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Abstract We provide behavioral evidence using monkey smooth pursuit eye movements for four

principles of cerebellar learning. Using a circuit-level model of the cerebellum, we link behavioral

data to learning’s neural implementation. The four principles are: (1) early, fast, acquisition driven

by climbing fiber inputs to the cerebellar cortex, with poor retention; (2) learned responses of

Purkinje cells guide transfer of learning from the cerebellar cortex to the deep cerebellar nucleus,

with excellent retention; (3) functionally different neural signals are subject to learning in the

cerebellar cortex versus the deep cerebellar nuclei; and (4) negative feedback from the cerebellum

to the inferior olive reduces the magnitude of the teaching signal in climbing fibers and limits

learning. Our circuit-level model, based on these four principles, explains behavioral data obtained

by strategically manipulating the signals responsible for acquisition and recall of direction learning

in smooth pursuit eye movements across multiple timescales.

Introduction
A hallmark of brain function is the ability to learn and remember. We can learn and successfully recall

faces, events, language, concepts, places, facts, things that were frightening or rewarding, and the

motor commands required to skillfully move our motor effectors. The basic currency of learning and

memory is ‘plasticity’, changes in either the strength of synapses or the intrinsic excitability of a neu-

ron’s membrane. While decades of research have identified the basic rules that govern plasticity

and, for some memory systems, have even defined the neural sites that undergo plasticity, behav-

ioral learning is not solely a property of synapses, neurons, or individual brain sites. Rather, it is the

emergent property of a complete learning neural circuit in which the sites and plasticity mechanisms

of learning are embedded. Only when we incorporate our current knowledge about the specific sites

of learning and the rules of plasticity with an understanding of circuit-level interactions can we truly

understand learning and memory.

Here, our goal is to define the requisite set of circuit-level computational principles that operate

during cerebellar-dependent motor learning. Arguably, motor learning is the domain that affords

the best chance of understanding the principles of learning and memory, due to the exquisite rela-

tionship between sensory stimuli and adaptive motor behavior, combined with the tight link from

known neural circuits to the output motoneurons. Across a wide range of movement modalities,

motor learning depends crucially on the cerebellum (Gilbert and Thach, 1977; Golla et al., 2008;

Herzfeld et al., 2014a; Martin et al., 1996; Medina and Lisberger, 2008; Smith and Shadmehr,

2005; Robinson, 1974), providing a well-defined neural substrate to investigate how the fundamen-

tal principles of learning are implemented in a specific neural circuit.

In the motor learning paradigm we study, direction learning in smooth pursuit eye movements,

neurophysiological data has demonstrated that short-term motor learning, on the order of a single

learning trial, occurs at or upstream of Purkinje cells in the floccular complex of the cerebellum

(Medina and Lisberger, 2008; Yang and Lisberger, 2013; Yang and Lisberger, 2014). Single-trial

learning is tightly linked to climbing fiber inputs, in agreement with the predictions of the classical
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theory of cerebellar learning (Marr, 1969; Albus, 1971; Ito, 1984). Crucially, Purkinje cells are only

two synapses away from the motoneurons that drive the adaptive motor response we measure, sig-

nificantly constraining the circuit architecture that implements the transformation from sensory inputs

to adapted behavior across short timescales.

However, recent behavioral results have suggested that longer term pursuit direction learning, on

the order of hundreds to thousands of trials, may be mediated by multiple sites and/or learning

mechanisms (Hall et al., 2018; Yang and Lisberger, 2010). The existence of multiple components in

pursuit learning is consistent with behavioral and computational evidence from other cerebellar-

dependent motor learning behaviors (Boyden et al., 2004; Ethier et al., 2008; Kojima et al., 2004;

Kording et al., 2007; Lee and Schweighofer, 2009; Medina et al., 2000; Smith et al., 2006;

Kassardjian et al., 2005; Shutoh et al., 2006). While plasticity is possible across many synapses in

the cerebellar circuit (Carey, 2011; D’Angelo and De Zeeuw, 2009; Hansel et al., 2001;

McElvain et al., 2010; Mittmann and Häusser, 2007), a prime candidate for long-term learning is

the deep cerebellar nucleus, one synapse downstream of the Purkinje cells. Convergent neurophysi-

ological and behavioral evidence across multiple learning paradigms lends credence to role of the

deep cerebellar nucleus for long-term storage of cerebellar-dependent memories (Raymond and

Medina, 2018; Kassardjian et al., 2005; Shutoh et al., 2006; Lee et al., 2015; Raymond and Lis-

berger, 1998; Popa et al., 2016; Broussard and Kassardjian, 2004; Lisberger, 1994). Taken

together, these results highlight the idea that multiple neurophysiological mechanisms within the

cerebellar circuit may underlie behavioral motor learning across longer timescales.

Our goal in the present paper is to elucidate the operation of the full and well-characterized cere-

bellar learning circuit. We identify the properties of the signals that guide acquisition and expression

of motor learning across timescales through strategic manipulations of the experimental learning

conditions coupled with quantitative measures of behavior. Our results suggest four circuit-level

principles that define pursuit direction learning. First, rapid acquisition of learning occurs at the par-

allel fiber to Purkinje cell synapse, driven by climbing fiber responses, with limited retention. Second,

learned responses in Purkinje cells guide the slow acquisition of learning in the deep cerebellar

nucleus, which learns slowly but has excellent retention. Third, the functional properties of the inputs

that are subject to learning are different in the cerebellar cortex and deep cerebellar nuclei. Finally,

the extent of learning is limited by negative feedback from the deep nucleus to the inferior olive,

reducing the teaching signal that drives learning in the cerebellar cortex.

eLife digest The human brain can do many things, from reading and remembering the words

written on a page to adapting and improving movements. When a movement misses its goal, the

strength of the connections between cells in a part of the brain known as the cerebellum changes.

The cerebellum is important for coordinating movements, including eye movements. When the

connections between the cells in the cerebellum – known as neurons – strengthen or weaken, the

cerebellum changes how it will respond in the future, leading to more accurate movements.

However, the speed of the changes in the connections and how the connections between different

neurons evolve and coordinate were unknown.

Herzfeld et al. have now combined eye-tracking studies in monkeys with computer modeling

based on what is known about the neural circuits in the cerebellum to learn more about the changes

in these connections. Monkeys watched a moving target that would abruptly change direction. In

the next movement, the eye-tracking equipment monitored how well the monkey’s eyes anticipated

the unexpected change in the target’s direction – a form of motor learning. Using the experimental

data, Herzfeld et al. produced a model that outlines general principles of how the cerebellum might

manage this process. The model suggested that neurons in one region in the cerebellum, known as

Purkinje cells, learn from mistakes quickly, but have poor long-term retention. If the movement is

repeated, Purkinje cells teach another area of the cerebellum, the cerebellar nucleus, which takes

longer to learn but has much better retention.

Although these findings are based on a simple motor learning task, they are the first step to

understanding how the brain forms memories and how we might learn more complex behaviors.
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Results
Our goal is to understand the neural-circuit and plasticity mechanisms that mediate cerebellar motor

learning across multiple timescales, ranging from a single learning trial to thousands of repetitions of

the same learning stimulus. Here, we use smooth pursuit direction learning in monkeys as our repre-

sentative cerebellar-dependent learning behavior. The essential cerebellar circuit for pursuit is shown

in Figure 1. Signals related to eye kinematics and image motion are relayed to granule cells in the

floccular complex of the cerebellum via mossy fibers (Lisberger and Fuchs, 1978; Miles et al.,

1980; Noda, 1986). The information is

ultimately transmitted to Purkinje cells, the sole

output cells of the cerebellar cortex. Projections

from Purkinje cells in the cerebellar cortex, in

turn, inhibit floccular target neurons (FTNs) in the

vestibular nucleus (Lisberger et al., 1994). Cru-

cially, FTNs are a single synapse from the moto-

neurons that drive adapted behavior

(Highstein, 1973; Scudder and Fuchs, 1992).

Plasticity appears to be possible at nearly

every synapse in the cerebellar circuit (for a

review see Carey, 2011), but decades of theoret-

ical research (Marr, 1969; Albus, 1971;

Ito, 1984) as well as neurophysiological evidence

during pursuit direction learning (Medina and

Lisberger, 2008; Yang and Lisberger, 2014)

and other motor learning tasks (Herzfeld et al.,

2018; Khilkevich et al., 2016; Kimpo et al.,

2014) implicate plasticity at the parallel fiber to

Purkinje cell synapse as critical for single-trial

changes in cerebellar output. The activity of

climbing fibers, originating from the inferior olive,

drives unusual electrical events called ‘complex

spikes’ in post-synaptic Purkinje cells. Complex

spikes, in turn, cause long-term depression of the

parallel fibers that were active in close temporal

proximity to the complex spike (Hansel et al.,

2006; Suvrathan et al., 2016; Ito and Kano,

1982).

Characteristics of short-term
pursuit learning acquisition
Given the substantial neurophysiological evi-

dence suggesting the primary role of complex-

spike-linked plasticity at the parallel fiber to Pur-

kinje cell synapse for single-trial motor learning,

our first objective was to fully characterize the

properties underlying the acquisition of a motor

memory following a single movement error. To

isolate the properties of short-term motor learn-

ing, we developed a ‘dual-trial’ experimental par-

adigm that is a small, but important, modification

of our previous methods for studying single-trial

learning (see Materials and methods). In each

pair of trials, the first trial is defined as the ‘learn-

ing’ trial. In the learning trial, the monkey begins

to pursue a smoothly moving target in a ran-

domly chosen ‘pursuit direction.’ After 250 ms of

PF

PC

Learned eye velocity

FTN
IN

IO

Climbing
fiber

GC
MF

Figure 1. The essential cerebellar circuit responsible

for the acquisition and expression of motor memories

during pursuit direction learning. Mossy fibers (MFs)

relay image motion and eye kinematic signals to

granule cells (GCs) in the floccular complex of the

cerebellum. The parallel fiber (PF) axons of cerebellar

granule cells synapse on Purkinje cells (PCs). Joint

activity of parallel fibers and an action potential on

climbing fibers (magenta) from the inferior olive (IO)

drives plasticity at the parallel fiber to Purkinje cell

synapse. Purkinje cells send inhibitory projections to

floccular target neurons (FTNs) in the vestibular

nucleus. FTNs receive non-Purkinje cell inputs (IN).

FTNs send monosynaptic projections to motoneurons,

driving learned behavior. The output of the learning

system sends inhibitory projections to the inferior olive

(red).

The online version of this article includes the following

source data for figure 1:

Source data 1. Figure composer source data for the

cerebellar schematic.
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target motion in the pursuit direction, the target abruptly changes direction due to the addition of a

velocity component in an orthogonal ‘learning direction’, either +90 or �90 degrees relative to the

pursuit direction (Figure 2A). The discrepancy between animal’s smooth eye movement in the origi-

nal pursuit direction and target’s net direction due to the addition of orthogonal target motion cre-

ates a movement error that serves as an instruction for motor learning (Figure 2B). We therefore

refer to the addition of the target velocity component orthogonal to the original pursuit direction as

the ‘instruction’.

