable carriers in biomedical applications.

Polyamidoamine (PAMAM) dendrimers are the most common class of dendrimers
utilized to date to deliver nucleic acids [42–45]. Dendrimers possess an inner alkyl-diamine
core and a peripheral shell of tertiary amine branches [46,47]. Angiopep-2-modified
PAMAM dendrimers have demonstrated efficacy in delivering doxorubicin to glioma
cells [48,49]. Due to the cationic centers of PAMAM at physiological pH, it has also been
used for the binding and transport of DNA to the brain in mouse models when associated
with Angiopep-2 [50,51].

In recent years, there has been a surge in the investigation of inorganic nanomaterials
as carriers of therapeutic agents. These include gold, mesoporous silica, magnetic and
carbon-based nanomaterials, and organic/inorganic hybrids.

Turkevich first reported that the reduction of gold salts in the presence of a reducing
agent initiates the nucleation of gold ions [52]. Gold NPs exist in a broad size range of 1 nm
to 8 µm and exhibit varying morphology, including nanospheres, nanoclusters, nanorods,
nanoshells, nanostars, and nanoprisms [53]. For biomedical applications, the gold core
nanostructure is typically modified with an organic monolayer to permit solubility in
aqueous environments and control intermolecular interactions of the nanoparticle [54].

Key to the tunable characteristics of the monolayer is the appendage of targeting
ligands, such as Angiopep-2. In this way, gold nanospheres [55], nanorods [56], and
nanoprisms [57] have been directed to the brain in animal models. For example, Angiopep-
2-modified hypoxic lipid radiosensitizer-coated gold NPs were shown to enhance the
effects of radiation therapy on brain tumor growth in vivo [58].

Another well-studied class of inorganic carriers is the mesoporous silica NP (MSN).
MSNs are a specialized form of silica NPs with well-defined porosity and morphology.
The porous honeycomb-like structure accounts for a high drug loading capacity and aids
in controlled release [59,60]. They are reportedly non-toxic, do not affect healthy tissues,
can be imbued with stimuli-responsive features [61], and can be modified to mediate
chemo-photodynamic therapy [62].

Their behavior in biological systems can be attenuated by controlling the surface
chemistry and size [63]. Consequently, in addition to appending Angiopep-2, MSNs
directed to the brain have been modified with lipids [64,65] and polymers [66]. In a recent
study, Angiopep-2-modified lipid-coated MSNs efficiently loaded paclitaxel, increased
glioma cell apoptosis, and prolonged the survival of C6 glioma bearing rats [64].

Carbon-based nanomaterials (CBNs) have received extensive attention in biotech-
nology owing to their tunable surface characteristics and mechanical, electrical, optical,
and chemical properties. CBNs, which include graphene oxide, carbon nanotubes, and
carbon nanodots, have been functionalized with Angiopep-2. Graphene oxide, as the name
suggests, is the oxidized form of graphene, a flat monolayer composed of sp2 hybridized
carbon in two-dimensional sheets of a hexagonally arranged honeycomb lattice [67].

Graphene is considered superior to other CBNs because it has lower levels of metallic
impurities and requires purification processes that are less time-consuming [68]. The
modification of graphene oxide with Angiopep-2 increased doxorubicin uptake in U87
MG cells over that of unmodified graphene oxide-doxorubicin and free doxorubicin [69].
Carbon nanotubes (CNTs) are formed by rolling the graphene sheet in a cylindrical structure
within a specified nano-diameter [70].

PEGylated oxidized multi-walled carbon nanotubes modified with Angiopep-2 demon-
strated a combined dual targeting effect in the delivery of doxorubicin to glioma [71].
Carbon nanodots are zero-dimensional spherical allotropes of carbon and are below 10 nm
in size. They have great potential for biomedical application due to their biocompatibility,
low toxicity, water-solubility, eco-friendly synthesis, conductivity, and desirable optical
properties [72]. Angiopep-2 anchored PEGylated carbon nanodots was shown to target C6
glioma cells more effectively than PEGylated carbon nanodots [73].



Polymers 2022, 14, 712 6 of 21

A relatively recent addition to the growing plethora of inorganic NPs is the superpara-
magnetic iron oxide NPs (SPIONs). This has been described as one of the most promising
tools in theranostic applications. Such NPs typically consist of single or multiple iron
oxide cores and are surface modified to promote biocompatibility and stability in biologi-
cal systems [74]. Hence, brain-targeted magnetic NPs are comprised of hybrid materials.
These include Angiopep-2 decorated iron gold alloy NPs [75] and magnetic lipid-polymer
hybrid NPs [76]. Of great interest is the possibility of utilizing an external magnetic field
to promote deposition of the NP at the desired locality and, in this way, modulating the
release of the therapeutics [74]. The advantages and limitations of the major classes of
Angiopep-2-modified NPs are summarized in Table 1.

