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)e crude oil futures prices forecasting is a significant research topic for the management of the energy futures market. In order to
optimize the accuracy of energy futures prices prediction, a new hybrid model is established in this paper which combines wavelet
packet decomposition (WPD) based on long short-term memory network (LSTM) with stochastic time effective weight (SW)
functionmethod (WPD-SW-LSTM). In the proposed framework,WPD is a signal processingmethod employed to decompose the
original series into subseries with different frequencies and the SW-LSTM model is constructed based on random theory and the
principle of LSTM network. To investigate the prediction performance of the new forecasting approach, SVM, BPNN, LSTM,
WPD-BPNN, WPD-LSTM, CEEMDAN-LSTM, VMD-LSTM, and ST-GRU are considered as comparison models. Moreover, a
new error measurement method (multiorder multiscale complexity invariant distance, MMCID) is improved to evaluate the
forecasting results from different models, and the numerical results demonstrate that the high-accuracy forecast of oil futures
prices is realized.

1. Introduction

Crude oil is a natural and nonrenewable resource that has an
irreplaceable effect on the development of the global
economy and international financial markets. Since oil is the
main source of energy production, it is often considered the
single important commodity in the world. )e price fluc-
tuations of crude oil may affect the economic situation,
social stability, and even national security in the world [1].
Meanwhile, international crude oil price series are regarded
as nonlinear and nonstationary time series. Hence, accurate
forecasting of the crude oil price is a challenging task of
energy market and has increasingly become an active re-
search field.

In recent years, numerous methods for time series
predictions have been proposed [2–13]. )ese methods can
be classified into the following three categories: traditional
econometric models, machine learning approaches and deep
learning models. )e autoregressive integrated moving

average model (ARIMA) is a popular statistical model ap-
plied to time series prediction. Liu et al. [3] proposed two
novel forecasting models based on ARIMA, which was
employed to forecast two sections of actual wind speed
series. Abdollahi and Ebrahimi [4] established a new
composite model to predict Brent crude oil prices by in-
tegrating the adaptive neuro fuzzy inference system
(ANFIS), autoregressive fractionally integrated moving av-
erage (ARFIMA), and Markov-switching models. However,
the traditional econometric models have evident short-
comings. For instance, the time series data must be stable
when these models are used for forecasting. It is difficult to
capture the characters if the datasets are nonstationary.
)erefore, the model is less effective when applied for time
series forecasting during periods of sharp fluctuations [14].
With the development of artificial intelligence, machine
learning models, such as support vector machine (SVM) and
artificial neural networks (ANNs), have attracted a lot of
attention because of the learning capabilities for nonlinear
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kernel mapping between input and output vectors. For
instance, Huang et al. [7] explored the forecasting ability of
SVM for financial movement direction and proposed a
combining model based on SVM and classification methods.
Ghiassi et al. [15] presented a dynamic neural network
model for time series events prediction, and compared with
the ARIMA model, the prediction results of the proposed
model have higher accuracy. Liao and Wang [6] established
an improved neural network, the stochastic time-effective
neural network model, and analyzed the volatility statistics
characteristics of the Chinese stock price indices. Wang and
Wang [8] established a hybrid model by combining the
principle component analysis (PCA) algorithm and random
time-effective neural networks (STNN) and explored the
predictive performance by considering financial time series.
Although machine learning techniques have considerable
prediction processing capacity, their precision on the cor-
relations exploring between data is still not efficient.
Meanwhile, these methods are extremely time-consuming
for big data and predictions are not quite expected [16].With
the establishment of the hidden layer units, the transmission
of historical information can be realized by recurrent neural
networks (RNNs). Wang and Wang [9] proposed a new
forecasting model to elevate the prediction accuracy of crude
oil price fluctuations, which is based on multilayer per-
ceptrons (MLP) and Elman recurrent neural networks
(ERNN) with stochastic time effective function. Berradi and
Lazaara [17] combined principal component analysis and
RNNs to predict the stock price from Casablanca Stock
Exchange, and the results enhanced the accuracy of the
original method and performed a desirable prediction for
the stock price. Deep learningmethods are the broader series
of machine learning methods, which try to learn advanced
features from the given data. Compared with traditional
neural network models, deep learning methods contain
multiple hidden layers of multilayer perceptrons, and they
have better performances in managing strong nonlinear
characteristics. Long short-termmemory network (LSTM) is
a type of deep learning method devised to deal with the long-
term dependence problems for a special purpose [18]. )e
network structure of LSTM is much more complex than that
of RNNs, which utilizes memory cell states to maintain
essential historical information and get rid of the unim-
portant. Due to the superior algorithmmechanism, LSTM is
widely applied to natural language processing (NLP) and
sentimental analysis [19, 20], time series forecasting
[10, 21, 22], and synthesizing a piece of music [23]. However,
the individual forecasting models cannot precisely reveal the
complicated connections existing in the nonlinear and
nonstationary datasets.

To obtain more accurate and reliable time series pre-
diction, different kinds of hybrid forecasting models have
been proposed which could take the advantage of different
single models [24–26]. Among them, the hybrid models
based on decomposition and prediction have been widely
recognized, and such models are usually composed of
nonlinear decomposition method and forecasting model.
Liu et al. [27] presented an improved hybrid forecasting
model for wind speed, which includes the empirical wavelet

transform method and three types of deep learning net-
works. By comparing all the data results of different
methods, the proposed reinforcement learning based hybrid
model is effective in combining three types of deep learning
networks and performs better than conventional optimi-
zation-based hybrid models. Wang and Wang [28] com-
bined empirical mode decomposition (EMD) method with
random time strength neural network to predict global stock
indices, and the empirical results showed that the proposed
approach veritably has a great effect in predicting stock
market fluctuations. Wang et al. [29] established a two-layer
decomposition model and then developed an ensemble
approach by integrating the fast ensemble empirical mode
decomposition method (FEEMD), variational mode de-
composition (VMD), and optimized backpropagation
neural network by firefly algorithm (FA-BPNN). )e em-
pirical results indicated that the developed new model has
exceptional forecasting implementation in electricity price
series. )e first key point of hybrid models is to break down
the original data series into several independent subseries
and makes it likely for models to adaptively learn the
nonlinear characteristics of fluctuations in each subseries.
)en, by using the inverse transformation algorithm, the
forecasting series of each subseries are integrated to acquire
the final forecasting results. )ese hybrid models could raise
the efficiency and precision of modelling by conquering the
handicap of nonlinear and nonstationary of original series
[30–32]. )e empirical results show that wavelet transform
(WT) is a time-frequency localization analysis method in
which the window area is fixed but its shape can be changed.
Because it only redecomposes low-frequency signals during
the decomposition process, and no longer breaks down
high-frequency signals, its frequency resolution decreases as
the frequency increases. )e EMD, FEEMD, and VMD
methods also have some certain limitations, for example,
inadequate mathematical explanations, the boundary effects,
noise oversensitivity, and pattern overlap. )ese may cause
excessive decomposition of the original data and adversely
affect the prediction results [33, 34]. On the other hand, the
well-known deep learning model causes overfitting prob-
lems and is always based on historical information without
thinking over the statistical regularity of behavior in the
financial market, which leads to deficient precision [10, 32].