We measure motor learning in the subsequent

‘probe’ trial, where the target moves in the same

pursuit direction as the learning trial but without

any instruction. In probe trials, the animal exhibits

a ‘learned response’ due to the error induced by

the instruction in the preceding learning trial. The

learned response (Figure 2C, arrowhead) starts

about 200 ms after the onset of target motion in

the pursuit direction, anticipating the change in

target direction imposed in the preceding learn-

ing trial. We measure learning in the 50 ms inter-

val surrounding the time of the instruction, from

225 to 275 ms after the onset of pursuit target

motion. The measurement interval is chosen stra-

tegically to capture the anticipatory response of

the pursuit system at the time of the instruction.

Later in the paper, it also allows us to measure

the learned response even in learning trials,

because the measurement interval precedes any

visually driven eye movement resulting from reti-

nal image motion caused by the instruction

(Hall et al., 2018; Yang and Lisberger, 2017;

Medina and Lisberger, 2008).

We first characterized the dependence of sin-

gle-trial learning on the magnitude of the error

imposed in the learning trial. To ensure that we

were measuring only the learned response due to

the occurrence of a single movement error, we

prevented any long-term learning by choosing

the pursuit direction for each learning-probe pair

randomly from the cardinal axes (see

Materials and methods). In each learning trial, we

also chose the speed of the instruction randomly

to be 0, 5, 10, 15, 20, 25, or 30 deg/s

(Figure 3A), and measured the effect of varying

instruction speed on the learned response in the

subsequent probe trial. Single-trial learning using

randomized pursuit directions creates a situation

where the error magnitude experienced in the

learning trial is identical to the imposed instruc-

tion magnitude, because the average eye speed

in the learning direction during the learning trial

is zero at the time of the instruction. This allowed

us to control the size of the error that drives

learning and to measure directly the shape of the

relationship between learning and error.

In both monkeys, learned responses in the

probe trial increased as a function of the error

magnitude experienced in the learning trial
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Figure 2. Dual-trial experimental paradigm used to

selectively measure the signals associated with

acquisition and generalization of a motor memory.

(A) Motion of the target in two dimensions during

learning and probe trials. Dashed and continuous

arrows show the trajectory followed by target position

during learning and subsequent probe trials,

respectively. (B, C) Eye (solid) and target velocity

(dashed) traces in the learning trial (B) and the probe

trial (C) of each learning-probe trial pair. Blue and red

traces show the pursuit direction and the orthogonal

learning direction. The red dashed trace in (B) shows

the onset of the instruction, which produces target

motion in the learning direction at 30 deg/s. Gray

shaded regions denote the time interval used to

quantify behavioral learning on single trials, 225–275

ms after the onset of target motion. Arrow heads show

the visually-driven response in (B) and the learned

response in (C) due to presence of the instruction in

the learning trial. (D, E) Eye and target position traces

associated with the velocity traces in (B) and (C).

The online version of this article includes the following

source data for figure 2:

Source data 1. Figure composer source data for exam-

ple learning and probe trials.
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(Figure 3B). Quantitative analysis revealed that the learned response did not increase linearly as a

function of error magnitude in the learning trial, but rather saturated as error increased (Figure 3C).

We quantified the effect of error magnitude on single-trial learning as a sigmoid of the form:

Y2 E1ð Þ ¼
a

1þ e�t E1

�
a

2
(1)

where E1 is the magnitude of the error imposed on the learning trial and Y2 is the measured learned

response in the subsequent probe trial. The parameters a and t were obtained by fitting Equation 1

to the data for each monkey in Figure 3C (dashed traces versus connected, filled, symbols). Equa-

tion 1 fitted the data well for both monkeys (Monkey RE: a = 1.35, t = 0.21, R2 = 0.99; Monkey YO:

a = 1.25, t = 0.118, R2 = 0.98). The sigmoidal model of single-trial learning was superior to an alter-

native linear model (Akaike’s information criterion (AIC) (Akaike, 1974), Monkey RE: -53.3 (sigmoid)

versus -14.5 (linear); Monkey YO: -29.2 (sigmoid) versus -20.5 (linear)).

Our next step was the characterize the stability of short-term pursuit learning across trials that

did not include a movement error. To do so, we used a modified experimental design where the first

20 trials were standard learning trials with an instruction magnitude of 30 deg/s. The subsequent 10

trials were ‘error-clamp’ trials (Figure 3D) that we used to estimate retention in the absence of

movement error (after Scheidt et al., 2000). Error-clamp trials used the same pursuit target motion

as in the instruction trials, but the motion of the target in the learning direction was yoked to the ani-

mal’s eye movement in that direction, to ensure that the animal experienced no visual error signals

in the learning direction. Thus, any trial-to-trial change in the animal’s learned response over the

course of 10 error-clamp trials was due solely to forgetting of the previously acquired short-term

motor memory. We normalized the learned response in the 10 error-clamp trials by the magnitude

of the animal’s learned response in the final learning trial of the 20-trial learning block.

Both monkeys demonstrated an exponential decay in the magnitude of the learned response

across error-clamp trials (Figure 3E). Fitting an exponential model to each monkey’s retention data

(Figure 3E, black lines) suggested a retention constant of approximately 0.85 (95% confidence inter-

vals based on four experiments per monkey, Monkey RE: 0.80–0.86, Monkey YO: 0.85–0.91). There-

fore, in the absence of any error to drive learning, approximately 15% of the short-term learned

response is forgotten on each trial. We performed this experiment only for instruction speeds of 30

deg/s because the larger amplitude of learning provided more reliable estimates of retention.

Generalization of the expression of single-trial pursuit learning
We next sought to use generalization of learning to constrain the functional properties of the site of

plasticity that causes single-trial motor learning. Our strategy is based on the following line of rea-

soning. Imagine, for example, that the input signals that are subject to single-trial learning are line-

arly related to eye speed in the pursuit direction (ve) and that plasticity operates as a scalar gain (g).

Then, the learned change in firing of the relevant post-synaptic cells should be proportional to gve.

As a result, the learned eye speed should generalize linearly as a function of pursuit speed in the

probe trial. We can invert this logic to use the measured characteristics of generalization of learning

to reveal the functional properties of signals that undergo plasticity. Under the assumption that the

site of plasticity for single-trial learning acts as a scalar gain, if learned eye speed generalizes linearly

with pursuit eye speed in the probe trial then the population response of neurons upstream from

the site of plasticity should be linearly related to eye speed in the pursuit direction.

We again employed our dual-trial paradigm with a randomized pursuit direction for each pair of

learning and probe trials. Here, the learning trials always had a pursuit speed of 20 deg/s and an

orthogonal instruction speed of 30 deg/s. The pursuit speed of the target in the probe trial was

selected randomly from 5, 10, 15, or 20 deg/s (Figure 4A).

We found that average eye speed in the learning direction scaled with the speed of the probe

target for both monkeys RE and YO, especially in the interval from 225 to 275 ms after the onset of

target motion (Figure 4B, shaded area). We note that scaling is less clear earlier in the probe trial

for Monkey YO, partly because the animal’s eye speed in the pursuit direction scales poorly with tar-

get speed during this earlier interval. A RM-ANOVA showed a main effect of eye speed in the pur-

suit direction in the probe trial on the amount of measured behavioral learning for both monkeys

(Monkey RE: F(3, 6)=24.3, p<10�3, Monkey YO: F(3, 15)=13.7, p<0.001). For both monkeys, the

effect of eye speed in the pursuit direction on the learned response from 225 to 275 ms was highly
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linear (Figure 4C, Monkey RE: R2 = 0.99, Monkey YO: R2 = 0.97). These results suggest that signals

related to the speed of eye motion in the pursuit direction may be part of the substrate that is sub-

ject to plasticity. The linear generalization of single-trial learning with pursuit direction eye speed is

consistent with prior observations that the eye speed at the time of the instruction linearly modu-

lates the expression of behavioral learning (Hall et al., 2018).

In contrast, target/eye speed in the pursuit direction during the learning trial did not affect the

expression of single-trial learning on the subsequent probe trial. Here, we again used the dual-trial

paradigm with pursuit speed randomly chosen to be 5, 10, 15, or 20 deg/s in the learning trials but

always 20 deg/s in the probe trials. The instruction occurred 250 ms after the onset of target motion

and had a magnitude of 30 deg/s. The direction of the instruction was chosen randomly to be either

+90˚ or �90˚ relative to the pursuit direction. Both Monkeys RE and YO (Figure 4D) showed no

effect of pursuit speed in the learning trial on the magnitude of the learned response measured in

the probe trials. A RM-ANOVA failed to show a significant effect at 250 ms in the probe trial

(Figure 4E, Monkey RE: F(3, 15)=0.56, p=0.65, Monkey YO: F(3, 15)=0.39, p=0.76). Thus, we can

conclude that target/eye speed in the pursuit direction has distinct and very different effects on the

acquisition of a motor memory during the learning trial versus on the expression of learning in the

probe trial.
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Figure 3. Characteristics of short-term pursuit learning acquisition and retention. (A) Colored arrows show the

target position trajectory in two dimensions during learning trials. Different colors show learning trials with

instruction speeds of 5, 10, 15, 20, 25, or 30 deg/s. Black arrow shows the subsequent probe trial (learning speed 0

deg/s). Pursuit and instruction directions were randomized from trial-to-trial (see Materials and methods). (B)

Average eye velocity in the direction of the previous instruction (learning direction) as a function of time during

probe trials averaged across experiments from Monkeys RE (left) and YO (right). Different colors indicate average

responses for the different error magnitudes using the same color scheme as in (A). The vertical dashed line shows

the time of the instruction in the preceding learning trial and the gray shaded region shows the interval used for

quantitative analysis, 225 to 275 ms after the onset of pursuit target motion. (C) The amplitude of single-trial

learning as a function of the error magnitude created by the previous instruction. Dashed lines show best-fit

sigmoid for each monkey. (D) Example ‘error-clamp’ trial used to minimize the retinal image motion in the learning

direction, allowing characterization of motor memory retention in the absence of error. Red and blue traces show

eye velocity and the black dashed traces show target velocity. (E) Trial-course of forgetting after 20 learning trials,

probed under error-clamp conditions for Monkeys RE (left) and YO (right). Data are normalized to the magnitude

of behavioral learning in the last learning trial (trial 0). Black curves show best fitting exponentials. Error bands and

error bars show ± SEM across experiments for each monkey.

