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Prognostic accuracy of MALDI-TOF mass spectrometric
analysis of plasma in COVID-19
Lucas Cardoso Lazari1, Fabio De Rose Ghilardi2, Livia Rosa-Fernandes1, Diego M Assis3, José Carlos Nicolau4 ,
Veronica Feijoli Santiago1, Talia Falcão Dalçóquio4, Claudia B Angeli1 , Adriadne Justi Bertolin4, Claudio RF Marinho1 ,
Carsten Wrenger1 , Edison Luiz Durigon5, Rinaldo Focaccia Siciliano4, Giuseppe Palmisano1

SARS-CoV-2 infection poses a global health crisis. In parallel
with the ongoing world effort to identify therapeutic solutions,
there is a critical need for improvement in the prognosis of
COVID-19. Here, we report plasma proteome fingerprinting that
predict high (hospitalized) and low-risk (outpatients) cases
of COVID-19 identified by a platform that combines machine
learning with matrix-assisted laser desorption ionization mass
spectrometry analysis. Sample preparation, MS, and data analysis
parameters were optimized to achieve an overall accuracy of 92%,
sensitivity of 93%, and specificity of 92% in dataset without fea-
ture selection. We identified two distinct regions in the MALDI-TOF
profile belonging to the same proteoforms. A combination of
SDS–PAGE and quantitative bottom-up proteomic analysis allowed
the identification of intact and truncated forms of serum amyloid
A-1 andA-2 proteins, both already describedas biomarkers for viral
infections in the acute phase. Unbiased discrimination of high- and
low-risk COVID-19 patients using a technology that is currently in
clinical use may have a prompt application in the noninvasive
prognosis of COVID-19. Further validation will consolidate its
clinical utility.
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Introduction

The pandemic of SARS-CoV-2 infection, the etiological agent of
coronavirus disease 2019 (COVID-19), has affected millions of
people worldwide. The first case was reported in Wuhan, China, and
as for 30, September, 33,722,075 people have been infected and
1,009,270 died. The ongoing outbreak is considered a pandemic
(World Health Organization). The symptoms range from mild with
fever, dry cough, headache, fatigue, and loss of taste and smell to
severe complications, including difficulty breathing or shortness of
breath, chest pain, and loss of speech or movement that can lead to

hospitalization and death (1). Although vaccines and small mole-
cule treatments are in clinical trial, no definitive treatment for
COVID-19 is available yet (2, 3, 4). A mortality rate of ~4% has been
detected in COVID-19 patients compared with 0.1% in influenza
infection (World Health Organization). Because of that, it is im-
perative to identify patients at high risk for severe illness to assist
them with supportive therapy. Markers of COVID-19 severity have
been proposed (5, 6, 7).

MALDI-MS has been successfully implemented into the mi-
crobiology field building reference spectral libraries for rapid,
sensitive, and specific identification of bacterial and fungal
species (8). This approach is well established and accepted in
many countries for routine diagnostics of yeast and bacterial
infections. Viral species identification has been elucidated
using similar strategies (9). Recently, MALDI-TOF mass spec-
trometry (MS) analysis of nasal swabs allowed sensitive and
specific detection of SARS-CoV-2 infection (10). Moreover, MALDI-
TOF MS analysis of human biofluids have been proposed as di-
agnostic and prognostic techniques in several diseases ranging
from cancer, cardiovascular, neurological, and infectious diseases
(11, 12, 13, 14, 15).

Although it was previously described, the use of MALDI-MS and
machine learning analyses in COVID-19 nasal swabs samples (16),
our study shows a new approach for the identification of a plasma
proteomic signature obtained from high- (hospitalized) versus
low- (outpatients) risk patients with COVID-19 using an accurate,
easy-to-perform, rapid, and widespread technology such as
MALDI-TOF MS, which is present in several clinical laboratories
worldwide. A training and validation dataset allowed the prioritization
of discriminant features identified using bottom-up quantitative
proteomics. SAA1 and SAA2 proteoforms were differentially expressed
between the two groups allowing the implementation of point-of-care
diagnostics. More studies, including larger inter-institutional cohorts,
are needed to move this marker into the clinic.
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Results

Method optimization and evaluation of reproducibility and
variability

The analytical platform shown in this study was developed through
three phases: (1) MALDI-TOF MS-based method development for
plasma samples, (2) development of a potential clinical application
to plasma isolated from COVID-19 patients with high and low risk,
and (3) identification of markers to discriminate high and low-risk
patients, according to the experimental workflow (Fig 1A–C).