To improve the disadvantages of the above widely
recognized decomposition methods and the traditional
deep learning methods, this paper proposes a novel en-
semble energy forecasting framework, WPD-SW-LSTM,
which combines wavelet packet decomposition (WPD), the
stochastic time strength weights (SW) method, and LSTM.
)e WPD is proposed on the basis of the issue that the
inferior frequency resolution of wavelet decomposition in
the high-frequency range and poor time resolution in the
low-frequency range. It is a more sophisticated method of
signal analysis to improve the temporal resolution signal.
Moreover, the WPD working speed is faster than the
traditional WT, and by selecting the appropriate wavelet
basis function and mother function, the mixing-frequency
problem can be improved. )erefore, WPD is adopted in
this research to explore the complexity of nonlinear
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characteristics for original energy future time series. In fact,
there are complicated factors that affect energy futures
prices in the process of market transactions fluctuations.
SW is based on stochastic process which conforms with
both the real trading market and the gating mechanism in
the forecasting model [6, 8, 10]. )e mechanism of SW is to
measure historical information in conformity with the time
of occurrence. )e newer the historical data occurs, the
more valuable its data information is to present future
information, so that historical price figures can be
employed to advanced pick up the fluctuations statistics in
the energy futures series. In addition, this research employs
the WPD method to extract the original crude oil series for
the first time and firstly improves the conventional LSTM
model with stochastic time strength weights for the crude
oil prices forecasting. With the method of WPD, the
original energy futures price series can be decomposed into
several subseries (SSi), which are in different frequency
bands. )en, different SW-LSTM models are modeled for
the corresponding SSi, respectively. Finally, the ensemble
forecasting result of the original energy futures series is
produced by integrating all the predicted SSi components.
To estimate the predictive power of the proposed model
WPD-SW-LSTM, the conventional and latest hybrid
models (SVM, BPNN, LSTM, WPD-BPNN, WPD-LSTM,
CEEMAD-LSTM, VMD-LSTM, and ST-GRU) are intro-
duced for comparative analysis. In order to reveal the
predictive capabilities of different forecasting models,
quantitative analysis is performed through different error
methods. At the same time, this research proposes a new
error measurement method called multiorder multiscale
complexity invariant distance (MMCID) [9,35]. )e main
contributions of this paper are summarized as follows:

(a) A novel hybrid forecasting model SW-LSTM is
established for energy futures series, which based on
the LSTM network and the theory of stochastic
process.

(b) Combined withWPDmethod, several subseries (SSi)
with different fluctuation frequency are derived from
the original data series. Each SSi is trained by the new
SW-LSTM model, respectively.

(c) )e empirical results of corresponding forecasting
models are estimated and contrasted with different
error criteria and the new measurement MMCID.

)e structure of this article is as follows. Section 2 ex-
plains the price datasets from the energy futures markets.
Section 3 introduces the WPD and SW-LSTM methodol-
ogies and provides the main framework of this paper.
Section 4 demonstrates the experimental forecasting results
in detail. Section 5 compares the proposed hybrid method
with other models, which are SVM, BPNN, LSTM, WPD-
BPNN, WPD-LSTM, CEEMAD-LSTM,VMD-LSTM, and
ST-GRU. Moreover, error measurement methods are ap-
plied to estimate the prediction performance of each model
in this section. Finally, Section 6 summarizes the main
conclusion of this study.

2. Datasets

Crude oil is an international bulk financial commodity,
which can be traded in markets around the world either
through spot oil or through financial derivative contracts.
)is research mainly focuses on the oil futures market, and
four representative oil futures indices are selected for the
case study: west Texas intermediate (WTI) futures prices
series, Brent crude oil futures prices series, RBOB gasoline,
and heating oil. )ese four datasets are from the New York
Mercantile Exchange (NYMEX) energy futures market,
which can be downloaded from https://www.wind.com.cn/.
WTI crude oil price is widely applied in the pricing of US
domestic crudes. Brent is the theoretical international oil
benchmark, and prices of most oil use Brent crude as the
criterion, which connected with two-thirds of all the world’s
oil contracts. Brent crude andWTI dominate the oil market,
and both determine pricing in their corresponding markets.
)ey are known as light sweet oil because they contain low
sulfur, making it “sweet,” and have low density, making it
“light.” Gasoline and heating oil are refined from crude oil
which are usually merchandised as futures contracts in fi-
nancial markets. Figure 1 reveals the similar dynamic
changes in more than a 10-year period from January 2, 2009,
to October 23, 2019, of the four corresponding oil futures
series. In the past decades, the price fluctuation trends of
these four futures series are almost the same, which manifest
that there is a certain correlation between them.

3. Methodology

3.1. Wavelet Packet Decomposition. Wavelet transform is a
mathematical method produced to solve the problem of
decomposition of nonstationary signals. Compared with
wavelet analysis, wavelet packet decomposition (WPD) can
be used to analyze the signal more meticulous. Wavelet
packet analysis can divide the time-frequency plane in more
detail, and the resolution of the high-frequency part of the
signal is better than wavelet analysis [36]. It can also
adaptively select the best wavelet basis function according to
the characteristics of the signal in order to better analyze the
signal. )e theory of the WPD analysis is as follows [37–39].
)e wavelet packet function is a time-frequency function; it
can be defined as

W
n
j,k(t) � 2(j/2)

W
n 2j

t − k􏼐 􏼑, (1)

where the integers j and k are the index scale and translation
operations. )e index n is an operation modulation pa-
rameter or oscillation parameter. )e first two wavelet
packet functions are the scaling and mother wavelet
functions:

W
0
0,0(t) � ϕ(t),

W
1
0,0(t) � ψ(t).