The online version of this article includes the following source data for figure 3:

Source data 1. Figure composer source data characterizing single-trial pursuit learning.
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Cerebellar model of short-term motor learning
Previous neurophysiological results suggest that complex-spike-linked plasticity at the parallel fiber

to Purkinje cell synapse in the cerebellar cortex is likely the primary driver of single-trial pursuit learn-

ing (Medina and Lisberger, 2008; Yang and Lisberger, 2014). Combining these neurophysiological

observations with our behavioral results thus far allows us to begin to constrain the parameters of a

cerebellar model of motor learning.

A model of short-term pursuit learning appears in Figure 5A (Source code 1). Here, we chose to

model the activity of parallel fibers as linearly related to eye speed in the pursuit direction, to

account for the generalization of single-trial learning (Figure 4B–D). We use only two parallel fibers

with opposite preferred directions (more parallel fibers are trivially possible but unnecessary) with an

arbitrary scaling parameter, r, that converts eye velocity to spikes/s:

PF1 / r _E

PF2 /�r _E
(2)

In the absence of learning, the parallel fiber inputs cancel perfectly, ensuring that the firing of the

post-synaptic Purkinje cell does not modulate in relation to eye movement in the pursuit direction,

consistent with experimental data (Medina and Lisberger, 2008). We can model Purkinje cell firing

on the nth trial, PCn, as the weighted contributions of the pre-synaptic parallel fibers and a back-

ground response, PC0:

PCn ¼w1

nPF
1

n þw2

nPF
2

n þPC0 (3)

The synaptic weight for each parallel fiber, wi, is adaptable via the complex spikes caused by

climbing fiber inputs. The plasticity rule includes two terms: (1) a decay term, aPF, that allows the

relaxation of any learned weight changes back to their baseline value in the absence of error and (2)

an update term that depresses weights by a fractional amount (b) depending on the positive firing

on the parallel fiber in question and the probability of a complex spike given the neural representa-

tion of the image motion from the instruction, P CSjEnð Þ:

wi
nþ1

¼
wi
n � 1�aPFð Þ wi

n �wi
0

� �

�bP CSjEnð Þ if PFi > 0

wi
n � 1�aPFð Þ wi

n �wi
0

� �

if PFi � 0

(

(4)

When aPF ¼ 1, the weights are maintained completely from one trial to the next and learning is

allowed to perfectly accumulate; when aPF<1, the weights decay back to their baseline levels, wi
0
, in

the absence of any climbing fiber input. We model only learning for instructions in the direction that

causes complex spikes so that we do not need to explicitly simulate synaptic potentiation beyond

the relaxation back toward the baseline weights provided by aPF.

Our results in Figures 3 and 4 suggest appropriate values for the unknown parameters of this

simplified cerebellar model of learning. First, we know that, in the absence of error, short-term

motor learning decays across trials. The time constant analysis in Figure 3E suggests that aPF » 0:85

for both monkeys. In addition, Equation 1 describes how the parallel fiber to Purkinje cell weights

are modified as a function of error during single-trial learning: Y2 E1ð Þ / bP CSjE1ð Þ. Previous neuro-

physiological data has demonstrated that the probability of observing a complex spike following a

30 deg/s instruction is approximately 30% (Yang and Lisberger, 2014; Yang and Lisberger, 2017).

Given these observations, we can derive a rule linking the probability of observing a complex spike

to a given error magnitude using a sigmoid function with the same form as Equation 1:

P CSjEnð Þ ¼
0:6

1þ e�t En
� 0:3 (5)

Here, the probability of observing a complex spike saturates at 30% for large error magnitudes.

The value of t matches the values we obtained for each monkey in Equation 1.

Purkinje cells inhibit the floccular target neurons (FTNs) in the vestibular nucleus which, in turn,

modulate eye movements via their projections to motoneurons. In the absence of other inputs to

FTNs that are modulated by learning, the change in the firing of FTNs from their baseline activity is

FTNn ¼ PC0 � PCn. The resulting learned response, Yn, measured via generated eye movements is

then Yn ¼ cFTNn, where c is an arbitrary constant that scales FTN activity to deg/s.
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Equations 2-5 describe a ’single-learning-process’ model. The constants, r, b, wi
0
and c are arbi-

trary and affect only the scaling of firing rates to eye movements. The values we chose for these

parameters are shown in Table 1, but any number of parameter combinations would give qualita-

tively similar behavioral results.

The single-learning-process model appropriately estimated our behavioral observations for two

different stimulus conditions, one that was more-or-less built into the model and one that matches

our data as an emergent property of the model. First, the trial-to-trial change in output following a

range of imposed error magnitudes closely matched the learned behavior of both animals

(Figure 5B), because this relationship was built into the model based on the data in Figure 3C. Sec-

ond, the model reproduced the results of an experiment that was a superset of the conditions used

in Figure 4A–C. Here, we presented a series of dual-trial stimuli where the instruction trial used a

randomly chosen pursuit speed of 0, 10, 15, or 20 deg/s and delivered an instruction at 30 deg/s.

The probe trial also delivered a pursuit speed that was randomly chosen from 0, 10, 15 or 20 deg/s.

For each probe trial, we computed the ‘learning expression ratio’ as the magnitude of the learned

response expressed in each probe trial normalized by the average learning expressed in probe trials

with the same pursuit speed as the preceding learning trial. When the pursuit speed in probe trial

matched the pursuit speed in the learning trial, the learning expression ratio is ~1.0. We then plotted
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Figure 4. Effect (and non-effect) of pursuit eye speed on expression (and acquisition) of single-trial learning.

(A) Experimental paradigm for evaluating the effect of pursuit speed on expression of learning, showing target

motion in two dimensions. Black dashed trace shows the learning trial and colored arrows show probe trials with

different pursuit speeds. (B) Learned eye velocity in the direction of the previous instruction (learning direction),

recorded in the probe trials and averaged across experiments for each monkey. Different colors show responses

for different pursuit speeds in the probe trial, as in (A). Vertical dashed line shows the time of the instruction from

the preceding learning trial. (C) Symbols connected by lines show the learned response measured in the gray

shaded region in (B) as a function of the measured eye velocity in the pursuit direction during the same interval.

Dashed lines show the best fit linear model. (D) Learned eye velocity in the direction of the previous instruction,

recorded in the probe trial (20 deg/s pursuit speed) and averaged across experiments for each monkey. Different

colors show responses for different pursuit speeds in the preceding learning trial. Vertical dashed line shows the

time of the instruction in the preceding learning trial. (E) Summary of the learned response in the probe trial

during the gray-shaded region in (D) as a function of the eye speed in the pursuit direction in the preceding

learning trial. Error bands and error bars show ± SEM across experiments for each monkey.

The online version of this article includes the following source data for figure 4:

Source data 1. Figure composer source data showing the effects of pursuit speed on expression of single-trial

learning.
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the learning expression ratio as a function of the ratio of the pursuit speeds of the probe trial and

the preceding learning trial to assess the generalization function of learning across any combination

of pursuit speeds in the learning and probe trials. The model reproduces the results of this experi-

ment on both monkeys (Figure 5C), demonstrating strong linear generalization across probe pursuit

speeds.

In summary, a cerebellar model with a single learning site where plasticity operates on signals lin-

early related to pursuit eye speed predicts all of our behavioral data for single-trial learning.

Long-term motor learning is not the accumulation of single-trial
learning
In the more natural situation where the same instruction for learning occurs on movement after

movement and is corrected gradually, learning could be simply due to an accumulation of single-trial

Probe pursuit speed relative to 
learning pursuit speed

0.2 0.4 1 2 4

L
e

a
rn

in
g

 e
x
p

re
s
s
io

n
 r

a
ti
o

0.1

1

10
C

RE

YO

Model

Error magnitude (deg/s)

0 5 10 15 20 25 30

L
e

a
rn

e
d

 r
e

s
p

o
n

s
e

 (
d

e
g

/s
)

0

0.2

0.4

0.6

0.8
B

RE

YO

Model

PF

Learned eye
velocity

FTN

Pursuit vel. 
(deg/s)

F
ir
in

g
 (

s
p

/s
)

PC

IO

Climbing
fiber

w1, w2A

Figure 5. Properties of a cerebellar model of single-trial learning with a single site of plasticity. (A) Simplified

model of cerebellar learning with a single-site of plasticity at the parallel fiber to Purkinje cell synapse (gray

shaded oval). Abbreviations are the same as in Figure 1. In this single-learning-process model, the firing of

parallel fibers is linearly related to the speed of the eye in the pursuit direction. (B) Dashed lines show the model’s

prediction of learned responses as a function of error magnitude. Filled symbols connected by lines are

reproduced from Figure 3C. (C) Learning expression ratio as a function of the ratio of pursuit speed in the probe

trial to the pursuit speed in the learning trial (note that both axes are on a log scale). By definition, the learning

expression ratio is ~1.0 when the pursuit speed in the probe trial and the preceding learning trial are identical. As

in (B), dashed lines show the prediction of the single-learning-process model and symbols connected by lines

summarize data from the two monkeys. Error bars show ± SEM across experiments for each monkey.

The online version of this article includes the following source data for figure 5:

Source data 1. Figure composer source data comparing the single-site model of cerebellar learning with behav-

ioral results.

Table 1. Pursuit learning model parameters.

Model parameter Value Description

r 1 Parallel fiber eye velocity
(deg/s) to firing rate (Hz)

w0 1 Parallel fiber to Purkinje
cell baseline weights

aPF 0.85 Parallel fiber to Purkinje
cell weight retention

b 1.5 Change in parallel fiber to PC
weights due to a complex spike

c 0.0625 FTN firing rate (Hz) to
eye movement (deg/s)

s 7.5 Standard deviation of
Gaussian FTN input responses
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learning plus forgetting at the rate of 15% per trial. At some point, the forgetting and learning on

each trial would balance and the learning curve would reach an asymptote. To provide a dataset to

ask whether the ‘single-learning-process’ model of single-trial cerebellar learning with forgetting

(Equations 2-5) can explain the accumulation of behavioral learning across multiple learning trials,

monkeys completed 100 consecutive learning trials. Each learning trial used identical pursuit and

learning directions and speeds. Within each learning block of 100 trials, the instruction magnitude

was either 0, 5, 10, 15, 20, 25, or 30 deg/s. Note that during 100-trial learning blocks, we control the

magnitude of the instruction, but the magnitude of the error on any given trial is the difference

between the instruction and the monkey’s expression of behavioral learning on that trial. When the

same learning trial is repeated, acquisition of behavioral learning leads to a gradual reduction in the

magnitude of the error for a given magnitude of instruction. Therefore, we use the terms ‘instruction

magnitude’ and ‘error magnitude’ carefully to convey this distinction.

For each instruction magnitude, the trial-course of learning revealed dual-exponential learning

curves that largely saturated by the end of 100 learning trials (Figure 6A). Yet, even after 100 conse-

cutive learning trials, the magnitude of the animal’s learned response was always much smaller than

the speed of the imposed instruction: neither animal ever exhibited full compensation for the

imposed instruction (Figure 6B). It is especially noteworthy that the system is able to achieve a

learned response of 5 deg/s after 100 learning trials for an instruction at 30 deg/s, but not for an

instruction at 5 deg/s.