Table 1. Advantages and disadvantages of some Angiopep-2-modified nanoparticles.

Nanoparticle Advantages Disadvantages References

Liposomes
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3. Drug Delivery

Most Angiopep-2-modified drug delivery agents have been designed with a view to
treat cancers of the central nervous system. Glioblastoma or glioblastoma multiforme (GBM)
is the most common and aggressive malignant brain tumor [87]. The current treatment
involves a combination of surgery, radiation therapy, and chemotherapy. However, the
disease remains highly resistant to treatment [88].

The conjugation of Angiopep-2 to NPs is reported to have a dual-targeting effect. Not
only does the peptide act as a shuttle to promote transport across the BBB but it is also
selective for glioma cells due to the overexpression of LRP1 on their surfaces [55]. Using
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this concept, several nanosystems have been designed to improve the efficacy of existing
chemotherapeutic agents, including doxorubicin, paclitaxel, and docetaxel. Encouragingly,
many have demonstrated efficacy in animal models (Table 2).

For example, treatment of glioma-bearing rats with Angiopep-2 decorated polymer-
somes loaded with doxorubicin prolonged the survival time compared with unmodified
polymersomes and the free drug [89]. In addition, the incorporation of drugs in Angiopep-2
NPs has been linked with the attenuation of side effects. For example, the histopathological
analysis of Angiopep-2 decorated nanocarbon tubes carrying doxorubicin suggested lower
cardiac toxicity than the free drug.

On the other hand, using a second ligand to bypass the blood-tumor barrier and
encourage NP uptake in glioma cells has also been reported. NPs modified with both
Angiopep-2 and an activatable cell-penetrating peptide were shown to localize in gliomas
with greater efficiency than NPs with a single ligand [90]. Furthermore, docetaxel-loaded
Angiopep-2 and TAT functionalized tandem nanomicelles were shown to have a prolonged
blood circulation time in mice and inhibited orthotopic U87MG human glioma better than
the Angiopep-2 single peptide-functionalized counterpart [91].

In the same year, Kim and colleagues [92] demonstrated that the conjugation of
both Angiopep-2 and anti-CD133 monoclonal antibody to a liposome was effective in
delivering temozolomide to glioblastoma stem cells through the BBB. Dual targeting
efficiency was also demonstrated with Angiopep-2 and an AS1411 aptamer covalently
linked to a doxorubicin-loaded lipid-capped PLGA NP [93].

The incorporation of statins within Angiopep-2-decorated NPs increased LRP-1 expres-
sion in brain microvascular endothelial cells and brain metastatic tumor cells. The systemic
administration of Angiopep-2-functionalized PEGylated PLGA-PLL NPs co-encapsulating
simvastatin and doxorubicin displayed an extended median survival of mice bearing
brain metastases due to enhanced BBB transcytosis and the effective targeting of brain
metastases [94].

Angiopep-2 has also been incorporated into the design of "smart" nanodrugs that are
stimuli-responsive to overcome problems that include incomplete drug release or non-
site-specific drug deposition. A common strategy involves exploiting unique features
of the tumor microenvironment. Ruan and coworkers [55] tethered doxorubicin to an
Angiopep-2-modified PEGylated gold NP via a hydrazone bond to permit drug release
upon exposure to the acidic tumor locality. More recently, polyacrylic acid was incorporated
as part of liposome-silica hybrid nanovesicles to allow the acid-triggered release of arsenic
trioxide [95].

Recently, the matrix metalloproteinase-1 (MMP1)-rich niche of breast cancer brain
metastases (BCBMs) was exploited in the design of NPs that can escape abluminal LRP-1-
mediated clearance. PLGA-PLL NPs co-carrying doxorubicin and lapatinib were modified
with a MMP-1 sensitive fusion peptide containing HER2-targeting KAAYSL and LRP-1-
targeting Angiopep-2. MMP1-triggered cleavage removed Angiopep-2 for augmented
accumulation in BCBMs-bearing brains [96]. NPs may also be engineered such that drug
release is induced via an externally applied stimulus. Luo and colleagues [97] reported on
Angiopep-2-decorated PLGA hybrid NPs that encapsulated an ultrasound contrast agent
and doxorubicin.