(2)

When n � 2, 3, . . ., the function has the following re-
cursive relationship:
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0,0 (t) �
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2

√
􏽘
k

g(k)W
n
1,k(2t − k),

(3)

where h(k) and g(k) are the quadrature filter function
related to the previously defined scaling function and
mother wavelet function.)e wavelet packet coefficientswn

j,k

are calculated by the inner product 〈f(t)Wn
j,k〉, which is

defined as

w
n
j,k �〈f(t)W

n
j,k〉 � 􏽚 f(t)W

n
j,kdt. (4)

According to the literature [40], the number of the
decomposition level is often in the range from 2 to 4 in
forecasting model. In the present work, the 3-level frame-
work of WPD algorithm is applied, which is schematically
shown in Figure 1(a). Additionally, the Daubechies wavelets
of order 4 are employed as the mother wavelet in this re-
search [41], and the corresponding decomposition result of
the WTI crude oil is demonstrated in Figure 2(b). Each
subseries with different frequency band represents a sort of
oscillatory factor embedded in the futures price indices. In
Figure 2(b), the decomposed subseries “DDD3,” “DDA3,”

“DAD3,” “DAA3,” “ADD3,” “ADA3,” “AAD3,” “AAA3” are
recorded as SSi(i � 1, 2, . . . , 8) series subsequently.

3.2. Long Short-Term Memory Network. Long short-term
memory networks are a particular form of RNNs that can
handle with long-term and short-term dependencies. )ey
were introduced in 1997 by Hochreiter and Schmidhuber
[18] and were improved and promoted in subsequent work.
Although the structure of traditional RNNs are entirely
component of handling long-term memory dependencies
in theory, the effect is confined in the actual application
[42]. )erefore, the memory storage capacity of RNNs is
more suitable for short-term sequences. On the basis of
conventional RNNs, cell states and gate mechanism are
added to the hidden layer, so that the gradient vanishing
problem can be largely mitigated through its control gates.
In addition, each time the historical message is dispatched
to the neurons of the hidden layer, several control gates
with different functions are employed to regulate the in-
formation of the past and latest.)e principle of the control
gate is described as follows. It is mainly composed of a
sigmoid neural net layer and a pointwise multiplication
operation. )e output values of sigmoid function stage are
between 0 and 1, which indicate how much information
can be delivered to the next step. A value of zero means
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Figure 1: Dynamic changes of energy futures series between January 2, 2009, and October 23, 2019.

4 Computational Intelligence and Neuroscience



letting nothing through, while a value of one means letting
everything through. Specially, when the value is 0, it means
nothing can be transmitted, and when the value is 1, it
implies everything can be transmitted. )e LSTM control
gates involve three gates: the forget gate ft, the input gate it,
and the output gate ot. )e forget gate determines how
much historical information stored in the current moment
from the last moment. )e input gate judges the infor-
mation saved in the cell state, and the output gate decides
the output data based on the cell state. )e architecture of
LSTM network is shown in Figure 3. )e description of
LSTM networks follows Fischer and Krauss [43], Sainath
et al. [44], and He et al. [45]. )e specific algorithm steps of
LSTM are as follows:

(i) )e memory cell reads in the input xt and the
previous hidden state ht−1, which can reveal long-
term dynamic trends and abandon the redundant
useless information. )e forget gate is determined
by the following equation:

ft � σ Wf · xt, ht−1( 􏼁 + bf􏽮 􏽯. (5)

(ii) )e first part of input gate in the model determines
how much current information should be retained
in the cell state:

it � σ Wi · xt, ht−1( 􏼁 + bi􏼈 􏼉. (6)

(iii) )e second part is to generate a new candidate
vector 􏽥Ct to update the state, which is according to
the following equation:

􏽥Ct � tanh WC · xt, ht−1( 􏼁 + bC􏼈 􏼉. (7)

(iv) After that, the new cell state Ct is constructed on the
basis of the outcomes of the last steps with ⊗
denoting the Hadamard (element-wise) product:

Ct � ft ⊗Ct−1 + it ⊗ 􏽥Ct. (8)

(v) Finally, the output gate ot is updated and the final
output ht is decided based on the updated state and
the output gate state:

ot � σ Wo · xt, ht−1( 􏼁 + bo􏼈 􏼉,

ht � ot ⊗ tanh Ct−1( 􏼁.
(9)

In the previous equations, the following notation is used:

(i) xt is the input vector at current time step t.
(ii) Wf, Wi, WC, and Wo are the weight matrices which

associate with corresponding vectors. )ey can be
spilt into

Wf � Wfx + Wfh,

Wi � Wix + Wih,

WC � WCx + WCh,

Wo � Wox + Woh.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(10)

(iii) bf, bi, bC, and bo are bias indicators.
(iv) ft, it, and ot are forget gate, input gate, and output

gate vectors.
(v) Ct and 􏽥Ct are vectors for the cell states and can-

didate values.
(vi) ht is a vector for the output of the LSTM layer.
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Figure 2: (a) )e process of WPD algorithm. (b) )e corresponding subseries SSi of WTI index derived from WPD.
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(vii) σ(·) and tanh(·) are the sigmoid function and
hyperbolic tangent function, respectively.

3.3. LSTM with Stochastic Time Effective Weight Function
(SW-LSTM). Dufresne and Gatheral et al. [46, 47] dem-
onstrate that the prediction of financial market price series
should integrate great amount of historical data, because the
information represented in different periods has different
impacts on future results. In other words, the closer the data
is to the current time, the stronger the impact of information
is at that moment, and, on the contrary, the further the data
is, the weaker the influence is [48]. )erefore, to improve the
accuracy of forecasting in actual application, this paper
considers combining the SW function with LSTM theory in
the predictive modelling process. During the stage of model
training, SW function is integrated into the LSTM model to
construct a novel forecasting model, which is referred to as
long short-term memory with stochastic time strength
weight function model (SW-LSTM). )e expression of SW
function derives from a stochastic process [6]. It can assign
different weights to different data in the light of the variant
time of occurrence. )e mathematical expression is as
follows:

φ tn( 􏼁 �
1
β
exp 􏽚

tn

t0

μ(t)dt + 􏽚
tn

t0

ω(t)dB(t)􏼨 􏼩, (11)

where β(> 0) is the depth of market parameter, t0 is the
moment of the latest time point in the data set, and tn is an

arbitrary time point in the dataset. B(t) is the standard
Brownianmotion which is commonly considered as random
movement of a particle in liquid [49]. μ(t) is the drift
function which mainly direct trend changes. ω(t) is the wave
function which is applied to model the uncertain events
during the forecasting process. )emathematical expression
of μ(t) and ω(t) is as follows:

μ(t) � exp(−αt),

ω(t) � ω(T) �
1

T − 1
􏽘

T

i�1
xi − x( 􏼁

2⎛⎝ ⎞⎠

(1/2)

.