The effect of instruction magnitude on the learned response was much more linear after 100 con-

secutive learning trials than after a single learning trial. The learned eye speed in the last 25 trials of

the learning epoch was linearly related to instruction magnitude for both monkeys (Monkey RE:

R2 = 0.99, t-test on the slope of the regression fit: t(5)=21.9, p<10�4; Monkey YO: R2 = 0.99, t(5)

=18.9, p<10�4). After 100 learning trials, a linear model was preferred when compared against the

best-fit saturating model from Equation 1 (AIC, Monkey RE: 7.7 (sigmoid) versus 1.5 (linear); Monkey

YO: 0.6 (sigmoid) versus 0.02 (linear), Figure 6C). The difference in the effect of instruction magni-

tude on learning after 1 versus 100 learning trials hinted that multiple plasticity mechanisms and/or

sites within the cerebellar circuit could be driving learning across the different trial-courses.

Using the single-learning-process model, we simulated blocks of 100 consecutive learning trials.

In each trial, we drove learning with an error that was the difference between model output and

In; the imposed instruction: En � In � cFTN, simulating the gradual reduction in the error signal for a

fixed instruction magnitude due to the acquisition of learning across trials.

The single-learning-process model failed to predict two crucial features of the true trial-course of

learning. First, it produced single exponential trial-courses that learned too quickly and reached

asymptote within the first 20 learning trials (Figure 7A). Second, it systematically over-estimated the

extent of asymptotic learning for instruction magnitudes between 5 and 20 deg/s (Figure 7B,

arrows) and underestimated learning for instruction magnitudes of 30 deg/s. Indeed, the model pre-

dicted a sigmoidal relationship between asymptotic learning and instruction magnitude (Figure 7B),

inherited from the relationship between single-trial learning and instruction magnitude, in contrast

to the highly linear relationship in the data (Figures 6C and 7B). We note that we did not fit the

model to the data. Instead, we used the parameters derived from our behavioral experiments that

allowed Equations 2-5 to predict the details of single-trial learning. We therefore conclude that pur-

suit learning cannot be mediated solely by the accumulation of single-trial learning with forgetting

(Yang and Lisberger, 2010; Hall et al., 2018).

A cerebellar circuit model that predicts behavioral learning across
timescales
Our next step was to identify the minimal principles of a cerebellar circuit model that can explain

behavioral learning across multiple timescales. The features of behavioral learning in Figures 3 and

4 mandate several properties of a more complete cerebellar model: (1) acquisition of single-trial

learning saturates as a function of the magnitude of the error according to a sigmoidal relationship

dictated by the data in Figure 3C; (2) at least across the 100 learning trials we tested in Figure 6

but also after 2000 trials (Hall et al., 2018), the asymptotic response for a consistent instruction

magnitude falls short of completely correcting the movement error created by the imposed instruc-

tion; (3) the trial-course of learning across long bouts of consecutive learning trials (Hall et al., 2018)

and the different relationship between learned response and error magnitude after 1 versus 100
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trials suggest the presence of at least two learning processes (Hall et al., 2018; Kojima et al., 2004;

Lee and Schweighofer, 2009; Smith et al., 2006).

To test our conclusion about multiple learning processes contributing to cerebellar learning

across longer learning sessions, we next asked whether the retention of the motor memory changed

across long bouts of learning trials. We used the same error-clamp strategy as before, but now to

measure the retention constant after blocks of >1000 identical learning trials. At the end of long

blocks of learning trials, we alternated short blocks of 10 error-clamp trials with runs of 20 learning

trials to ‘top up’ the asymptotic learning. We found significantly better retention after 1000 trials

than after 20 trials (Figure 8A): the measured retention constant after 1000 trials was approximately

0.95 (95% confidence intervals, Monkey RE: 0.95–0.97, Monkey YO: 0.94–0.96)). These data sug-

gested that the motor memory gradually transitions, at least conceptually, from a relatively labile,

low-retention learning process early in learning to a second learning process with high retention

(Smith et al., 2006; Herzfeld et al., 2014a).

Armed with knowledge that learning appears to transition from a low-retention learning process

to a higher retention process after extended learning, we expanded our circuit model of cerebellar

learning to include a secondary site of plasticity (Figure 8B, Source code 2). Given neurophysiologi-

cal results from other cerebellar-dependent learning tasks (Kassardjian et al., 2005; Shutoh et al.,

2006; Lee et al., 2015; Raymond and Lisberger, 1998; Lisberger, 1994) as well as the proximity of
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Figure 6. Effect of instruction magnitude on behavior learning after 100 trials of repeated instructions. (A) Trial-

courses of learning for blocks of 100 learning trials with a consistent instruction magnitude. Different colors show

trial-courses for different instruction magnitudes. Dashed vertical lines show the first and last learning trials. Data

are binned in discrete five-trial bins and averaged across experiments in each monkey. Gray shading shows the

range of trials used to assess the magnitude of asymptotic learning. (B) Average learned eye velocity as a function

of time in the final 25 learning trials for blocks of 100 learning trials, averaged across experiments for each

monkey. Gray shading shows the time interval used for quantitative analysis of the learned eye velocity. (C)

Summary of the effect of instruction magnitude on the asymptotic learned eye velocity in the final 25 trials of a

learning block. Error bands and error bars show ± SEM for each monkey across repetitions of 100-trial learning

blocks.

The online version of this article includes the following source data for figure 6:

Source data 1. Figure composer source data showing the cumulative effects of multiple learning trials.
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the cerebellar circuit to motoneurons, we view the floccular target neurons, or FTNs, in the vestibular

nucleus as the most likely candidate for long-term storage of learning. FTNs are immediately down-

stream of the Purkinje cells, the presumed site of rapid learning, and synapse onto output

motoneurons.

We modeled the learned responses of FTNs on trial n as the sum of the firing of input axons, IN i
n,

weighted by the scalar synaptic weight, vin, minus the baseline-subtracted firing of the Purkinje cell:

FTNn ¼
i

X

vinIN
i
n� PCn�PC0ð Þ (6)

To account for a secondary site of plasticity within the learning circuit, we implemented Hebbian-

style plasticity at the synapse from the eye movement inputs to FTNs. Plasticity at the inputs to

FTNs was driven by the learned responses of presynaptic Purkinje cells:

vinþ1
¼ vinþh PC0 �PCnð ÞIN i

n (7)

Here, h determines the strength of the Purkinje cell’s teaching signal and the rate of plasticity in

the inputs to FTNs. The value of h was set to be small so that the FTNs represented the site of a

slow-learning process, in contrast to the rapid learning at the parallel fiber to Purkinje cell synapse.

Based on our behavioral results in Figure 8A, plasticity in the slow-learning-process is retained

almost perfectly, so that Equation 7 lacks the forgetting factor provided by aPF in Equation 4.

Together, Equations 6 and 7 assume that the learning in the Purkinje cell responses acts as a

teacher for long-term plasticity at the inputs to the FTNs.

Simulation of Equations 2-7 for a variety of instruction magnitudes (Figure 8C) correctly demon-

strates one crucial feature of our long-term learning data. The simulated learning is dual-exponential,

with initial fast acquisition and a second, slower, timescale of acquisition. However, the simulations

do not predict a crucial aspect of our behavioral data. Due to the stability of the long-term memory

at the FTN inputs, the asymptotic response of the model is much larger than is found in our data.

Also, Figure 8C shows that the slow-learning process produces a linear relationship between asymp-

totic learning and instruction magnitude, but only after 2000 trials and not after 100 trials (vertical

dashed line) as seen in the data. The excessive learning in the model of Figure 8B suggests the exis-

tence of inhibition within the learning circuit.

Multiple deficiencies of the model in Equations 2-7 are corrected when recurrent inhibition from

the cerebellum to the inferior olive modulates the error signals used to drive learning at the parallel

fiber to Purkinje cell synapse. We modeled inhibition by reducing the magnitude of the error signal

that drives climbing fiber responses in proportion to the size of the learned response:

En ¼ In� cFTNn �
gcFTNn

_E
(8)

Here, In is the speed of the instruction on the nth trial and cFTNn is the FTN firing converted to

units of learned eye velocity. The term (In� cFTNn) in Equation 8 represents the physical error that

results from the difference between the instruction magnitude and the response of FTNs. This for-

mula makes the distinction between the physical error, (In � cFTNn), and the learning system’s inter-

nal representation of this error used to drive learning in the cerebellar cortex (En). The last term in

Equation 8 implements modulation of the internal representation of the physical image motion in

proportion to g and the learned response, cFTNn. There is no recurrent control when the value of g is

zero. The modulation is normalized by eye speed in the pursuit direction (E
_

) so that inhibition of the

climbing fiber input occurs in proportion to the change in weight of the parallel fiber to Purkinje cell

synapse. The combination of the Purkinje cell modulation as a teacher (Equation 7) as well as the

presence of recurrent inhibition (Equation 8) transfers the motor memory from the cerebellar cortex

to the vestibular nucleus across long blocks of learning trials. We note that the probability of com-

plex spikes decreases considerably across 100 repetitions of the same learning trial (Yang and Lis-

berger, 2017), compatible with the mechanism implemented by Equation 8.

We adjusted the strength of the teaching signal from the Purkinje cells to the FTN inputs (h) and

the strength of recurrent inhibition of the instructive signal (g ) to allow the model in Figure 8B and

Equations 2-8 to reproduce both the two-component trial-course of learning (Figure 8D) and the
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correct linear relationship between the asymptotic learning and instruction magnitude after 100

learning trials (Figure 8E). The best-fit model (two unknowns, h and g ) agrees well with the data for

both monkeys (Figure 8E, black curves, Monkey RE: R2 = 0.99; Monkey YO: R2 = 0.97). In addition,

both monkeys had similar values for both estimated parameters (95% confidence intervals, Monkey

RE: h = 5.1�10�4–9.2 � 10�4, g = 55.9–68.5, Monkey YO: h = 4.5�10�4–9.4 � 10�4, g = 38.8–65.0).

Linearity emerges after 100 trials because recurrent feedback switches the mechanism driving

asymptotic behavior from a tradeoff between learning and forgetting to an emergent property of

the operation of a dynamic feedback loop.

The successful model in Figure 8B has three crucial features: (1) a site of rapid learning with lim-

ited retention at the parallel fiber to Purkinje cell synapse, (2) gradual transfer of learning from the

cerebellar cortex to a slower-learning process with excellent retention at the inputs to the FTNs, and

(3) recurrent inhibition from FTNs to the inferior olive that limits learning and linearizes the stimulus-
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Figure 7. Long-term behavioral learning is not merely accumulation of single-trial learning. (A) Trial-courses of

learning for different instruction magnitudes, averaged across experiments for both monkeys. Thin traces with

error bands show learning as a function of trial number as mean ± SEM (data reproduced from Figure 6A without

binning). Bold traces show the predictions of the single-learning-process model described in the text. (B)

Asymptotic learning measured in the last 25 trials of a 100-trial learning block, plotted as a function of the speed

of the instruction in that block. Connected symbols and error bars show the data for each monkey (reproduced

from Figure 6C). Dashed traces show the predictions of the single-learning-process model. Error bands and error

bars show ± SEM for each monkey across repetitions of 100-trial learning blocks.