High-intensity focused ultrasound (HIFU) was applied to trigger on-demand dox-
orubicin release at glioblastoma sites resulting in a mean survival time of 56 days for
glioblastoma-bearing mice and minimal traces of tumor cells evident in pathological slices.
Table 2 summarizes Angiopep-2-decorated nanodrug delivery systems applicable to the
treatment of brain disorders.
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Table 2. Angiopep-2-modified nanoparticles that have been used for drug delivery.

Nanoparticle Drug/s Disorder Treated Test System Reference

Liposome-silica hybrid Arsenic trioxide Glioma C6 glioma-bearing rats [95]

PAMAM dendrimer Doxorubicin Glioma C6 glioma cells [48]

poly(dimethylsiloxane)-
poly(2-methyloxazoline)
(PDMS-PMOXA) diblock

copolymer

Doxorubicin Glioblastoma U87MG glioblastoma cells [98]

Carboxymethyl chitosan
nanogel Doxorubicin Glioblastoma - [99]

lipid-poly-(metronidazoles)
hypoxic radiosensitized-

polyprodrug
Doxorubicin Glioma C6 glioma cells

Glioma-bearing ICR mice [100]

lipid-poly (hypoxic
radiosensitized polyprodrug) temozolomide Glioblastoma C6 glioma cells

Glioma-bearing ICR mice [101]

PEG-b-poly(ε-caprolactone)
(PEG-b-PCL) Doxorubicin Primary CNS

lymphoma

SU-DHL-2-LUC
lymphoma

xenograft mice model
[20]

PEG-co- poly(ε-caprolactone)
polymersome Doxorubicin Glioma C6 glioma cells

C6 glioma-bearing rats [89]

PCL-PEG Ginsenoside-Rg3 Glioma C6 glioma cells [102]

PEGylated gold Doxorubicin Glioma C6 glioma cells
C6 glioma-bearing mice [55]

Poly (lactic-co-glycolic acid)
(PLGA)-based mesoporous

silica
Doxorubicin Paclitaxel Glioma

Human brain micro-
vascular endothelial cells

BBB model
[66]

PEGylated PLGA-PLL Doxorubicin
Simvastatin Brain metastases - [94]

Biomimetic nanoparticles Doxorubicin
Lexiscan Glioblastoma

U87MG human
glioblastoma tumor-
bearing nude mice

[103]

Graphene oxide Doxorubicin Glioma U87 MG cells/ mouse
xenograft [69]

PEGylated oxidized
multi-walled carbon

nanotubes
Doxorubicin Glioma C6 glioma cells

C6 glioma bearing mice [71]

HIFU-responsive PLGA
hybrid Doxorubicin Glioblastoma Glioblastoma-bearing mice

PLGA Gold Docetaxel Glioma - [104]

Solid lipid nanoparticles Docetaxel Glioblastoma

U87MG glioblastoma cells
GL261 mouse glioma

Glioblastoma- induced
C57BL/6 mouse model

[35]

PEG-PCL Paclitaxel Glioma
3D glioma tumor spheroids
Intracranial glioma mouse

model
[105]

Lipid-coated mesoporous
silica nanoparticles Paclitaxel Glioma C6 glioma cells

C6 glioma-bearing rats [64]

Phospholipid-functionalized
mesoporous silica Paclitaxel Glioma HBMEC cells

C6 glioma cells [65]
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Table 2. Cont.

Nanoparticle Drug/s Disorder Treated Test System Reference

PEGylated poly
propyleneimine (PPI)

dendrimers
Paclitaxel Glioblastoma C6 glioma cells

Co-culture BCECs model [106]

redox-responsive virus-
mimicking polymersome Saporin Glioblastoma

U-87 MG glioblastoma cells
U-87 MG human-

glioblastoma mouse model
[107]

PEG-PE polymeric micelles Amphotericin B Meningo-
encephalitis

Immunosuppressive
murine Cryptococcus

neooformans meningo-
encephalitis model

[108]

PE-PEG polymeric micelle Amphotericin B CNS fungal infections - [109]

Ceria Edaravone Ischemic stroke - [110]

PEG-PLGA Tanshinone IIA Ischemic stroke - [111]

PEG-PAMAM nanoparticle Scutellarin Ischemic stroke - [112]