(12)

In the training process of conventional LSTM network,
the parameter matrices Wf, Wi, WC, and Wo are modified
following the backpropagation in each iteration through
time procedure of typical RNNs [17]. )e model training
error of the sample point n is defined as

E tn( 􏼁 �
1
2
ε2tn

�
1
2

dtn
− ytn

􏼐 􏼑
2
. (13)

For the SW-LSTM model, a new description of model
training error Etn can be obtained:

E tn( 􏼁 �
1
2
φ(t)ε2tn

�
1
2
φ(t) dtn

− ytn
􏼐 􏼑

2
. (14)

)en, the corresponding global error of model training is
defined as

E �
1
N

􏽘

N

i�1
Et �

1
2N

􏽘

N

i�1

1
β
exp 􏽚

tn

t0

μ(t)dt + 􏽚
tn

t0

ω(t)dB(t)􏼨 􏼩 dtn
− ytn

􏼐 􏼑
2
. (15)

In the modelling process, based on the newly defined
global error E, the model parameters are updated through
the gradient descent method [10, 50, 51]. First, the partial

derivative of each model parameter needs to be calculated
from the global error function. )en, the principle of pa-
rameter update is as follows:
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Figure 3: )e architecture of LSTM network.
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(16)

where netf,t,neti,t, netC,t, neto,t denotes the input of the
corresponding function, δf,t � (zE/znetf,t), δi,t � (zE/z
neti,t), δC,t � (zE/znetC,t), and δo,t � (zE/zneto,t).

)e above is the algorithm of SW-LSTM model, which
corrects the model parameters accords with the gradient
descent method. Figure 4 illustrates the training algorithm
procedures of the proposed model, which involve six steps.
For the different subseries of different crude oil series,
different hyperparameters, which include the training steps,
the number of hidden layers units, the learning rate, number
of iterations, and the batch size, should be trained by the
proposed model. )e specific modelling and empirical
prediction are given in Section 4.

3.4. Forecasting Process of theHybridWPD-SW-LSTMModel.
In this study, the fluctuation of energy futures prices is
applied to the proposed hybrid forecasting model, WPD-
SW-LSTM.)e procedure of theWPD-SW-LSTM approach
is described in brief subsequently, and the flowchart of this

research is shown in Figure 5. Firstly, the main process of the
proposed model is displayed on the upper left of Figure 5,
which includes three steps. )e first step is data decom-
position, where the original preprocessed data are decom-
posed by WPD method. )en, applying the improved SW-
LSTMmethod for subseries forecasting step, the third step is
the ensemble forecasting step. )en, the final forecasting
results can be obtained by aggregating the subseries fore-
casting results with inverse wavelet packet transform. )e
specific description of each step is as follows:

Step 1: the WPD technique is employed to analyze the
original energy futures series X(t)(t � 1, 2, . . . , N).
And, 8 subseries SSi, i � 1, 2, . . . , 8 are derived from the
three-layer WPD method, which indicate that the local
oscillations in different frequency bands. )e details of
the WPD algorithm are given in Section 3.1.

Step 2: each subsequence SSi derived from WPD
method is separated into training and testing datasets.
)e SW-LSTM network is utilized to train and establish

Computational Intelligence and Neuroscience 7



the forecasting model on the basis of the training
dataset. Model parameters need to be set in advance,
which includes the learning rate, the number of hidden
layer units, the number of iterations, and the batch size.
)ey are essential for predicting precision of the model.
)e training algorithm procedures of SW-LSTMmodel
are proposed in Sections 3.2 and 3.3.
Step 3: it composites the prediction of each SSi to obtain
the final forecasting results by employing the theory of
inverse wavelet packet transform. Moreover, linear
regression and relative error are applied to investigate
the correlation between predictive points and actual
values.
Step 4: multiple evaluation indicators are adopted to
estimate the prediction ability of WPD-SW-LSTM,
which involves MAE, RMSE, MAPE, SMAPE, and TIC
and a novel method multiple multiorder complexity-

invariant distance (MMCID) based on information
theory. In addition, other models like SVM, BPNN,
LSTM, WPD-BPNN, and WPD-LSTM are taken into
account for prediction comparison.

4. Forecasting and Statistical Analysis

4.1. Data Preprocessing. To estimate the performance of the
proposed WPD-SW-LSTM forecasting model, the futures
prices of WTI crude oil, Brent crude oil, RBOB gasoline,
and heating oil are selected. Table 1 displays the selected
data sets of all indices that are from 02/01/2009 to 23/10/
2019. Usually, the non-trading days are regarded as frozen
such that this research only adopts the data during trading
time. To conduct the experiments, nearly eighty percent of
the samples from 2009 to 2017 are used to train the model,
and the remaining twenty percent of data are used for

Step 6: output predictive value
yt+1

Yes

No
If E < ξ

Compute the loss
Function E

Input preset minimum
error ξ

Step 4: establish the loss
function

Step 5: modify the connective
weights

Step 3: set up the learning
algorithm Modify the weights

Calculate the gradient of weights

Apply transfer function

Step 2: initialize the weights
and bias indicators Establish the update rule for the weights

Introduce time effective function

Step 1: construct the 
SW-LSTM model Set the training data

Establish input vectors and output

Choose network model structure

Start

Figure 4: )e training algorithm procedures of SW-LSTM model.
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testing to examine the effectiveness of the proposed model.
Table 1 provides the selection and division of the four
selected oil futures indices. Generally, to minimize the
influence of noise and finally enhance the accuracy of
forecasting, each subseries SSi derived from WPD is
normalized to the range of [0, 1] by the following stan-
dardized method [52, 53]:

S(t)′ �
S(t) − min S(t)

max S(t) − min S(t)
. (17)

After that, to acquire the true predictive value and then
intuitively compare the numerical results with the actual
value, the normalized output variables S(t) should be
reverted to S(t) as follows:

S(t) � S(t)′(max S(t) − min S(t)) + min S(t). (18)

4.2. Training and Forecasting by the Hybrid WPD-SW-LSTM
Model. In this section, four different energy futures price
series are carried out to support the proposed hybrid WPD-
SW-LSTM model. )e decomposition merit of WPD makes
it exceptional in the extraction of feature sequences. )e
model parameters are trained by calculating the root mean
square error between the predicted value and actual value.
)e global error between the predicted value and the actual
target is reduced through weights modification. )e training
enters the next step when the global error is less than the
preset value. For all prediction models involved in this ar-
ticle, the input units are set to 4, and the output units are set
to 1. In WPD-SW-LSTM model, the batch size is set to 32,
the hidden size is 30, and the epochs number is 400.

Afterwards, the normalized subseries SSi obtained from
WPD are trained and predicted by the SW-LSTMmodel. )e
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Figure 5: Flowchart of the hybrid WPD-SW-LSTM model.

Table 1: Data selection.

Index Data sets Total number Training sets Training number Testing number
WTI 02/01/2009 ∼ 23/10/2019 2794 02/01/2009 ∼ 31/08/2017 2230 564
Brent 02/01/2009 ∼ 23/10/2019 2791 02/01/2009 ∼ 21/08/2017 2230 561
RBOB 02/01/2009 ∼ 23/10/2019 2976 02/01/2009 ∼ 20/11/2017 2380 570
Heating oil 02/01/2009 ∼ 23/10/2019 2821 02/01/2009 ∼ 22/08/2017 2250 571
Note: training number means the number in training set; testing number represents the number in testing set.

Computational Intelligence and Neuroscience 9



number of input samples is set to 4, and the number of
outputs is set to 1; that is, the 4th order historical data are used
to predict the data of the next period. Figure 6 shows the
forecasting results of each subseries from the futures series of
WTI crude oil. It is shown visually that the predicted value of
each subseries SSi is almost consistent with the actual values.
With the purpose of illustrating the prediction from the SW-
LSTM forecastingmodel, Figure 7 demonstrates the empirical
results of each subseries from RBOB gasoline. Figures 6 and 7
present decomposed forecasting results of WTI crude oil and
RBOB gasoline as examples, which is a critical component
that measures the fluctuations of the prediction, especially in
forecasting the direction of fluctuations accurately. )e
subseries SSi has been recognized as the whole trend of the
futures price series, whose results from the proposed fore-
casting model are well predicted.)e curves of the actual data
and the predicted data intuitively are very approximating.
)en, the final predictive results of the four sample datasets
can be calculated by employing the theory of inverse wavelet
packet transform.

Figure 8 shows the final predictive results for four in-
dices, WTI, Brent, heating oil, and RBOB, with the proposed
WPD-SW-LSTM model. From this figure, the fluctuation
trends of the predictive data are extremely near that of the
actual data. In addition, the absolute correlation error results
of the empirical analysis are also revealed in Figure 7, which
can be calculated by RE(t) � |􏽢yt − yt|/yt. It can be con-
cluded that the predicted results nearly have consistent
trends with the fluctuations of the actual data. )e results of
RE are also centralized in (0, 0.01), and only a few sectional
data points surpass 0.01 and are smaller than 0.015. It means
that with repeated experiments, the energy futures series
have been trained excellently, and the forecasting perfor-
mance of the WPD-SW-LSTM model is improving.

It is generally known that the predicted results and the
actual value can be fitted by linear regression method, where
the predicted points are regarded as the dependent variable
Y, and the actual data are considered as the independent
variable X. )rough linear regression analysis between the
predicted value of theWPD-SW-LSTMmodel and the actual
data, the prediction accuracy can be judged by the goodness
of fit.)e closer the goodness of fit value is to 1, the closer the
predicted value is to the true value. An effective numerical
indicator between the two variables is the correlation co-
efficient R. )e curves of linear regression for series WTI,
Brent, heating oil, and RBOB are revealed, respectively, in
Figure 9, and the numerical results are revealed in Table 2. In
detail, the values of R for these four series are all above 0.98,
and the regression coefficients a of the linear equations are
near to 1, which indicates that the predicted values are al-
most close to the actual values. )e regression equation
parameters of the proposed model for WTI are
a � 0.9934, b � 0.6931, which is approaching to the ideal
situation y � x, followed by the Brent indices,
a � 0.9217, b � 4.864. )e heating oil is a � 0.9441,

b � 0.0823 and RBOB gasoline is a � 0.9930, b � 0.0007.

5. Models Comparison and Prediction
Accuracy Evaluation

5.1. Performance Evaluation Criteria. While the established
model WPD-SW-LSTM is utilized to the forecasting ex-
periments, it is also indispensable to validate the forecasting
effects of different models. )en, five models (SVM, BPNN,
LSTM, WPD-BPNN, and WPD-LSTM) are employed to the
forecasting evaluations in this part. Support vector machine
(SVM) technique is displayed in this part, which is regarded
as the state-of-the-art machine learning theory for binary
classification [54–56]. Additionally, to fully prove the ef-
fectiveness of the proposed model, BPNN, LSTM, and
WPD-BPNN are selected to make a comparison because the
proposedmodel is constructed based on LSTMnetwork, and
backpropagation neural network (BPNN) is the most typical
neural network. For the purpose of estimating the fore-
casting error of the new hybrid model and comparing it with
other five models, the error measurement between actual
data points and predicted value for different models are
investigated. Among them,mean absolute error (MAE), root
mean square error (RMSE), mean absolute percent error
(MAPE), symmetric mean absolute percent error (SMAPE),
and )eil inequality coefficient (TIC) are selected as the
error evaluation criteria, which can indicate the forecasting
performance of each model. Generally, the smaller the error
(MAE, RMSE, MAPE, SMAPE, and TIC) values are, the
more accurate the predictive ability of the forecasting model
is [52]. )e evaluation definitions are expressed as follows:

MAE �
1
N

􏽘

N

t�1
yt − 􏽢yt

􏼌􏼌􏼌􏼌
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(19)

where yt and 􏽢yt are the actual value and the predicted value
at time t, respectively, and N is the total number of the data.