The online version of this article includes the following source data for figure 7:

Source data 1. Figure composer source data showing the progression of learning across 100 trial blocks of learn-

ing trials compared to the results predicted by a single-site model of cerebellar learning.
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response function of learning by controlling the error signals available to drive learning at the paral-

lel fiber to Purkinje cell synapse.

Changes in the pattern of generalization over multiple timescales
We next provide additional behavioral evidence for separate sites of learning within the cerebellar

circuit. By probing the expression of learning as a function of pursuit speed across the trial-course of

learning, we show that the linear pattern of generalization to pursuit speed we observed following a

single learning trial (Figure 4) changes gradually but qualitatively across 1000 trials. We suggest that

the site and/or mechanism of learning changes across a long trial-course.

We again deployed the dual-trial paradigm, but with the modification that the instruction trial in

each pair of trials repeated the same fixed parameters of pursuit (5 deg/s or 20 deg/s), instruction

magnitude (30 deg/s), instruction direction, and pursuit direction for the entire experimental session.

We studied generalization across the gradual accumulation of learning by varying target speed in

the pursuit direction randomly in the probe trial to be 5, 10, 15 or 20 deg/s, while keeping the pur-

suit direction the same as in the learning trials.

An example experiment demonstrates how generalization changed over a long trial-course when

pursuit speed was 5 deg/s in the learning trials and was always equal or faster in the probe trials.
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Figure 8. A cerebellar model that captures the amplitude and trial-course of learning across multiple timescales.

(A) Trial course of forgetting under error-clamp conditions. Orange and blue traces show forgetting after >1000 or

20 trials (the latter reproduced from Figure 3E). Black curves show best fitting exponentials. Error bands show

SEM across n = 4 experiments. (B) Schematic diagram of a cerebellar model with two sites of plasticity, capable of

recapitulating the properties of pursuit learning across multiple timescales. Magenta arrows denote teaching/

transfer signals. The red pathway denotes recurrent inhibition of the internal representation of the error that drives

learning. (C) Trial-course predictions of the cerebellar model in (B) without recurrent feedback to the inferior olive

for a range of instruction magnitudes. (D) Exemplar fits of the cerebellar learning model in (B) to trial-courses of

learning for repeated presentations of instructions at different speeds. Thin traces with error bands show learning

averaged (± SEM) across multiple experiments as a function of trial number for Monkey RE (reproduced from

Figure 6A, unbinned). Bold traces show the predictions of the best-fitting cerebellar circuit model for each

instruction magnitude. (E) Asymptotic learning measured in the last 25 trials of a 100-trial learning block, plotted

as a function of the speed of the instruction in that block. Connected symbols and error bars show the data for

each monkey (reproduced from Figure 6C). Dashed traces show the predictions of the asymptotic response of the

cerebellar model from (B).

The online version of this article includes the following source data for figure 8:

Source data 1. Figure composer source data showing the predictions of a model of cerebellar motor learning

which includes multiple sites of plasticity operating at different timescales.
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Averages of the trajectory of the learned eye velocity as a function of time during the first 250 trials

confirmed that the learned response scaled with pursuit speed in the initial stages of learning

(Figure 9A, left), in agreement with the data for single-trial learning in Figure 4. However, at the

end of the same learning session, the expression of learning no longer scaled with pursuit speed in

the probe trials (Figure 9A, right). The change in generalization across the session could not be

explained by any systematic differences in the eye speed in the pursuit direction during the first ver-

sus last 250 trials (Figure 9B, continuous versus dashed traces).

The change in the generalization of the expression of learning in the probe trials occurred gradu-

ally (Figure 10A). Across 2250 trials (1125 dual-trial stimuli) in Monkey RE, the expression of learning

declined for probes with pursuit speeds of 20 deg/s and remained constant for probes with pursuit

speeds of 5 deg/s. By 2250 trials, the learned response did not depend on the target speed in the

probe, in agreement with the right graph of Figure 9A. The observations were similar in Monkey

YO, although he did not work for as many trials as Monkey RE (note the shorter x-axis). These results

suggest that something about the inputs that are subject to plasticity or the mechanism of plasticity

at the site of single-trial, short-term, learning may differ from those to the site of long-term pursuit

learning.

We observed a qualitatively different pattern of generalization across learning blocks when pur-

suit speed was 20 deg/s in the learning trials and was always equal or slower in the probe trials.

Now, the expression of learning increased slightly for probe trials with a pursuit speed of 20 deg/s

and decreased as a function of trial when the pursuit speed in the probe trial was 5 deg/s

(Figure 10B). Together, the results of learning with pursuit target speeds in the learning trials of 5

and 20 deg/s show a general rule: learning generalizes approximately linearly for pursuit speed

across all timescales of learning when the pursuit speed in the probe trial is slower than the learning

trial; when pursuit speed in the probe trial is faster than that in the learning trial, linear generalization

early in learning is replaced gradually with a learned response that appears largely independent of

pursuit speed after long-term learning.

To verify the statistical veracity of the effects in Figure 10A and B, we performed a regression

analysis on the trial-course of generalization of each experiment (lines in Figure 10A and B). For

each experimental condition, we measured the rate of change of the learned response across trials

(Figure 10C). Here, a negative slope indicated that the learned response for a particular probe pur-

suit speed decayed over the experiment (e.g. 20 deg/s probe trials when the pursuit speed of the

learning trial was 5 deg/s). Positive slopes indicated that the learned response measured in the

probe trials tended to increase across the experiment, as was the case when the pursuit speed in

both the learning trial and the probe trial was 20 deg/s (Figure 10B, red curves). A two-way ANOVA

confirmed the differential effect of pursuit speed in the learning trials on the generalization proper-

ties of the motor memory. We tested for main effects of probe pursuit speed (5, 10, 15 or 20 deg/s),

pursuit speed in the learning trials (5 deg/s or 20 deg/s), and their interaction. For both monkeys,

we observed a main effect of pursuit speed in the learning trials (RE: F(1, 32)=46.8, p<10�7; YO: F(1,

20)=31.6, p<10�4), no main effect of probe speed (RE: F(3, 32)=1.39, p=0.26; YO: F(3, 20)=0.33;

p=0.81), and crucially a significant learning pursuit speed by probe pursuit speed interaction (RE: F

(3, 32)=14.2, p<10�5, YO: F(3, 20)=9.0, p<10�3). Thus, the relationship between pursuit speeds of

the target in the learning and probe trials significantly affected the shape of generalization across

trials.

To further validate the interaction between pursuit speed in the learning and probe trials, we con-

ducted additional experiments in Monkey RE that tested other pursuit speeds in the learning trial

(not shown). Here, different experiments used one of either 5, 10 or 20 deg/s as the consistent pur-

suit speed in the learning trials and probed with pursuit speeds selected randomly from the same

three speeds. After 1000 learning trials, the expression of learning generalized approximately line-

arly as a function of slower pursuit speeds in the probe trial compared to the learning trial, but not

for probe speeds faster than used in the learning trial, in agreement with Figure 10A and B. Thus,

the rules for generalization depend not on whether the probe speed is the same or different from

the pursuit speed in the instruction trials, but rather on whether it is faster or slower. These prelimi-

nary experiments also served as a control to ensure that the change in generalization across many

trials was not a result of the alternation of learning and probe trials, because probe trials with the

other two pursuit speeds were interspersed randomly among the learning trials with a ratio of 10

learning trials to every probe.
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Functional differences in the fast versus slow sites/mechanisms of
plasticity
In the previous section, we showed that learning generalizes differently in relation to pursuit target

speed early versus late in a long learning block. Next, we analyze our data in a way that quantifies

the shape of the pursuit speed generalization function at different stages of learning. We used the

data from the long blocks of learning/probe pairs in Figure 10, where the pursuit and instruction

speed were fixed in the learning trial but pursuit speed in each interleaving probe trial was selected

randomly among 5, 10, 15, or 20 deg/s. Here, we computed the ‘learning expression ratio’ for each

pair of trials as the magnitude of the learned response in the probe trial divided by the learning

expressed in the preceding learning trial. The learning expression ratio is a single-trial metric of gen-

eralization, allowing us to probe the shape of generalization across long bouts of learning while con-

trolling for the gradual accumulation of behavioral learning across the session. We then binned the

resulting learning expression ratio by the ratio between the target pursuit speed in each probe trial

and learning trial. When the probe trial and the preceding learning trial have the same pursuit speed

(probe speed to pursuit speed ratio of 1.0), we would expect nearly complete generalization

between the learning and probe trials (a learning expression ratio ~1.0). We refer to the relationship

between the learning expression ratio and the ratio of the probe and learning trial pursuit speeds as

the ‘generalization function’.

In the first 250 trials of a long learning block (blue curve, Figure 11A), both monkeys demon-

strated an approximately linear generalization function, paralleling our finding of single-trial generali-

zation in Figure 5. Thus, early in learning, both monkeys expressed greater (less) learning in the

probe trial than in the learning trial when pursuit speed in the probe trial was faster (slower) than in

the preceding learning trial. As learning progressed through a long block of trials (Figure 11A, pink

and purple traces), the shape of the generalization function changed gradually. After 1000 trials,

probe trials with pursuit target speed faster than in the learning trial (probe speed to pursuit speed

ratio >1.0) no longer showed enhancement of the expression of learning (learning expression

ratio ~1.0). The changing shape of the generalization function was further accentuated in Monkey RE

after 2000 trials when probe trials expressed less behavioral learning (learning expression ratio <1.0)

if the pursuit speed was faster in the probe than in the learning trial.
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Figure 9. Changes in the pattern of behavioral generalization across an exemplar learning session in Monkey RE

when pursuit speed in the learning trial is 5 deg/s. (A) Effect of pursuit speed in the probe trial on the expression

of learning in the first 250 (solid, left) versus last 250 trials (dashed, right) of a long learning session. Data plot

average learned eye velocity as a function of time from a single exemplar session in Monkey RE with pursuit speed

of 5 deg/s and an instruction magnitude of 30 deg/s in the learning trials. Traces of different colors show the

learned response for different pursuit target speeds in the probe trials. (B) Continuous and dashed traces show

eye speed in the pursuit direction early versus late in the learning session during probe trials from (A).