Initial method development focused on the selection of the
appropriate matrix using unfractionated plasma. The dried droplet

sample preparation method using unfractionated plasma and
three matrices (HCCA, DHB, and SA) was tested acquiring the
protein/peptide profile in automatic mode. Using the HCCA matrix
resulted in the detection of more peaks compared with other
matrices (Fig S1). The highest peaks at “m/z” 16,616.3, 13,315.1,
11,095.6, 9,496.2, and 8,316.8 corresponded to human serum albumin
with 4–8 charges. To improve the number of peaks detected, the
acid concentration within the matrix (TFA 2.5%) was increased (Fig
S2). The peak intensity increased and two peaks in the “m/z” 6,000
region were detected; however, the serum albumin peaks were still
within the most abundant. To improve the number of peaks de-
tected for each spectrum, C18-based plasma fractionation was
performed. The MALDI-TOF performances were evaluated measuring

Figure 1. Experimental workflow applied to this study.
(A)Method development for MALDI-TOF MS analysis of plasma samples. (B)MALDI-TOF MS analysis of 117 COVID-19 patients combined withmachine learning to identify
MS discriminant features in the training and test dataset. (C) Biomarker discovery based on 1D SDS–PAGE and nLC-MS/MS analysis.
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the number of peaks and the variation in intensity and frequency of
specific peaks detected for each spectrum after processing as de-
scribed in the Materials and Methods section. A total of five plasma
samples were tested. C18-based fractionation showed a higher
number of peaks detected from “m/z” 2,000–10,000 than unfrac-
tionated plasma (Fig S3). A comparison between three matrices
showed that HCCA yielded a higher number of peaks and intensity
than other matrices (Figs S4 and S5).

Because of that, we chose to perform all analyses using a C18-
fractionated sample eluting the proteins/peptides from the micro-
column using the HCCA matrix containing 50% acetonitrile and 2.5%
TFA as described in the Materials and Methods section. To test if
sample pretreatment induces potential artifacts that affect the
reproducibility of the entire strategy, quadruplicate analysis of the
same spot and analysis of each sample on three different prep-
arations was performed (Fig S6A–C). Two “m/z” regions were se-
lected to calculate the coefficient of variance (CV) considering the
sample preparation and MS acquisition variability. Within the “m/z”
5,700–5,900 region, an average of 10% CV was obtained. Within the
“m/z” 11,300–11,700 region, an average of 20% CV was obtained (Fig
S7). The lower CV in the higher “m/z” region is associated with the
lower intensity, which increases the variance within and between
samples. The CVs data obtained are in agreement with other reports
using MALDI-TOF MS profiling of biofluids (16, 17, 18). Because of
that, the optimized sample preparation strategy applied to this
study was based on 1 μl of plasma fractionated using C18 micro-
columns and proteins/peptides were eluted using HCCA matrix
containing 2.5% TFA.

Prognostic value of the plasma proteome profile of COVID-19
patients

In the next phase, we applied the optimized strategy to plasma
samples collected fromCOVID-19 patients. 117 patientswith laboratory-
confirmed COVID-19 disease were enrolled in this study, 57 with
mild disease, who did not need hospitalization (low risk), and 60
being admitted in the hospital (high risk). Their status was assessed
using a combination of molecular, serological, and clinical ex-
amination. RT-PCR and ELISA were used to test the active or past
SARS-CoV-2 infection. Table 1 shows the demographic character-
istics of these two groups of patients. The median age was sig-
nificantly higher in the hospitalized group (52 yr; IQR 39.5–64.5) than
the mild group (35 yr; IQR 29–47). A total of 40 (70%) of outpatients