Figure 10 illustrates the forecasting results of WTI,
Brent, RBOB, and heating oil for the six forecasting models
in comparison. Additionally, the forecasting results from the
insert plots of Figure 10 show the local prediction of training
sets and testing sets from the proposed WPD-SW-LSTM
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Figure 6:)e predicted data and the actual data of each subseries fromWTI crude oil. (a) SS1. (b) SS2. (c) SS3. (d) SS4. (e) SS5. (f ) SS6. (g) SS7.
(h) SS8.
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Figure 7: )e predicted data and the actual data of each subseries from RBOB gasoline. (a) SS1. (b) SS2. (c) SS3. (d) SS4. (e) SS5. (f ) SS6.
(g) SS7. (h) SS8.
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model, respectively. It displays the distinct advantages
contrast with the other five models, SVM, BPNN, LSTM,
WPD-BPNN, and WPD-LSTM, especially at big fluctuation
stages. Affected by the changes of social economy and
various external environment, the energy market shows
different fluctuations. Besides, the predicted results during
the small fluctuation period seem comparatively accurate for
all predictive models.

Tables 3–6 demonstrate a detailed comparison of the
evaluation criteria quantitatively, by applying MAE, RMSE,
MAPE, SMAPE, and TIC among aforementioned six
models. )e numerical results demonstrate that the evalu-
ation indicators from the WPD-SW-LSTMmodel are all the
smallest ones among these models, and the evaluation in-
dicators by the hybrid models are almost less than those by
the individual models. For example, the MAPE values for
WTI futures indices from the first three hybrid models are
1.4329, 2.0092, and 2.7653, and the individual modelsMAPE
values are 4.6351, 5.4562, and 5.6108, respectively. Overall,

the empirical results demonstrate that the WPD-SW-LSTM
predictor has higher forecasting accuracy. From the error
evaluations, the hybrid models WPD-SW-LSTM, WPD-
LSTM, and WPD-BPNN are superior to the LSTM, BPNN,
and SVM models. Moreover, compared with the WPD-
LSTM and WPD-BPNN model, the superior predictive
accuracy of the proposed model WPD-SW-LSTM reflects
that the stochastic time effective weights (SW) method can
play an important role during forecasting process. In par-
ticular, after WPD-LSTM is combined with SW, the
hyperparameters are extremely improved, and error indi-
cators MAE, RMSE, MAPE, SMAPE, and TIC are raised by
33.32%, 19.14%, 28.69%, 39.59%, and 48.06%, respectively.
In order to show the forecast results more intuitively, Fig-
ure 11 displays the evaluation values of MAE, RMSE, MAPE,
SMAPE, and TIC for different models, respectively. Due to
the different data structures and character of these four
indices, the left y-axis of Figure 11 in the case of WTI and
Brent stands for the value of MAE, RMSE, MAPE, and
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Figure 8: )e predicted results of the proposed model for the original series. (a) WTI. (b) Brent. (c) RBOB. (d) Heating oil.
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SMAPE, and the right y-axis is the TIC value. But for the
case of RBOB and heating oil, the left y-axis represents the
value of MAE, RMSE, and TIC, and the right y-axis is the
value of MAPE and SMAPE. From Figure 11, the MAPE and
SMAPE have similar numerical results for all the case study.
)e MAPE, SMAPE, and TIC values of RBOB and heating
oil indicate that there is no obvious difference between
WPD-LSTM model and the WPD-BPNN model, but in
accordance with the results of MAE and RMSE, the former is
slightly better than the latter model.

In order to verify whether the proposed model is sig-
nificantly different from other forecasting models (WPD-
LSTM, WPD-BPNN, LSTM, BPNN, and SVM), the non-
parametric Wilcoxon signed rank test is applied on two
absolute errors by two compared models [57–59]. )e
corresponding statistical test results of the four indexes are

presented in Table 7. )e results illustrate that the proposed
model has statistical significance among the other models.
Besides, in Tables 3–6, the error evaluations of MAE, RMSE,
MAPE, SMAPE, and TIC byWPD-SW-LSTM are all smaller
than those by other five models for indexes WTI, Brent,
RBOB, and heating oil. It can be inferred that theWPD-SW-
LSTM model is significant superior to other models for the
four indexes.

5.2. Evaluation of Multiorder Multiscale CID Analysis
(MMCID). In this section, novel error evaluation methods
are proposed to detect the predicted performance. )e new
analysis method is based on complexity-invariant distance
(CID) which generally brings about major improvements in
time series classification and clustering accuracy [35].
Complexity invariance makes use of knowledge about
complexity discrepancy between two different datasets as a
modification factor for the existing distance measurement
methods [35, 60]. By improving the CIDmethod, multiorder
multiscale complexity invariant distance (MMCID) is de-
rived to evaluate the predictions of the energy futures prices
with different forecasting models. In practical application,
the complexity is not limited to a single scale. )e MMCID
measurement considers multiple time scales when validating
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Figure 9: Comparisons of the predicted data and the actual data for the forecasting models. (a) WTI. (b) Brent. (c) RBOB. (d) Heating oil.

Table 2: Linear regression parameters from WPD-SW-LSTM
model.

Parameter WTI Brent RBOB Heating oil
a 0.9934 0.9217 0.9930 0.0.9441
b 0.6931 4.864 0.0007 0.0823
R 0.9901 0.9845 0.9856 0.9822
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Figure 10: Forecasting comparison of different models for WTI, Brent, heating oil, and RBOB. (a) WTI. (b) Brent. (c) RBOB. (d) Heating oil.

Table 3: Prediction performance evaluation of distinct prediction models for WTI.