The online version of this article includes the following source data for figure 9:

Source data 1. Figure composer source data showing changes in the generalization to pursuit speed in the probe

trial across a learning session.
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That the generalization function changes across 2000 trials indicates either that the properties of

a single site of learning change or that learning transfers between sites with different functional

properties. Cognizant that factors such as non-linear synapses and recurrent inhibition can control

the properties of the signals at a site of learning, the simplest way to model generalization is in

terms of the signals conveyed by the afferent fibers whose synapses are subject to plasticity. Fig-

ure 11 suggests that we can model learning under the assumption that the motor memory gradually

transitions from an early site of learning where the inputs are linearly related to pursuit speed to a

secondary site/synapse where the inputs are unimodally tuned for pursuit speed.

We completed our model of cerebellar learning (Figure 12A) by defining the functional proper-

ties of non-Purkinje cell inputs to FTNs. We simulated 50 inputs to the FTNs, each with a preferred

direction either equal to or opposite the pursuit direction and a Gaussian tuned response for pursuit

speed:

IN i
n ¼ cos �en� �i

� �

exp �
_E� si
� �2

2s2

 !

(9)

Here, for the ith input axon, qi is either 0 or 180 deg, si is the preferred eye speed ranging from 0

to 50 deg/s, and s is the standard deviation of the Gaussian function. The eye movement vector on

the nth trial is defined as �en;
_En

� �

. Note that any unimodal function (e.g. cosine) would yield compara-

ble results to the Gaussian function.

The circuit-level learning system defined by the schematic in Figure 12A and Equations 2-9

reproduces our data on both the trial-course of learning and the trial-course of the generalization of

learning to pursuit speed. The learned response, like the real data, shows a saturating relationship

to instruction magnitude for single-trial learning (Figure 12B) and a linear relationship after 100 trials

(Figure 12C). For learning with pursuit target motion at 5 deg/s, the expression of the learned

response in the model generalizes differently early versus late in a 1000 trial learning block

(Figure 12D). Early in the learning block, the learned response generalizes linearly to pursuit speeds

regardless of the pursuit speed in the learning trials. Late in the learning block, the learned response

0 1000 2000

L
e

a
rn

e
d

 r
e

s
p

o
n

s
e

 (
d

e
g

/s
)

0

1

2

3

4

Monkey RE

B
20 deg/s learning

Trial number

0 1000

Monkey YO

Probe speed (deg/s)

5 10 15 20

S
lo

p
e

 (
d

e
g

/s
 p

e
r 

1
0

0
0

 t
ri
a

ls
)

-1

-0.5

0

0.5

1

5 deg/s learning

20 deg/s learning
C

RE

YO

0 1000

Monkey YO

0 1000 2000

L
e

a
rn

e
d

 r
e

s
p

o
n

s
e

 (
d

e
g

/s
)

0

1

2

3

4

Monkey RE

A
5 deg/s learning

P
ro

b
e

Trial number

20 deg/s
15 deg/s
10 deg/s
5 deg/s

Figure 10. The pattern of generalization across a learning session depends on the relative speeds of target

motion in the pursuit direction during learning versus probe trials. (A) Continuous changes in learned responses

measured in probe trials across sessions when pursuit speed in the learning trial was 5 deg/s. Different colors

show the responses for different target speeds in the probe trials. Note that the trial axis represents cumulative

trials (learning and probe). (B) Generalization across learning sessions when pursuit speed in the learning trial was

20 deg/s. Different colors show expression of learning for probe trials with pursuit speeds of 5, 10, 15, or 20 deg/s

as in (A). (C) Slopes of the trial-course of the expression of learning as a function of pursuit speed in the probe

trial. Open and filled symbols show results for learning trials with pursuit speeds of 20 versus 5 deg/s. Instruction

magnitude was always 30 deg/s. Error bars in (C) and error bands in (A) and (B) show ± SEM across days for each

monkey.

The online version of this article includes the following source data for figure 10:

Source data 1. Figure composer source data showing the differential effects of pursuit speed in the learning trial

on the generalization of learning.
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is largely identical across probe speeds. For learning with pursuit target motion at 20 deg/s, the

learned response generalizes linearly across probe speeds lower than 20 deg/s for the entire dura-

tion of the learning block (Figure 12E). The model also makes predictions. It suggests that adaptive

changes in the Purkinje cell responses should diminish over the course of thousands of trials

(Figure 12F,G) as learning transfers to the FTN inputs (Figure 12H,I).

Alternative models of cerebellar motor learning
We considered a number of other model forms besides our final cerebellar model (Figure 12A). The

criteria for a plausible model were imposed by our data for single-trial learning (Figures 3 and

4) and repeated presentation of the same learning trial (Figure 6). Single-trial learning always

showed a saturating relationship as a function of the error imposed by the instruction. Therefore, all

candidate models were constrained by the fits in Figure 3C, ensuring that the measured learned

behavior on trial 2 as a function of the error magnitude experienced on the first trial, Y2 e1ð Þ, was

approximately equal to Equation 1. We then asked whether each candidate model could account

for the nearly linear asymptotic learned response as a function of instruction magnitude after a block

of 100 learning trials (Figure 6C).

We began by assuming the simplest model capable of reaching an asymptotic learned response

that was less than the imposed instruction. This model featured a single learning process, x, with a

retention parameter that allowed trial-to-trial forgetting:

xnþ1 ¼ axn þDYn enð Þ

Yn ¼ xn
(10)

Here, a is the retention factor where a=1 indicates complete retention (no forgetting) and Yn is

the measured behavioral response on trial n. The change in the measured amount of learning on

each trial, Yn enð Þ, is given by extending Equation 1 from the case of single trial learning (trials 1 and

2) to trial-over-trial learning at any stage (trials n and n+1). The asymptotic response of this single

learning process occurs when Ynþ1 »Yn, which is given by:
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Figure 11. Quantification of changes in the generalization of learning expression across trials. Fraction of the

behavioral learning that generalizes from a learning trial to the subsequent probe trial as a function of the ratio

between the pursuit speed in the probe versus learning trial (both axes are shown on a log scale). Blue, pink, and

purple curves show the shape of the generalization function early, in the middle, and late in long learning bouts,

respectively. Error bands show ± SEM across sessions for each monkey.

The online version of this article includes the following source data for figure 11:

Source data 1. Figure composer source data characterizing changes in the shape of the generalization function

across trials.
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Y¥ ¼
Y¥ e¥ð Þ

1�a
(11)

The form of the asymptotic response is a scaled version of the measured single-trial learning from

Figure 3C and therefore cannot, by itself, reproduce the linear relationship between instruction

magnitude and asymptotic learning that we measured after 100 consecutive learning trials. Any sin-

gle-learning-process model that (1) has a static relationship between learning and error and (2) pre-

dicts saturating single-trial learning in Figure 3 would fail to predict the linear asymptotic learning

after 100 repeated learning trials in Figure 6.

Pursuit learning might align with other models of motor learning that also have posited two

(Lee and Schweighofer, 2009; Smith et al., 2006) or more (Kording et al., 2007) learning pro-

cesses. For our system, learning could be the net sum of two learning processes that run indepen-

dently and in parallel: a fast-learning process, xf , with rapid learning from error but limited retention

and a slow-learning process, xs, with strong retention:

w1, w2
PF

PC

v1, v2, ...

Learned eye velocity

FTN
IN

Eye vel. (deg/s)

F
ir
in

g
 (

s
p

/s
)

Eye vel. (deg/s)

F
ir
in

g
 (

s
p

/s
)

IO

Climbing
fiber

Error

A

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1 Single trial

Instruction speed (deg/s)

B

0 5 10 15 20 25 30

0

1

2

3

4 100th trial
C

0 1000 2000

10

20

30

40

50 F

Purkinje cell

0 1000 2000

Purkinje cell

G

0 1000 2000

0

10

20

30

40

50
H

P
re

d
ic

te
d

 n
e

u
ra

l 
re

s
p

o
n

s
e

 (
s
p

ik
e

s
/s

)

FTN

Number of preceding trials in learning block
0 1000 2000

FTN

I

0 1000 2000

0

2

4

6
D

P
ro

b
e

M
o

d
e

l's
 l
e

a
rn

e
d

 b
e

h
a

v
io

ra
l 
re

s
p

o
n

s
e

 (
d

e
g

/s
)

Learn: 5 deg/s

20 deg/s
15 deg/s
10 deg/s
5 deg/s

0 1000 2000

Learn: 20 deg/s
E

Figure 12. A circuit-level cerebellar learning model predicts many features of pursuit learning across timescales.

(A) The schematic shows the structure of the model, which is described in Equations 2-9 in the text. Magenta

colors show pathways that transmit instructions for plasticity and the red pathway provides recurrent inhibition to

the inferior olive. (B, C) Model’s prediction for the size of learning as a function of instruction speed for single-trial

learning (B) and after 100 learning trials (C). (D, E) Behavioral learning trial courses predicted by the model for

learning sessions with a 30 deg/s instruction magnitude and pursuit speeds in the learning triasl of 5 deg/s (D)

versus 20 deg/s (E). Different shades of green show predictions for the expression of learning using different

pursuit speeds in probe trials. (F, G) Predicted learned Purkinje cell simple-spike responses across a learning

session with pursuit speeds in the learning trials of 5 deg/s (F) and 20 deg/s (G). (H, I) Predicted size of inputs to

FTNs after weighing through plastic changes in vi, again across a learning session with pursuit speeds in the

learning trials of 5 deg/s (H) and 20 deg/s (I).

The online version of this article includes the following source data for figure 12:

Source data 1. Figure composer source data showing predictions from a circuit-level model of motor learning.
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x
f
nþ1

¼ af xfn þDYn enð Þ

xsnþ1
¼ asxsn þhsen

Yn ¼ xfnþ xsn

(12)

A central requirement is that the retention of the slower-learning process is greater than

the retention of the faster process, namely as � af , and the rate of learning is greater in the fast-

learning process versus the slow-learning process, Yn enð Þ� hsen. As long as the fast-learning process

shows a saturating relationship between error and single-trial learning, the model will reproduce the

single-trial learning data in Figure 3C.

The two-independent process model in Equation 12 fails to predict a linear relationship between

the asymptotic response after extended learning and instruction magnitude. Given the retention val-

ues, we measured experimentally (af
» 0:85 and as>0:95), the value of hs must be very small to ensure

that learning saturates at a level significantly below the imposed instruction after extended learning

(Figure 6A). With this constraint (hs
» 0), we can derive the asymptotic response of the two-learning-

process model from Equation 12:

Y¥ ¼ xf
¥
þ xs

¥
¼

DYn enð Þ 1�asð Þ

1�afð Þ 1�asþhð Þ
þ

hI

1�afð Þ 1�asþhð Þ
»

Dxf e¥ð Þ

1�af
(13)

Equation 13 represents a scaled version of the single-trial response shown in Figure 3 and is

largely identical to the asymptotic response predicted by a single-learning-process in Equation 11.