were female and only 28 (47%) were female in the hospitalized
group. The median time of symptom onset before blood sampling
was also higher in the severe group (9 d and IQR 7–14) than in the
outpatients group (4.5 d and IQR 3–6.5 using two-tailed Mann–
Whitney U-test). Four patients (3.5%) died (Fig S8A and B). The sex
and age distribution observed in this study is in line with the lit-
erature findings. Indeed, a significant association between sex, age,
and COVID-19 disease prognosis has been reported (19). Male
patients have a higher mortality rate, hospitalizations, and lower
chance of recovery compared with females (19, 20, 21). It has been
shown that female patients have higher plasma levels of IL-8 and
IL-18 cytokines and different immune cells number and type
sustained along the life that reduce the severity of COVID-19 (22).
The most prevalent symptoms in this cohort were fever and my-
algia, in patients that were hospitalized with dyspnea (77%) and
cough (68%) were the main clinical features. In the group of
outpatients, upper respiratory signs as rhinorrhea (82%) and
headache (81%) were more prevalent (Table 2). The difference
between groups was statistically significant (chi-square test P <
0,005) regarding the type of symptom presented: as rhinorrhea
(82% of the mild symptomatic patients and 22% of admitted in
hospital patients), headache (81% of themild symptomatic and 45%
of hospitalized patients), and myalgia (88% of the mild symp-
tomatic and 58% of hospitalized patients) being more prevalent in
patients not requiring hospitalization. On the other hand, dyspnea
was present in only 22% of the mild symptomatic patient and in 77%
of the patients that were admitted in a hospital (P < 0.005). Patients
with a mild presentation of COVID-19 (low risk) presented running
nose, headache, andmyalgia and did not develop the inflammatory
syndrome. This group of patients were more attentive to their first
symptoms and search for health care earlier (most of them are
health-care professionals which may represent a bias). The most
prevalent comorbidities found in our patients were obesity (4% of
themild group and 27% of the hospitalized group) and dyslipidemia
(5% of the mild group and 17% of the hospitalized group). Although
there was no difference in dyslipidemia’s prevalence between both
groups, we found a higher number of obese patients (body mass
index > 30) between people requiring hospitalization (16/60 = 27%),
Table S1. It is important to mention that this survey was carried out
at INCOR hospital, an institution specialized in heart and lung
diseases, so we did find a higher prevalence of cardiovascular
diseases than in the general population (as heart transplantation
patients and people with chronic conditions).

Table 1. Epidemiological characteristics of the 117 COVID-19 patients investigated in this study.

Individuals, no.
Low risk High risk

(N = 57) (N = 60)

Sex, no. (%)

Male 17 (30) 32 (53)

Female 40 (70) 28 (47)

Age (yr), mean (SD) 37.5 (11.2) 51.8 (16.5)

Median (yr) 35 52

Time onset symptoms (days) until sampling, median (IQR) 4.5 (3–6.5) 9 (7–14)

SD, standard deviation; IQR, interquartile range.
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MALDI-TOF spectra obtained from the C18-fractionated plasma
from the high- and low-risk groups were analyzed, as described in
the Materials and Methods section. Analyzing 117 plasma samples,
the data preprocessing (peak picking and filtering) yielded 65 peaks
detected, which dropped to 49 after the normality and Wilcoxon
rank sum test corrected using the Benjamini–Hochberg method for
multiple hypotheses testing with an adjusted P-value < 0.05. Per-
mutation analysis was performed and returned a false discovery

rate < 0.05, demonstrating that the observed differences are not by
chance. After Ig filtering of whole dataset for PCA, 38 peaks were
identified (Table S2). PCA analysis of significant peaks and Ig-
filtered peaks are presented in Fig 2A and B. The Ig filtering
demonstrated a slightly better separation than the PCA with all
significant peaks.