Model MAE RMSE MAPE SMAPE TIC
WPD-SW-LSTM 0.8283 1.8493 1.4329 1.3143 0.0130
WPD-LSTM 1.2422 2.2842 2.0092 2.1755 0.0195
WPD-BPNN 2.1742 2.8328 2.7653 2.9991 0.0239
LSTM 3.0488 3.8097 4.6351 4.8980 0.0310
BPNN 3.5219 4.3772 5.4562 5.2742 0.0395
SVM 3.8286 4.7274 5.6108 5.9419 0.0417
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and quantifying the connection between different futures
series. )e MMCID measurement can consist of the fol-
lowing two procedures: (i) considering one-dimensional
discrete time series: x1, x2, . . . , xi, . . . , xN, consecutive
coarse-grained vector y(τ) is calculated with the scale pa-
rameter τ. )e specific mathematical expressions are as
follows, which refers to [61]

y
(τ)
j �

1
τ

􏽘

jτ

i�(j−1)τ+1
xi, 1≤ j≤

N

τ
. (20)

Particularly, when τ � 1, the coarse-grained time series is
y(1), which is merely the primitive sequence. )e length of

each coarse-grained time series is equal to the length of
primitive series divided by the scale parameter τ. (ii)
According to the principle of CID, we compute the mul-
tiorder value of CID for each coarse-grained time series and
then acquire the MMCID method as a function with scale
parameter τ. Assuming that there are two time series, R and
S, with length n,

R � r1, r2, . . . , ri, . . . , rn,

S � s1, s2, . . . , si, . . . , sn.
(21)

)e multiorder distance expression is given as

EDq
(T) � 􏽘

n

i�1
ri − si( 􏼁

q⎛⎝ ⎞⎠

(1/q)

,

CFq
(R, S) �

max CE
q
(R),CEq

(S)􏼈 􏼉

min CE
q
(R),CEq

(S)􏼈 􏼉
,

CEq
(T) � 􏽘

n−1

i�1
ti+1 − ti( 􏼁

q⎛⎝ ⎞⎠

(1/q)

,

M − CID(R, S) � EDq
(R, S) × CFq

(R, S),

(22)

Table 4: Prediction performance evaluation of distinct prediction models for Brent.

Model MAE RMSE MAPE SMAPE TIC
WPD-SW-LSTM 0.6756 1.8180 0.9579 1.2339 0.0191
WPD-LSTM 1.5148 2.4533 1.3950 1.6971 0.0235
WPD-BPNN 2.0444 3.5218 3.0684 3.6750 0.0261
LSTM 3.6183 4.5880 5.2474 5.5041 0.0327
BPNN 3.9204 4.9236 5.4507 5.8135 0.0355
SVM 4.1716 5.3706 6.0980 6.6347 0.0412

Table 5: Prediction performance evaluation of distinct prediction models for RBOB.

Model MAE RMSE MAPE SMAPE TIC
WPD-SW-LSTM 0.0122 0.0302 1.0350 1.0012 0.0085
WPD-LSTM 0.0351 0.0498 1.8576 1.7286 0.0166
WPD-BPNN 0.0464 0.0570 1.9764 1.8878 0.0164
LSTM 0.0514 0.0692 2.2633 2.3379 0.0189
BPNN 0.0671 0.0889 3.6352 4.3773 0.0246
SVM 0.0817 0.1070 4.4089 5.4389 0.0297

Table 6: Prediction performance evaluation of distinct prediction models for heating oil.

Model MAE RMSE MAPE SMAPE TIC
WPD-SW-LSTM 0.0212 0.0642 0.4775 0.6298 0.0143
WPD-LSTM 0.0463 0.0945 1.8461 1.9538 0.0241
WPD-BPNN 0.0505 0.1271 2.0593 2.1686 0.0252
LSTM 0.0714 0.1529 3.1326 3.2484 0.0284
BPNN 0.0844 0.1980 5.2090 5.9175 0.0340
SVM 0.1056 0.2156 7.2594 8.4040 0.0465
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Figure 11: Forecasting comparison of the evaluation errors from the six involved models. (a) WTI. (b) Brent. (c) RBOB. (d) Heating oil.

Table 7: Wilcoxon signed rank test for proposed model with different prediction models.

WTI Brent RBOB Heating oil

WPD-LSTM
H 1 1 1 1

z value −39.1953 −42.0197 −7.7244 −20.9041
Prob.p 3.5050e− 10 3.1244e− 12 1.1234e− 14 4.9117e− 6

WPD-BPNN
H 1 1 1 1

z value −22.2057 −21.8502 −30.8334 −20.6775
Prob.p 3.0267e− 6 4.3975e− 9 9.3655e− 29 5.5209e− 9

LSTM
H 1 1 1 1

z value −45.7889 −36.8169 −26.5620 −18.0050
Prob.p 6.0053e− 19 9.8998e− 27 1.8654e− 15 1.7815e− 7

BPNN
H 1 1 1 1

z value −23.8007 −30.5701 −31.1161 −21.1325
Prob.p 3.7303e− 11 8.5523e− 29 1.4575e− 22 3.9941e− 6

SVM
H 1 1 1 1

z value −8.9625 −37.2304 −33.3299 −21.0766
Prob.p 1.6290e− 27 2.1975e− 33 1.4235e− 23 1.3043e− 8
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where EDq(R, S) between two time series R and S indicates
complexity invariant by introducing a correction index. CFq

is a complexity correction index, and CEq(T) is a complexity
evaluation of time series T. Moreover, CFq gives reasons for
complexity differences of different datasets into comparison.
It separates time series with distinctly different complexities
to be further apart. And multiorder parameter q is applied to
enlarge the performance of great changes in the process of
error evaluation.

When evaluating with the MMCID method, the actual
value can be regarded as series R and the predicted results as

the series S. According to the theory of the MMCID, the
predicted effectiveness is better when the MMCID value is
smaller. It also indicates that the fluctuation trends of the
prediction are almost consistent with the actual data. In this
study, the parameter q is set to 2 and τ is from 1 to 20. Table 8
shows the specific MMCID values between the forecasting
results and the actual values from the six mentioned models
when the scale parameter τ � 1.)e empirical results from the
four different types of experiment data demonstrate that the
proposed hybrid model performs much better than the other
five forecasting models. Figure 12 shows MMCID results

Table 8: MMCID value between the actual data and the corresponding predictions.