We expressly set out to model our data in a way that was driven by the known architecture of the

cerebellar learning circuit. Adherence to the known circuit and the ability to reproduce a wide set of

behavioral data with relatively simple assumptions are virtues of the model in Figure 12A. At the

same time, we doubt that our successful model is unique and other strategies might (or might not)

be able to reproduce our data as well. We give two examples. (1) A single-site model might work if

the rate of learning is not constant but rather changes from trial-to-trial. It would be possible to

account for some of our data in a single-state model where complex-spike-mediated depression of

the parallel-fiber to Purkinje cell synapse intrinsically weakened or saturated across repeated identi-

cal learning trials. (2) Some models modulate learning based on Bayesian integration of noisy sen-

sory feedback with internal estimates of the perturbation (i.e. the Kalman filter), experienced errors

(Herzfeld et al., 2014b), or environmental consistency (Gonzalez Castro et al., 2014). Each of these

models predicts that learning rate should increase for repeated presentations of the same learning

stimulus versus single-trial learning, whereas we observed that the learning rate decreases over tri-

als. However, one might contrive a model based on these principles where learning rate is lower

when the stimulus regime is highly regular and consistent. In addition to their other failings, none of

these approaches have the advantage of working seamlessly within the constraint of the architecture

of the cerebellar learning circuit.

Discussion
Using strategically designed behavioral experiments in rhesus monkeys, we have constrained a learn-

ing circuit model that implements four crucial principles of operation within the known neuroanat-

omy of the smooth pursuit eye movement system. The four principles of operation are: (1) early

learning that occurs through a fast-learning process with poor retention, which likely employs climb-

ing fiber mediated depression of the parallel fiber to Purkinje cell synapse; (2) over many trials, the

motor memory transfers from the fast-learning process to a slow-learning process, with excellent

retention, possibly in the deep cerebellar nucleus; (3) the inputs that are learned in fast- versus slow-

learning processes have specific and different relationships between firing rate and eye velocity in

the pursuit direction; and (4) recurrent feedback to the inferior olive from the output of the learning

system modulates acquisition of learning via the fast-learning process in the cerebellar cortex. Even

though our model is for cerebellar learning in pursuit eye movements, we suggest that the principles

of operation are likely to generalize broadly, both to other cerebellum-dependent motor learning

paradigms and to learning and memory systems elsewhere in the brain.
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Neural substrates of fast acquisition of learning
Our data add to the evidence for a fast-learning process with poor retention based on climbing-fiber

mediated plasticity at the parallel to Purkinje cell synapse in the cerebellar cortex (Medina and Lis-

berger, 2008; Yang and Lisberger, 2014; Nguyen-Vu et al., 2013; Kimpo et al., 2014). Long-term

depression at this particular synapse has been a staple of cerebellar learning for many years

(Ito, 2001; Marr, 1969; Albus, 1971), and short-term forms of plasticity also occur at the same site

(Brenowitz and Regehr, 2005; Suvrathan et al., 2016). Still, the tight link between the occurrence

of a complex spike and neural learning in Purkinje cell simple-spike responses (and behavior) does

not prove that the parallel fiber to Purkinje cell synapse is the mechanism of the fast-learning process

and we need to remain open to the possibility that the actual site of plasticity may be upstream of

the parallel fiber to Purkinje cell synapse.

We are able to measure the properties of the fast-learning process largely independent of other,

slower, components of the recurrent learning circuit using the analysis of single-trial learning. Thus,

we effectively measured the ‘open-loop’ features of the fast-learning process and discovered that

the fast-learning process features a non-linear, saturating relationship between the magnitude of

learning and the size of the movement error. We suspect that the non-linear relationship reflects the

effects of the retinal slip on the probability and/or duration of the complex spikes that occur in Pur-

kinje cells (Mathy et al., 2009; Najafi and Medina, 2013; Yang and Lisberger, 2014). However, we

cannot exclude two alternatives. The asymptote of single-trial learning for the highest instruction

magnitude could reflect the influence of inhibitory neurons on the learning signal (Rowan et al.,

2018) and/or a simple limit on the maximum amount of plasticity that can be induced by a single

climbing fiber input to most Purkinje cells. The saturating dependence of single-trial adaptation in

our system on instruction magnitude or stimulus strength parallels findings of single-trial learning in

other cerebellar-dependent adaptive behaviors (Fine and Thoroughman, 2006; Herzfeld et al.,

2014b; Marko et al., 2012; Hutter and Taylor, 2018).

Transfer of a motor memory between neural sites
Our finding of qualitatively different generalization functions early versus late in learning provides

experimental support for two distinct sites of learning, one that learns quickly and predominates

early versus a second process that learns slowly and therefore predominates late in a 1000-trial

learning block. Evidence that learning transfers from the fast- to the slow-learning site, rather than

proceeding independently in parallel, comes from our computational and theoretical analysis. The

cerebellar circuit model with recurrent inhibition of the error input to the cerebellar cortex can

explain linearization of the relationship between the size of learning and instruction magnitude after

100 learning trials, whereas a standard model with independent fast and slow-learning processes

would require considerable modification to do so (see Equations 12 and 13). Thus, we think that

the fast-learning process for pursuit learning occurs in the floccular complex of the cerebellum

(Medina and Lisberger, 2008) and that the floccular target neurons in the vestibular nucleus

(Lisberger et al., 1994) are likely the site of the slow-learning process and long-term storage. At

this time, we cannot rule out the possible role of additional downstream areas.

There are multiple reasons to think that learning could transfer from the cerebellar cortex to the

deep cerebellar nuclei, even though there is currently no direct neurophysiological evidence. Mecha-

nisms of plasticity are abundant in the deep cerebellar nuclei and optogenetic modulation of the

activity of Purkinje cells can adapt the vestibulo-ocular reflex, presumably through Purkinje-cell

induced plasticity in the deep cerebellar nuclei (Jang et al., 2020; Nguyen-Vu et al., 2013). Record-

ings from Purkinje cells and deep cerebellar nucleus neurons following long-term vestibulo-ocular

gain adaptation lead to the conclusion of neural learning in both sites (Lisberger, 1994) and are

entirely compatible with the suggestion that the learned responses in Purkinje cells instruct learning

in the deep cerebellar nucleus (Miles and Lisberger, 1981). For both eye movements (Pastor,

Pastor et al., 1994) and classical conditioning of the eyelid response (Garcia et al., 1999), inactiva-

tion or lesions of the cerebellar cortex prevents adaptation but does not fully abolish learned

responses from previous adaptation (McCormick and Thompson, 1984; Perrett et al., 1993), sug-

gesting that the residual long-term learning resides outside of the cerebellar cortex. Finally, for

learning in the optokinetic response, lesions of the flocculus abolish the learned response completely

after short-term learning but only partially after long-term learning (Shutoh et al., 2006).
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We think that the accessible neural substrate of pursuit learning affords the opportunity to study

the neural mechanisms of memory transfer, a ubiquitous characteristic across memory systems. For

example, different sites of early acquisition versus long-term storage exist for fear memories

(Rogan et al., 1997), (Do-Monte et al., 2015), and in bird song (Bottjer et al., 1984; Nordeen and

Nordeen, 1993; Warren et al., 2011). Indeed, the acquisition of a memory in one structure and the

long-term storage of this memory in separate structures is clear from amnesic subjects, such as HM

(Zola-Morgan and Squire, 1990), as well as from many more modern observations

(Tonegawa et al., 2018).

Differences in the characteristics of the signals that are subject to
learning across trials
In our data, the early learned response generalizes linearly as a function of all pursuit speeds in the

probe trials, even when the probe speed is faster than the pursuit speed in the learning trial. After

1000 trials of learning, the learned response scales only for probe speeds slower than pursuit speed

in the learning trial. The literature contains other evidence of changes in the generalization of the

expression of learning across timescales. In birdsong, learned changes in the pitch of one syllable

generalizes differently early versus late in learning (Warren et al., 2011), suggesting that early learn-

ing in LMAN changes signals that are related to the overall song, while the late learning in the motor

structure RA operates on signals related to the motor act of producing the syllable. In the vestibulo-

ocular reflex, Kimpo et al., 2005 showed different generalization for stimulus frequency for gain-up

versus gain-down learning, suggesting different sites of learning based on modification of different

vestibular signals.

After Shadmehr, 2004, we interpret the change in generalization of learning as possible evidence

for a change in the properties of the neural signals that are subjected to learning. Our circuit model

accounts for the change in generalization by assuming that a different set of eye speed signals is

learned at Purkinje cells versus FTNs. The use in the model of different inputs to the sites of plasticity

in the floccular complex and at the floccular target neurons suggests two features of the neural sys-

tem that run counter to current doctrine. First, the general rule is that Purkinje cells and their targets

in the deep cerebellar nuclei receive identical inputs from mossy fibers. In the floccular complex,

however, this does not seem to be the case: brainstem areas that send afferent mossy fibers to the

ventral paraflocculus region of the floccular complex send only sparse projections to the location of

FTNs in the vestibular nucleus (Osanai et al., 1999; Nagao et al., 1997). Second, the general rule in

the oculomotor system is the firing rate is linearly related to eye position and velocity, and this is

true for mossy fibers in the floccular complex (Miles et al., 1980; Lisberger and Fuchs, 1978). Thus,

there is no obvious precedent for neural responses that are unimodally tuned for eye velocity. Lim-

ited recordings from FTNs during pursuit learning Joshua et al., 2013 demonstrate a diversity of

FTN velocity-dependent responses to a 30 deg/s pursuit stimulus, perhaps consistent with a distribu-

tion of preferred speeds across the neural population. We realize that the assumptions in the model

may not reflect the actual implementation of the system in the brain, and that the differences in gen-

eralization at different sites could reflect properties of synapses or plasticity mechanisms rather than

of the input signals that are subject to plasticity.

Recurrent inhibition of the fast-learning process learning signal
We have always been troubled by the fact that pursuit learning, like other forms of motor learning

(Krakauer et al., 2000; Tseng et al., 2007; Vaswani et al., 2015), never reaches an amplitude that

completely eliminates the error created by the imposed instruction. Even after more than 1000 learn-

ing trials, the adapted pursuit eye movements shows residual errors than are in excess of 50% of the

imposed instruction (Hall et al., 2018).

We suggest that motor learning never fully adjusts for the instruction because of active inhibition

of the instruction for learning Kenyon et al., 1998). Via the known double-inhibitory pathway from

Purkinje cells to the inferior olive via the deep cerebellar nucleus (Houck and Person, 2014;

Najac and Raman, 2015; de Zeeuw et al., 1988), learned depression of Purkinje cell simple-spike

firing could reduce the effectiveness of a given movement error by attenuating the probability and/

or duration of climbing fiber inputs to the cerebellar cortex. Previous neurophysiological observa-

tions over 100 trials of pursuit learning demonstrate a reduction in the probability of complex spikes,
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hinting at possible inhibition of the olive (Medina and Lisberger, 2008; Yang and Lisberger, 2017).