Ig filtering for themachine learning resulted in 33 peaks detected
in fold “1,” 35 in folds “2” and “3,” and 34 peaks in fold “4” (Table S2).
The MS peaks obtained with and without Ig filtering were analyzed
using six machine learning algorithms to discriminate between the
two conditions under optimized parameters (Table S3). In general,
all models did not differ significantly from each other and pre-
sented a robust behavior comparing each fold. The results of the six
tested models in the dataset without Ig filtering showed that the
random forest (RF) had the higher mean area under the curve (AUC)
for the ROC curve (0.97) (Fig 3A); in addition, support vector machine
polynomial (SVM-P), naı̈ve Bayes (NB), and RF had the lowest SD for
AUC values between each fold (Tables S4 and S5). However, the RF
model had a better accuracy, sensitivity, and specificity, thus
considered to have the best performance of the six tested. For Ig
filtering approach, RF had the highest mean AUC for ROC (0.97) with
a low SD between each fold (Fig 3B); The RF model had higher
accuracy and sensitivity. Because higher sensitivity is more de-
sirable for prognosis, RF model was considered the model with the
best performance for Ig-filtered peaks. Among all folds, the best
hyperparameters (i.e., the hyperparameter that resulted in higher
accuracy, sensitivity, and specificity) are mtry = 4 for the nonfiltered
peaks and mtry = 5 for the Ig-filtered peaks. It is worth mentioning
that K-nearest neighbors, SVM-P, NB, and support vector machine
radial (SVM-R) also had good performances, whereas NNET scored
poorly. The ROC and PR curves for Ig-filtered and nonfiltered peaks,
together with the mean accuracy, mean sensitivity, and mean
specificity of the predictions by the six models, are presented in Fig
3C and D. The filtering by information gain (Ig) demonstrated a
slightly worse performance when compared with the modeling
without Ig filtering.

Biomarker identification

Next, we focused on the identification of specific biomarkers based
on the MALDI-TOF profile obtained. Within the MS features with the
highest discriminatory value, statistical rank, and relative “m/z”
peak intensity, a cluster of signals in the “m/z” 5,700–5,900 and
11,300–11,700 regions was chosen as a specific signature able to
distinguish high- from low-risk COVID-19 patients (Fig 4A–D). In-
terestingly, the peaks at “m/z” 5,696, 5,724, 5,739, 5,765, 5,818, and
5,843 correspond to the doubly charged ions of “m/z” 11,393, 11,443,
11,476, 11,530, 11,633, and 11,683, respectively. This indicates that one
or more proteoforms are contributing to discriminating high- and
low-risk patients. To identify these proteins, the C18-fractionated
plasma proteins/peptides were separated using 1D SDS–PAGE (Fig
5A and B). The “m/z” 10,000–15,000 region of the gel was excised, in-
gel digested, and analyzed using nanoflow LC-MS/MS followed by
data analysis. Quantitative proteomic analysis allowed the iden-
tification of 179 proteins with at least one unique peptide (Tables S6
and S7). Serum albumin, serotransferrin, complement C3a, α-2
macroglobulin, and haptoglobin were among the proteins with the

Table 2. Clinical findings associated with the 117 COVID-19 patients in-
vestigated in this study.

Symptoms
Low risk High risk

(N = 57) (N = 60)

Fever, no (%)

Y 39 (68) 47 (78) P = 0.2

N 18 (32) 13 (22)

Headache, no (%)

Y 46 (81) 27 (45) P < 0.005

N 11 (19) 33 (55)

Diarrhea, no (%)

Y 14 (25) 24 (40) P = 0.075

N 43 (75) 36 (60)

Myalgia, no (%)

Y 50 (88) 35 (58) P < 0.005

N 7 (12) 25 (42)

Dysgeusia, no (%)

Y 27 (47) 31 (52) P = 0.642

N 30 (53) 29 (48)

Anosmia, no (%)

Y 20 (35) 21 (35) P = 0.992

N 37 (65) 39 (65)

Running nose, no (%)

Y 47 (82) 13 (22) P < 0.005

N 10 (18) 47 (78)

Dyspnea, no (%)

Y 22 (39) 46 (77) P < 0.005

N 35 (61) 14 (23)

Expectoration, no (%)

Y 10 (18) 14 (23) P = 0.43

N 47 (82) 46 (77)

Cough, no (%)

Y 40 (70) 41 (68) P = 0.829

N 17 (30) 19 (32)

Fever, no (%)

Y 39 (68) 47 (78) P = 0.225

N 18 (32) 13 (22)