Electro-responsive hydrogel Phenytoin sodium Epilepsy Amygdala kindling seizure
model [113]

Lipoprotein-coated
e-caprolactone Carbamazepine Epilepsy Adult male albino rats [37]

PEGylated 2-methoxy
estradiol micelle 2-Methoxy estradiol Cerebral ischemia-

reperfusion injury PC12 cells [114]

4. Nucleic Acid Delivery

Gene therapy, the application of nucleic acids to treat disease, promises to revolutionize
how brain disorders are addressed. It is theoretically capable of curing the disease rather
than merely treating symptoms. Initially envisaged as the introduction of functional gene
segments to replace defective genes, gene therapy encompasses more than just the use of
therapeutic DNA. Other types of therapeutic nucleic acids applicable to diseases of the
brain include small RNA molecules, such as small interfering RNA (siRNA) and micro
RNA (miRNA).

However, using these nucleic acids as medicine necessitates their association with
biocompatible carriers to encapsulate, protect, and facilitate cellular entry at the correct
site. This synergy created between gene therapy and nanomedicine may be a significant
association that can benefit the treatment of various disorders [115]. Angiopep-2 has been
appended to various nanostructures for the reliable transport of therapeutic nucleic acids.

DNA-based Angiopep-2-modified NPs have been reported for the treatment of brain
cancer and Parkinson’s disease. As an example, Gao and coworkers reported on the
delivery of a suicide gene via Angiopep-2 conjugated cationic PEI-PLL-PEG NPs, which
penetrated the BBB and accumulated in the striatum and cortex via systemic administration.
The system achieved a remarkable anti-tumor effect and survival benefit in an invasive
orthotopic human glioblastoma mouse model by inhibiting proliferation and inducing
apoptosis [116].

Angiopep-2-conjugated dendrigraft poly-L-lysine delivered a therapeutic gene en-
coding human glial cell line-derived neurotrophic factor in a chronic Parkinsonian model.
Pharmacodynamic data revealed that rats in the group with five injections of targeted
DNA-bound NPs improved in locomotor activity and apparent recovery of dopaminergic
neurons compared to those in other groups [117]. In a proof of principle study, Angiopep-2
and TAT dual modified magnetic lipid-polymer hybrid NPs delivered a reporter gene
effectively in C6 cells in a magnetic field [76]. Angiopep-2 NPs have been applied to the
delivery of siRNA against genes involved in brain cancer progression and survival. These
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include GOLPH3, Polo-like kinase 1 (PLK1), vascular endothelial growth factor (VEGF),
and vascular endothelial growth factor receptor (VEGFR) genes.

Zheng and coworkers [118] introduced a polymer capable of stabilizing siRNA by
electrostatic hydrogen bonds and hydrophobic interactions. Given that ROS is enriched in
cancer cells, the polymer was designed with a ROS-responsive feature to trigger on-site
siRNA release.

With Angiopep-2 functionalization, the polymer successfully delivered siRNA against
PLK1 and vascular endothelial growth factor receptor-2 (VEGFR2), leading to effective
suppression of tumor growth and significantly improved survival time in mice bearing
orthotopic GBM brain tumors. Another Angiopep-2-modified ROS-responsive nanosystem
successfully delivered VEGF siRNA into glioma cells. VEGF silencing was accompanied by
angiogenesis inhibition and suppressed expression of caveolin-1, which is involved in BBB
functional regulation in the occurrence and treatment of glioblastoma [119].

Angiopep-2 was also used to functionalize a biomimetic three-layer core-shell nanos-
tructure to deliver siRNA to glioma cells. The nanostructure was designed to release siRNA
in the endo/lysosome by charge conversion from negative to positive. This led to highly
potent target-gene silencing with a strong anti-GBM effect and minimal side effects [120].

Angiopep-2 has also been involved in miRNA-directed nanotherapy. Liu and cowork-
ers [121] used polymeric NPs to simultaneously supplement the function of miR-124 and
inhibit the function of miR-21 to treat glioblastoma. Co-delivery of a miR-124 mimic and
anti-miR-21 regulated the mutant RAS/PI3K/PTEN/AKT signaling pathway in tumor
cells. This was accompanied by anti-tumor effects, which included reduction of tumor
cell proliferation, migration, invasion and angiogenesis, tumor growth suppression, and
improved survival time. Table 3 provides an overview of Angiopep-2-functionalised NPs
investigated for the delivery of nucleic acids.

Table 3. Angiopep-2-modified nanoparticles for nucleic acid delivery.