Index WTI Brent RBOB Heating oil
WPD-SW-LSTM 120.1289 237.8508 4.5909 8.9039
WPD-LSTM 239.3461 384.7985 6.8226 11.9508
WPD-BPNN 305.2824 416.4688 11.4907 13.7667
LSTM 577.9065 516.0784 18.0672 18.0709
BPNN 730.7260 595.6528 26.0103 24.4857
SVM 929.2038 779.0730 41.2264 31.5295
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Figure 12: )e MMCID curves of the actual futures data points and the forecasting results from different forecasting models. (a) WTI.
(b) Brent. (c) RBOB. (d) Heating oil.
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between the actual futures prices series and the corresponding
prediction of them from each predictive model. It is distinctly
noticed that the MMCID value between actual data and the
prediction ones by the WPD-SW-LSTMmodel is the smallest
one of all, and the results from hybrid models are much better
than those from single models for all the four contemplated
futures indices. With the novel estimation method, the
forecastingmerits of the proposedWPD-SW-LSTMmodel are
further manifested, and the productiveness of the SWmethod
added to WPD-LSTM model is also revealed distinctively. In
view of the above empirical analysis, the established new
hybrid forecasting approach is effective for improving the
accuracy of energy futures prices.

5.3. Comparative Analysis with Existing Hybrid Models.
In this section, the latest hybrid models are considered as the
benchmark models to make predictions on the selected four
energy futures indexes. Recently, many researchers have
combined decomposition methods with machine learning
algorithm to establish hybrid forecasting models. Lin et al.
[34] proposed the CEEMDAN-LSTM model to the forecast

of exchange rate. Niu et al. [32] and He et al. [45] applied the
VMD-LSTM model to the forecasting fields of stock prices
and exchange rate movements. Li and Wang [62] developed
a novel model ST-GRU by embedding stochastic time in-
tensity function into gated recurrent unit model (GRU).
)erefore, this section makes comparative analysis between
the WPD-SW-LSTM model with the CEEMDAN-LSTM,
VMD-LSTM, and ST-GRU models, respectively. Table 9 has
listed the error evaluation results of the four hybrid fore-
casting models. Table 10 is the hypothesis test results of
Wilcoxon signed rank test for different paired models. )e p

values are all close to 0 and the H values are 1 through
calculation by hypothesis test, indicating that test rejects null
hypothesis. Hence, the prediction error of the WPD-SW-
LSTMmodel is significantly different (under the significance
level of 0.05) from the error of the other three hybrid models.
Furthermore, compared with the results of other models, all
the error evaluations of the forecasting performances in
Table 9 are very close, but those of the proposed model are
smaller than the errors of the other models. Combined with
the results of the statistical test in Table 10, it can be deduced
that the prediction efficiency of the proposed model is more

Table 9: Prediction performance evaluation of hybrid forecasting models.

Errors MAE RMSE MAPE SMAPE TIC
Index WTI
CEEMDAN-LSTM 1.2017 2.1849 1.7099 1.8371 0.0167
VMD-LSTM 1.3158 2.5268 2.2632 2.4196 0.0192
ST-GRU 1.1701 2.2165 1.6895 1.9726 0.0151
WPD-SW-LSTM 0.8283 1.8493 1.4329 1.3143 0.0130
Index Brent
CEEMDAN-LSTM 0.9782 2.3274 1.3412 1.5177 0.0228
VMD-LSTM 1.2814 2.5638 1.4101 1.7065 0.0239
ST-GRU 1.1267 2.2680 1.2826 1.4371 0.0215
WPD-SW-LSTM 0.6756 1.8180 0.9579 1.2339 0.0191
Index RBOB
CEEMDAN-LSTM 0.0269 0.0381 1.6774 1.5205 0.0168
VMD-LSTM 0.0368 0.0558 1.9783 1.8152 0.0175
ST-GRU 0.0326 0.0328 1.6186 1.4322 0.0116
WPD-SW-LSTM 0.0122 0.0302 1.0350 1.0012 0.0085
Index Heating oil
CEEMDAN-LSTM 0.0376 0.0805 1.2376 1.5278 0.0183
VMD-LSTM 0.0497 0.1014 1.8509 2.0125 0.0252
ST-GRU 0.0408 0.0732 1.0338 1.2957 0.0171
WPD-SW-LSTM 0.0212 0.0642 0.4775 0.6298 0.0143

Table 10: Wilcoxon signed rank test for proposed model with different hybrid models.

WTI Brent RBOB Heating oil

CEEMDAN-LSTM
H 1 1 1 1

z value −38.4806 3.4128 23.3774 3.0441
Prob.p 3.1639e− 10 6.4302e− 4 7.2652e− 12 0.0023

VMD-LSTM
H 1 1 1 1

z value −20.6386 7.2933 21.2588 −2.7126
Prob.p 1.2432e− 9 3.0256e− 13 2.7349e− 10 0.0067

ST-GRU
H 1 1 1 1

z value −23.4035 −15.9011 −24.8309 −5.3581
Prob.p 3.9388e− 12 6.2225e− 15 4.1571e− 13 8.4113e− 8
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superior to the latest three hybrid models for energy futures
prices forecasting.

6. Conclusion

In this research, a new hybrid forecasting model,
WPD-SW-LSTM, has been set up by integrating the
wavelet packet decomposition based on LSTM with sto-
chastic time strength weight function method. After
decomposing the primitive futures series into several
subseries, each forecasting model for the different sub-
series SSi has been established according to its own fre-
quency band properties. )e correlation coefficient values
(R) from four energy futures series are all above 0.98 and
extremely near 1, which implies that the proposed model
performs great prediction effect. Furthermore, compared
with the empirical results of SVM, BPNN, LSTM, WPD-
BPNN, and WPD-LSTM forecasting models, the predicted
values and different error evaluation reveal that the pro-
posed WPD-SW-LSTM forecasting model has strong
points in upgrading the accuracy of energy futures prices.
In addition, according to the evaluation errors of MAE,
RMSE, MAPE, SMAPE, and TIC, the hybrid models WPD-
SW-LSTM, WPD-LSTM, and WPD-BPNN have better
prediction performance than the individual models,
LSTM, BPNN, and SVM. )e effectiveness of stochastic
time strength weight function is the key that the accuracy
of the WPD-SW-LSTM model is far more than the other
five models. By introducing the novel evaluation error,
MMCID method and the forecasting effectiveness of the
proposed model are further confirmed. At the last section,
compared with the recent hybrid CEEMDAN-LSTM,
VMD-LSTM, and ST-GRU models, by Wilcoxon test, the
proposed model is significantly different from the fore-
casting errors of the other three models. Combined with
the error evaluation results, it can be referred that the
forecasting accuracy of the proposed model is the highest
among the other benchmark models for energy futures
prices forecasting.
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