Chi-squared statistical analysis for each parameter was performed and the
P-values reported.
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highest PSMs. These proteins have molecular weights (MWs) higher
than 15 kD, which is the MW cutoff of the gel band analyzed. A total of
52 proteins were identified with an MW between 10 and 15 kD. Within
them, four proteins, platelet factor 4, immunoglobulin lambda var-
iable 4-69 (IGLV4-69), serum amyloid A-1 (SAA1), and serum amyloid
A-2 (SAA2), were up-regulated in the high- compared with low-risk
group. The MALDI-TOF MS peaks at “m/z” 11,443, 11,530, and 11,683
correspond to truncated fragments originating from serum amyloid
A1 (Table 3). The MALDI-TOF peaks at “m/z” 11,633, 11,476, and 11,393
correspond to truncated fragments originating from serum am-
yloid A2 (Table 3). The peptide 20SFFSFLGEAFDGAR33 peptide,
shared between SAA1 and SAA2, was identified in the LC-MS/MS
analysis and constitutes the initial sequence of one truncated
form. The R19 was cleaved by trypsin during processing and
constitutes the first amino acid of the other truncated form. The
21FFSFLGEAFDGAR33 semi-tryptic peptide, shared between SAA1
and SAA2, was also identified and constitutes the initial sequence
of the other truncated form (Table S7). Moreover, the semi-tryptic
peptides 23SFLGEAFDGAR33 and 24FLGEAFDGAR33 were identified,
suggesting the presence of another two less-abundant proteo-
forms, which were not detected in the MALDI-TOF MS spectra.
These sequences were consistent with the MWs of the discrimi-
natory “m/z” values identified up-regulated in the plasma sam-
ples collected from COVID-19 patients with high risk.

Discussion

We describe the application of MALDI-TOF MS to identify a protein
signature specific to COVID-19 patients with high and low risk, based
on clinical symptoms, using 1 μl of C18-fractionated plasma. This
study was based on the supposition that SARS-CoV-2 infection
induces a systemic response that changes selectively the plasma
protein expression, allowing a discrimination between patients at
high risk (need of hospitalization) compared with low-risk ones
(outpatient treatment). Using machine learning algorithms, the
performance achieved a mean accuracy of 92%, a mean sensitivity
of 93%, and a mean specificity of 92% was achieved separating the

two groups without feature selection. The sample preparation, data
acquisition, and analysis parameters were optimized and validated
to understand their influence of these factors in creating systemic
biases. We confirmed that these factors were not influencing the
accuracy of our approach based on the CVs detected. CVs reported
in this study confirm similar reports from other research groups (17,
23, 24). In this study, we were interested in determining a specific
protein or a panel of proteins that could be used for COVID-19
prognosis. Applying a combination of gel electrophoresis and nLC-
MS/MS, we identified SAA1 and SAA2 proteoforms as regulated
discriminatory proteins. These two proteins are involved in the
acute phase response. Proteins involved in the acute phase re-
sponse are increased early during viral and bacterial infections.
Serum amyloid A-1 (SAA1) and A-2 (SAA2) are acute phase reactants
synthesized by the liver and secreted into the bloodstream in-
flammatory and oncogenic processes (25). Extra-hepatic SAA pro-
tein synthesis has been reported in inflamed tissues (26, 27). SAA
represents a family of high-density lipoproteins with 103–104 amino
acids sharing high sequence homology between the different
members. Four isoforms are expressed in humans SAA1, SAA2, SAA3,
and SAA4 (25, 28). During infection, SAA protein production and
secretion in the circulation can increase more than 1,000-fold
suggesting an early response to infection. However, sustained
expression of SAA proteins is associated with chronic pathological
conditions.

SAA1 was already reported to be differentially expressed in
patients with severe (29, 30). The SAA1 and SAA2 proteins were also
identified up-regulated in severe COVID-19 patients in a clinical
cohort from China (31). The authors used large-scale LC-MS/MS
analysis of serum samples to identified differentially regulated
proteins and metabolites as potential prognostic markers (31). The
identification of SAA1 and SAA2 as potential markers confirms our
study.