Nanoparticle Nucleic Acid Nucleic Acid Details Disease Test System Reference
PAMAM-PEG DNA pORF-TRAIL Glioma C6 glioma cells [51]
PAMAM-PEG DNA pEGFP-N2 - BCEC Balb/c mice [50]

PEI-PLL-PEG DNA Herpes simplex virus
type I TK gene

Glioblastoma
multiforme

Human GBM mouse
model [116]

dendrigraft PLL DNA
Gene encoding human
glial cell line-derived
neurotrophic factor

Parkinson’s
Rotenone-induced
chronic model of

Parkinson’s disease
[117]

Cationic
liposome siRNA GOLPH3 siRNA Glioma

U87-GFP-Luc-bearing
BALB/c mouse

models
[31]

Polymeric siRNA siPLK1
siVEGFR2 Glioblastoma GBM brain tumor

mouse model [118]

Polyplex siRNA - Glioma Glioma mouse model [122]

Chimeric
polymersomes siRNA siPLK1 Glioblastoma

U-87 MG cells
Glioblastoma mouse

model
[123]

Biomimetic
nanoparticles siRNA - Glioblastoma

U87MG- Luc human
glioblastoma mouse

model
[120]

ROS cleavable
thioketal-linked
glycolipid-like
nanocarriers

siRNA siVEGF Glioblastoma U87 MG cells [119]

Polymeric miRNA miR-124
anti-miR-21 Glioblastoma

U87MG-Luc human
glioblastoma tumor

mouse model
[121]
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5. Drug and Nucleic Acid Co-Delivery

The idea of treating cancer through drug and nucleic acid combination therapy is
receiving significant attention. This strategy affords the ability to target more than one
mechanism governing the growth and survival of tumors, giving rise to synergistic anti-
cancer effects. Appropriately designed NPs can overcome the challenges associated with
the delivery of two therapeutic agents with markedly different physiological properties.

Nucleic acids are hydrophilic, anionic, high-molecular-weight entities, while the most
commonly used chemotherapy drugs are small hydrophobic molecules, thus necessitating
different mechanisms for encapsulation [124]. In general, nucleic acids are electrostatically
associated with cationic components of the NP, while small molecule drugs are enclosed
within them by hydrophobic force, electrostatic interactions, or chemical conjugation [125].

Angiopep-2 has served as an essential component of several nanoplatforms for dual
agent delivery to the brain. Liposomes, being archetypal delivery systems, have been
utilized for multimodal intervention. For example, an Angiopep-2-modified cationic
liposome co-carrying the therapeutic gene encoding the human tumor necrosis factor-
related apoptosis-inducing ligand (pEGFP-hTRAIL) and paclitaxel was reported to achieve
greater apoptosis of glioma cells than single medication systems and the unmodified
co-delivery system [126].

Liposomes were also dual-functionalized with Angiopep-2 and the tLyP-1 peptide,
which targets the neuropilin-1 receptor on glioma cells, for simultaneous anti-angiogenic
and apoptotic effects through the delivery of vascular endothelial growth factor (VEGF)
siRNA and docetaxel. This system demonstrated superior anti-tumor effects after both
intracranial and systemic administration in mice with U87 MG tumors without activating
system-associated toxicity or the innate immune response [127]. Sun and colleagues [128]
reported on cationic liposomes modified with Angiopep-2 and an aptamer that binds
to CD133.

The co-delivery of survivin siRNA and paclitaxel using this nanocarrier was minimally
toxic to brain capillary endothelial cells but selectively caused apoptosis of CD133+ glioma
stem cells and improved the differentiation of CD133+ glioma stem cells’ into non-stem-
cell lineages. In addition, the system inhibited tumorigenesis, induced CD133+ glioma
cell apoptosis, and prolonged survival in intracranial glioma tumor-bearing nude mice.
Recently, synergistic tumor-inhibitory effects were also noted with an Angiopep-2 decorated
cationic liposome that simultaneously delivered doxorubicin, yes-associated protein (YAP)
siRNA, and gold nanorods [129].

Wang and colleagues [130] designed Angiopep-2-modified PLGA NPs to encapsulate
doxorubicin and siRNA against the EGFR. This co-delivery nanosystem was shown to
cause apoptosis of the glioma tissue and prolong lifespan in glioma-bearing mice. Another
combinatory anti-glioma system involved the dual release of Gefitinib and GOLPH3 siRNA
from an Angiopep-2-modified cationic lipid-PLGA NP.