Our data and modeling render unlikely the alternate explanation that incomplete adaptation is the

result of a competition between the learning signals and a restoring force due to forgetting

(Smith et al., 2006; Albert et al., 2019). During error-clamp trials, we measured the retention

parameter after 1000 trials to be close to 1.0, corresponding to almost complete retention.

We imagine that recurrent inhibition of the error inputs to the fast-learning process promotes

slow, conservative learning that does not respond hastily to noisy inputs. We do not understand fully

why it is advantageous for the fast-learning process to remain inhibited after learning has been trans-

ferred from the cerebellar cortex to FTNs. Perhaps the goal is to force other parts of the pursuit cir-

cuit to take over some of the learning under conditions where permanent changes seem desirable,

by transferring some of the learning away even from the FTNs. Alternatively, our somewhat rarified

stimulus conditions may not be engaging the neural learning circuit fully so that we are seeing only a

part of the full learning capability of the system.

‘Principles of operation’ versus ‘sites and mechanisms of plasticity’
The cerebellar learning circuit is stereotyped, well-known, accessible for analyses at the level of the

activity of single neurons, and engaged in quantitatively-defined learning behavior. We see it as an

exemplar where we have the greatest potential to determine not just the sites and mechanisms of

plasticity, but also how the essential neural circuit exploits the local mechanisms of plasticity and

converts them into the global deliverable of an adaptive change in behavior. Similar analysis and

thinking are going to be essential in all other learning systems and neural circuits before we can say

that we ‘understand’ any form of learning and memory. The particular behavioral system we study

affords the huge advantage that we can constrain models by both the architecture of the essential

circuit and data on the operation of the system. Our data and computational thinking assemble a

statement of the principles of operation of this learning neural circuit. Once additional behavioral

and neurophysiological evidence further refine these principles of operation, we will have a strong

statement of how one learning circuit works.

Materials and methods
Two adult macaca mulatta monkeys (12–16 kg, both male) served as the subjects for all experiments.

All experimental procedures were performed in accordance with the Guide for the Care and Use of

Laboratory Animals (1997) and had been approved in advance by the Institutional Animal Care and

Use Committee at Duke University (Protocol A085-18-04). Prior to the experimental procedures,

monkeys were deeply anesthetized with isoflurane and a head-holder was implanted using sterile

technique to prevent head motion during experimental sessions. In a second sterile surgical proce-

dure, a coil was sutured to the sclera of one eye (Ramachandran and Lisberger, 2005), allowing the

high precision recording of eye kinematics using the scleral coil technique (Robinson and Fuchs,

1969). Monkeys received analgesics for several days following each surgical procedure. Following

recovery, monkeys were trained to pursue a moving target in exchange for liquid reward. Both mon-

keys had substantial experience performing smooth pursuit eye movements before data collection.

General experimental procedures
Monkeys were positioned with their heads fixed 30 cm in front of a CRT monitor (resolution: 2304 �

1440, framerate: 80 Hz). The monitor subtended 58 � 46˚ of the monkey’s visual field. All experi-

ments took place while the monkey was in a dimly lit room. The visual target for all experiments was

a 0.5˚ diameter black dot presented on a light grey background (approximate luminance 32.9 cd/

m2). The motion of the target at each frame was controlled by our laboratory’s custom ‘Maestro’

software.

Separate voltage signals from the scleral coil system, corresponding to the monkey’s horizontal

and vertical eye position, were digitized at 1 kHz. We also digitized eye velocity signals obtained by

passing the eye position voltages through an analog differentiator circuit with a low-pass filter that

reduced the amplitude of signals above 25 Hz (�20 dB/decade). All signals were stored for later off-

line processing and analysis.
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Behavioral procedures
At the start of each trial, the monkey fixated within ±3˚ of a target at the center of the screen for a

random interval, chosen from a uniform distribution of 400–800 ms. After the fixation period, the tar-

get instantaneously jumped eccentrically by 0.15 vt degrees, and then began moving at a constant

speed, vt, in the opposite direction, termed the ‘pursuit direction’ (step-ramp paradigm of Rash-

bass, 1961). The eccentric target jump minimizes the number of catch-up saccades during the initial

tracking of the target. During baseline, probe, and washout trials, the target proceeded at the con-

stant ‘pursuit speed’ for 850 ms before stopping. The monkey then fixated the target at its final

position for an additional 200 ms. In exchange for appropriate tracking of the target as well as fixat-

ing the target within ±3˚ at the end of the trial, the monkey received a small fluid reward. If the mon-

key broke fixation during the initial fixation period or failed to adequately track the moving target

and fixate its final position, the trial was aborted immediately and the monkey received no reward.

Aborted trials were not included in the data analysis.

To induce cerebellar-dependent motor learning, we used a direction learning paradigm

(Medina et al., 2005). In ‘learning trials’ (Figure 2A, dotted line, Figure 2B,D), the target pro-

ceeded in the original pursuit direction for 250 ms, before the addition of an orthogonal velocity

component, termed the ‘instruction.’ We call the direction of the orthogonal instruction the ‘learning

direction,’ since the instruction induces visual motion that serves as an error and drives cerebellar-

dependent motor learning. During the instruction, we suspended the eye position requirements for

liquid reward. In some experiments, we varied the speed of the instruction. In all experiments, the

instruction had a duration of 400 ms, so that it was followed by 200 ms of target motion in the origi-

nal pursuit direction and then 200 ms of fixation. Reward was not contingent upon generation of a

learned response. Monkeys typically worked for 1500 to 3000 successful trials per experimental

session.

To measure the amount of trial-to-trial forgetting in the absence of error, we used ‘error-clamp’

trials. During error-clamp trials, the target proceeded in the original pursuit direction, as in a probe

trial. However, the location of the target in the direction orthogonal to the pursuit direction (the

learning direction) was ‘clamped’ to the animal’s eye position, such that the position of the target on

each of the monitor’s frames matched the animal’s current eye position in the learning direction

(Figure 3D). Target stabilization in the learning direction removes any errors that could drive

unlearning and allowed us to measure the intrinsic retention/decay of motor memories without any

stimulus for learning.

Dual-trial paradigms for investigating short-term learning and
generalization
To separately investigate the characteristics of the signals that drive learning of a motor memory

from those that affect generalization on the timescale of a single-trial, we developed a ‘dual-trial’

experimental paradigm as a variant of our previously described paradigm for single-trial learning

(Yang and Lisberger, 2010). Our modified paradigm uses pairs of trials, where the first trial, n, is

the learning trial that provides a direction-change instruction (Figure 2A, dotted line, Figure 2B)

and the second trial, n+1, is a probe trial without an instruction (Figure 2A, solid line, Figure 2C).

Both the learning and probe trial in each dual-trial pair used the same pursuit direction, chosen ran-

domly for each pair of trials from the cardinal axes (0˚, 90˚, 180˚, or 270˚). For some experiments, the

speed of the target in the pursuit axis (i.e., the pursuit speed) was identical in both the learning and

probe trials. In other experiments, we strategically altered the pursuit speed in either the learning

trial or the probe trial. The direction of the instruction in the learning trial was chosen randomly to

be either +90˚ or �90˚ relative to the pursuit direction. Due to the random directions of the initial

pursuit and the instruction within a daily experiment, learning did not accumulate across trials. We

explicitly prohibited the consecutive occurrence of pairs of trials with the same pursuit and instruc-

tion directions. To quantify the behavioral learning expressed in the second trial of each pair, we

measured the ‘learned response’ from the eye velocity in the direction of the instruction in the pre-

ceding learning trial (i.e., the learning direction). Monkeys typically performed 750 to 1500 pairs of

trials in a given experimental session.

We extended our dual-trial paradigm to investigate changes in the generalization of learning to

pursuit speed across long blocks of trials. Now, we allowed the learning to accumulate by using a
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consistent pursuit direction in both the learning and probe trials across the entire experimental ses-

sion. The pursuit direction for both the learning and probe trial was chosen randomly from the cardi-

nal axes (0˚, 90˚, 180˚, or 270˚) for each experimental session. Within an experimental session, the

pursuit speed during the learning trial was either 5˚/s or 20˚/s. To measure the generalization of

learning to pursuit speed, the speed of each probe trial was chosen randomly (5, 10, 15, or 20 deg/

s). For all experiments that used the dual-trial paradigm, we report statistics for each monkey across

days/experimental sessions.

Repeated-instruction paradigms
To measure changes in the acquisition of a motor memory across timescales longer than a single-

trial, we used blocks of trials with consistent instruction statistics. For each ‘learning block,’ we chose

a single direction of pursuit for all trials from one of the cardinal axes. Monkeys performed a series

of baseline trials without an instruction, followed by a series of learning trials with an imposed

instruction in a consistent learning direction that was orthogonal to the pursuit direction. The behav-

ioral learning was subsequently extinguished by presenting washout trials that did not feature an

instruction. The number of washout trials was always equal to or larger than the number of the pre-

ceding learning trials. Because the direction of the instruction was consistent across the learning tri-

als, we define the behavioral learning on each trial as the speed of the eye movement in the

direction of the instruction experienced during the learning trials. After a complete learning block,

including washout, a new pursuit direction and instruction direction were chosen randomly for the

subsequent block. Monkeys typically performed multiple repetitions of repeated-instruction learning

paradigms in a given experimental session. No two consecutive learning blocks were allowed to

have the same pursuit and instruction directions. For all experiments in a repeated-instruction

design, we report statistics for each monkey across repetitions of the learning paradigm.

Data analysis
To ensure that saccades did not contaminate our estimate of the learned pursuit response, we iden-

tified and removed saccades from eye velocity traces. We identified saccades using a combined

speed and acceleration threshold: any instance when the speed of the eye exceeded 20 deg/s and

the eye acceleration exceeded 1250 deg/s/s was labeled as a saccade. Time points were marked as

a saccade from 10 ms before the first time point that exceeded joint velocity and acceleration

thresholds to 10 ms after the final time point that exceeded both thresholds. We eliminated these

intervals from data analysis by treating them as missing data. Because the target motions were

designed to minimize their occurrence, saccades were typically infrequent in the analysis intervals

and occurred at variable times.

To summarize the magnitude of behavioral learning on a single-trial, we averaged the speed of

the eye in the learning direction from 25 ms before to 25 ms after the time of the instruction, 225–

275 ms after the onset of pursuit-direction target motion (grey shading in Figure 2B,C). Even during

trials that included an instruction (e.g. during block-wise learning), this measurement provides an

estimate of the learned response because the effects of visual feedback and online corrections in

pursuit movements do not appear until at least 75 ms after the onset of the instruction. This mea-

surement of motor learning is consistent with previous pursuit direction learning experiments

(Hall et al., 2018; Yang and Lisberger, 2010; Yang and Lisberger, 2017).

Statistical analysis
We used two tailed t-tests to compare sample means for conditions that were not sampled within

the same experimental session, with the significance level set at p=0.05. Remaining tests with condi-

tions that were simultaneously sampled within an experimental session were performed using a

repeated measures analysis of variance (RM-ANOVA).
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