This system achieved synergistic anti-EGFR activity in that Gefitinib markedly in-
hibited EGFR signaling, while GOLPH3 silencing promoted EGFR and p-EGFR degrada-
tion [131]. In line with the use of polymers for the design of dual agent nanostructures, Wen
and coworkers [132] reported on an Angiopep-2 decorated glycolipid-like co-polymeric
micelle for the simultaneous delivery of VEGF siRNA and paclitaxel in vivo.

Moreover, the nanovector was designed with a redox-responsive feature to trigger the
intracellular release of its payload. In the same year, a combination of Temozolomide and
PLK1 siRNA by Angiopep-2-modified PEG-PEI-PCL micelles produced enhanced drug
efficacy in glioma [133].

6. Phototherapy

In addition to drug and nucleic acid-mediated therapy, brain cancer can be treated
via phototherapy. Phototherapy can be subdivided into two main branches, namely,
photodynamic and photothermal therapies. Photodynamic therapy (PDT) uses light-
sensitive molecules known as photosensitizers, which produce cytotoxic ROS once exposed
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to a specific wavelength [134]. PDT is minimally invasive because photosensitizers are only
cytotoxic when activated in tumor regions. However, PDT cannot treat advanced cancers
due to the difficulty of light delivery and the limited penetration depth.

Photothermal therapy (PTT) is an alternative for advanced tumors, in which photosen-
sitizers absorb near-infrared (NIR) light and release vibrational energy in the form of heat
to destroy cancer cells, independent of oxygen [135]. The amalgamation of phototherapy
and nanotherapy has led to the construction of NPs that can direct photosensitizers to the
tumor site. In other instances, they possess inherent photothermal conversion capability.
The latter is true of NPs composed of magnetic and carbon-based materials [136].

Oleic acid-coated upconversion NPs (UCNPs) were conjugated with PEG/Angiopep-
2 for the co-delivery of the photothermal agent, IR-780, and photodynamic sensitizer,
5,10,15,20-tetrakis(3-hydroxyphenyl) chlorin (mTHPC) in brain astrocytoma tumors. The
photoactivated dual therapies resulted in extensive apoptosis and necrosis of brain tumors,
translating into an extended median survival of tumor-bearing mice compared to non-
targeted NPs [137]. Recently, Angiopep-2 decorated nanostructured lipid carriers of the
photosensitizer, chlorin e6, were evaluated for PDT efficacy in vitro against a glioblastoma
model [138].

Phototherapy may also be combined with chemotherapy for synergistic anti-tumor
effects. Lu and colleagues [139] developed a multicomponent nanoplatform made up of self-
assembled pH-responsive nanodrugs derived from amino acid-conjugated camptothecin
and canine dyes coated with an Angiopep-2-conjugated copolymer. The combination of
chemotherapy and PTT improved the therapeutic effect with a longer survival time and
reduced toxic side effects in orthotopic glioblastoma tumor-bearing nude mice.

7. Diagnostic and Theranostic Applications

Brain cancers are often difficult to detect due to tumors being located deep in brain
tissue. More often than not, diagnosis is delayed, which further impedes the success of
the treatment administered [140]. Furthermore, accurate tumor imaging is of immense
importance in the pre-operative stage and the location of tumor margins [141]. In this
regard, Angiopep-2-modified nanosystems have demonstrated great potential.

Magnetic resonance imaging (MRI) is an imaging technique that uses magnetic fields
to assess the morphological structure of organs in the body. It has emerged as a dominant
imaging modality in brain cancer diagnosis and clinical staging [142]. However, one of
the drawbacks is low sensitivity, which reduces its potential in molecular-level detection.
Hence, increasing the contrast between healthy and diseased tissues is of the utmost
importance [143]. In this regard, the inherent magnetic properties of iron oxide NPs render
them suitable alternatives to conventional contrast agents for MRI [144,145].

Chen and colleagues [146] reported on Pluronic®F127-modified water-dispersible poly
(acrylic acid)-bound iron oxide NPs modified with Angiopep-2 as brain-directed diagnostic
agents. The system demonstrated negligible cytotoxicity, better cellular uptake, and higher
T2-weighted image enhancement than non-targeted NPs in U87 cells.

Du and colleagues [147] presented the first report on Angiopep-2 conjugated ultra-
small superparamagnetic iron oxide NPs (USPIONs) as T1-weighted positive MR con-
trast agents for intracranial targeted glioblastoma imaging. The nanoprobe showed
promise for efficient pre-operative tumor diagnosis and the targeted surgical resection of
intracranial glioblastomas.

Optical imaging using fluorescent NPs is another alternative. Features that include
strong signal strength, resistance to photobleaching, tunable fluorescence emissions, and
high sensitivity are the impetus for the application of fluorescent NPs in cancer diagno-
sis [148]. Additionally, fluorescent NPs display stronger fluorescent brightness, better
photostability, water dispersibility, and biocompatibility compared with conventional fluo-
rescent dyes. Fluorescent carbonaceous nanodots were prepared from glucose and glutamic
acid with long excitation/emission wavelengths to overcome the limitations associated
with shorter wavelengths in imaging diseased tissue.



Polymers 2022, 14, 712 13 of 21

Decoration with Angiopep-2 resulted in a glioma/normal brain (G/N) ratio of 1.76 [73].
Moreover, the developed system showed good serum stability, hemocompatibility, and
low cytotoxicity. Recently, Ren and colleagues [149] designed Angiopep-2-modified Er-
based lanthanide NPs with strong NIR IIb fluorescence for imaging-guided surgery of
orthotopic glioma. NPs were delivered to gliomas in mice via focused ultrasound sonication
to temporarily open the BBB. The highest tumor-to-background ratio (TBR = 12.5) was
reported in the targeted NIR IIb fluorescence imaging of small orthotopic glioma through
intact skull and scalp was obtained.

Xie and coworkers [141] constructed a MRI/NIR fluorescence dual-modal imaging
nanoprobe by combining superparamagnetic iron oxide NPs (SPIONs) with the fluorescent
dye indocyanine. This was further modified with the retro-enantiomer of Angiopep-2
to prevent its degradation by enzymes of the blood and cells. In keeping with the idea
of dual-modal imaging, Wei and colleagues [150] introduced small-sized iron oxide NPs
(SIONs), which were surface modified with Angiopep-2 and the photosensitizer, chlorin e6,
to boost fluorescence imaging to support MRI results.

Angiopep-2 has also served as an essential component of nanosystems that seek
to integrate active agents for therapy and diagnosis. Such nanoplatforms, categorized
under the broad category of theranostics, promise to significantly benefit the diagnosis,
treatment and management of brain cancer. Angiopep-2 was appended to pegylated bubble
liposomes at the distal ends of PEG chains. The nanosystem was shown to be capable of
encapsulating ultrasound contrast gas and nucleic acids. Systemic administration could
serve as a useful device for brain-targeted delivery and ultrasound imaging [151].

Crosslinked hyaluronic acid NPs were decorated with Angiopep-2 and formulated to
encapsulate gadolinium-diethylenetriamine penta-acetic acid (Gd-DTPA) and the chemother-
apeutic agent, irinotecan. The nanosystem showed improved MRI capability, improved
uptake in U87 and GS-102 cells, and reduced the irinotecan time response [152]. Lin and
colleagues [153] constructed Angiopep-2 coupled bovine serum albumin NPs containing
superparamagnetic iron oxide (SPIO), indocyanine green, and the drug, Carmustine.

The nanoprobes were capable of dual MRI and fluorescence imaging and effective
drug delivery. In a deviation from the non-viral NPs discussed thus far, a theranostic
NP based on the MS bacteriophage capsid was reported. Angiopep-2 was appended to
the external surface, while the interior space was loaded with Mn2+ via a porphyrin ring
to enable detection via MRI. The inner space can further encapsulate therapeutic agents.
Systemic introduction of NPs resulted in dose-dependent, non-toxic accumulation in the
midbrain [154].

Iron–gold alloy NPs were also conjugated with Angiopep-2 as a minimally invasive
theranostic system. These superparamagnetic NPs enhanced negative Glioma image con-
trast and exhibited a 12 ◦C temperature elevation when magnetically stimulated. Angiopep-
2 modification resulted in a 1.5-fold higher uptake by glioma cells than fibroblasts, and mag-
netic field induced hyperthermia decreased cell viability by 90%. Furthermore, treatment
resulted in a five-fold decrease in tumor volume and extended survival time in vivo [70].

A system integrating targeted brain imaging and chemo- and phototherapy was put
forward by Hao and colleagues. PLGA NPs were loaded with indocyanine green as a NIR
imaging and phototherapy agent and the anticancer drug, docetaxel. Once modified with
Angiopep-2, NIR image-guided chemo-phototherapy resulted in glioma cell death and
prolonged survival of glioma xenograft-bearing mice [155].

Lipid NPs containing Angiopep-2, a hypoxia-responsive poly(nitroimidazole) 25, indo-
cyanine green, and doxorubicin were proposed for fluorescence-guided surgery chemother-
apy, PDT, and PTT combination multitherapy strategies targeting glioma. The study
suggested that this nanoplatform may be useful in preventing the post-surgical recurrence
of glioma [156].
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8. Discussion and Conclusions

Tang and colleagues [140] commented that “BBB-crossing nanotechnology is expected to
make a revolutionary impact on conventional brain cancer management”. In this regard, strategies
that exploit Angiopep-2-mediated transport are increasingly important. At present, most
Angiopep-2-functionalized nanomedicines have been directed towards the treatment of
brain cancers, in particular glioblastoma, which is highly aggressive and responds poorly
to the current therapy.

Advantageously, Angiopep-2 modification has been reported to have BBB and blood-
tumor barrier (BTB) dual-penetrating ability. To our knowledge, little comparative data is
available with respect to the performance of Angiopep-2 versus other cell-penetrating pep-
tides. Interestingly, enhanced NP functioning has been reported through co-modification
with Angiopep-2 and other cell-penetrating peptides. It is worth noting, however, that
functionalization of the chemo-therapeutic agent, PAPTP, with either Angiopep-2 or the
TAT48-61 peptide, permitted similar delivery to the brain in mice [157].

In the past five years, the as-functionalized nanosystems have also demonstrated
potential for the delivery of agents to treat other brain disorders, including fungal infections,
epilepsy, stroke, brain injury, Parkinson’s disease, and Alzheimer’s disease. For example,
gold nanorods functionalized with Angiopep-2 and the D1 peptide that recognizes toxic
aggregates of β-amyloid showed efficacy in a Caenorhabditis elegans model of Alzheimer’s
disease [158].

Over the time period considered for this review (2010–2021), Angiopep-2-decorated
nanostructures have been employed to deliver a vast array of therapeutic and diagnostic
agents. These include chemical compounds; the nucleic acids DNA, siRNA, and miRNA;
photosensitizers; and contrast agents. In addition, Angiopep-2-modified nanoparticles are
applicable to immunotherapy. Wang and colleagues [159] reported that Angiopep-2 and
IP10-EGFRvIIIscFv fusion protein-modified NPs can recruit activated CD8+ T lymphocytes
to glioblastoma cells.

While the application of Angiopep-2-modified NPs in phototherapy is well docu-
mented, another novel physical method of destroying brain cancer cells, sonodynamic
therapy (SDT), based on ultrasound stimulation, has been reported. Qu and colleagues [160]
designed an innovative “all-in-one” nanosensitizer platform by combining the sonoactive
chlorin e6 and an autophagy inhibitor, hydroxychloroquine, in Angiopep-2-modified lipo-
somes to simultaneously induce apoptosis and inhibit mitophagy in glioma cells.

As in the aforementioned study, Angiopep-2 NPs, are amenable to the integration
of dual- and multimodal therapy. Angiopep-2 nanosystems can also be engineered to
behave in a stimuli-responsive fashion to permit a controlled and sustained release of
their therapeutic cargo. Moreover, their potential in theranostics has been highlighted in
recent years. Encouragingly, there is a growing body of in vivo data to support the further
design of multifunctional Angiopep-2-modified nanomedicines. Overall, there is a great
need to translate the in vitro and in vivo achievements of BBB-crossing nanotherapeutics
to the clinic.

In addition to the impact of NP shape, size, and charge on BBB-transcytosis, the num-
ber of Angiopep-2 residues displayed on the surface may have a significant influence. The
multimeric association between Angiopep-2 peptides and the LRP1 was shown to increase
the intracerebral uptake of NPs significantly [161]. The local flow environment is also a
necessary consideration for in vitro modelling of the performance of NPs functionalized
with Angiopep-2. Studies with Angiopep-2-labelled liposomes suggested that blood flow
can influence the binding and BBB penetration of NPs [162].

In summary, this review highlighted the role of Angiopep-2-modified NPs in the
diagnosis and treatment of brain disorders. With greater streamlining of NP design,
advances in BBB modelling and further in vivo testing, it is envisaged that Angiopep-2-
based nanosystems may make their way into the clinic for the routine assessment and
treatment of brain cancer and other disorders of the brain in the years to come.
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