A specific correlation between SAA proteins and CRP has been
found in several infectious diseases with the concentration of SAA
increasing up to 2,000 mg/l (32). However, SAA proteins were found
to be more sensitive than CRP in detecting variation in the in-
flammatory status of infected patients (33).

Figure 2. PCA analysis of the preprocessed MALDI-
TOF MS spectra obtained from 117 plasma samples.
(A) PCA of all significant peaks. (B) the PCA of peaks
selected with the Ig (Information gain) method. The list
of peaks is available in the Table S2.
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Figure 3. Fourfold nested cross-validation of the dataset for model performance evaluation.
(A) best AUC values for ROC and PR curves of each model with the non-filtered dataset. (B) best AUC values for ROC and PR curves of each model with the Ig-filtered
dataset. (C) the average accuracy, specificity and sensibility of all folds for non-filtered peaks. (D) the average accuracy, specificity and sensibility of all folds for Ig-filtered
peaks. (E) the total confusion matrix of the best model (Random Forest) for the non-filtered dataset. (F) the total confusion matrix of the best model (Random Forest) for
the Ig-filtered dataset.
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Because of that, increased levels of SAA1 and SAA2 proteoforms
can be seen as a measure of the increased severity of the disease
and so on prognostic factors. Because of its ubiquitous expression
in several infectious diseases, SAA proteins cannot be associated
directly with the SARS-CoV-2 and should be complemented with
other viral specific molecular tests.

A possible mechanism of increase in SAA proteins in severe
COVID-19 patients could be due to the cytokine storm that is
elicited during the infection. Indeed, increased levels of cytokines
such as interleukin IL-2, IL-7, granulocyte (G)CSF, interferon-γ
inducible protein 10, MCP 1, MIP 1-α, and TNF-α and IL-6 is as-
sociated with COVID-19 disease severity, suggesting that the
mortality observed could be due to virally/induced hyper-
inflammation (34). The elevation of IL-1 and IL-6 increase syn-
ergistically the levels of SAA proteins synergistically. At the same
time, SAA proteins increase the expression of IL-1β mediated by
NLRP3 in human and mouse immune cells (35, 36). SARS-CoV

ORF8b activates the NLRP3 inflammasome inducing the secretion
of active IL-1β and IL-18 (37). Moreover, SARS-CoV ORF3a activates the
NLRP3 inflammasome by promoting TNF receptor–associated factor 3
(TRAF3) ubiquitination of p105 and activation of NF-kB and sub-
sequent transcription and secretion of IL-1β (38). Overactivation
of NLRP3 in SARS-CoV-2 infection has been postulated delin-
eating specific pathways for its activation (38, 39, 40). Blockade
of NFκB, a central player in the SAA-mediated activation of
proinflammatory cytokines could represent a novel therapeutic
target for severe cases of COVID-19. Because of that, SAA proteins
might play a critical role in SARS-CoV-2 infection as an early
response to inflammation but also can be seen as proin-
flammatory proteins to amplify the cytokine storm. Although
comprehensive LC-MS/MS analysis has been performed using
sera from COVID-19 patients, a proteomic fingerprint using
MALDI-TOF MS on plasma samples has not been reported.
Recently, MALDI-TOF MS combined with a machine learning

Figure 4. Assessment of sample variability within the low and high-risk groups.
(A) Average mass spectra with the interquartile range (IQR) shaded in red for the high-risk group (A). (B) Average mass spectra with the IQR shaded in blue for the low-
risk group (B). (C) Comparison of the average mass spectra with the IQR shaded between the two groups for the most relevant discriminative peaks of “m/z” 5,853–5,905 (C).
(D) Comparison of the average mass spectra with the IQR shaded between the two groups for the most relevant discriminative peak at “m/z” 11,681 (D).
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approach was used to detect SARS-CoV-2 in nasal swabs from
infected patients (41). The application of RT-PCR, immunochro-
matography, and recently MALDI-TOF MS has been used and
proven reliable for the diagnosis of SARS-CoV-2 infection.
However, no method exists so far to discriminate between high-
and low-risk patients. This study shows that MALDI-TOF MS
combined with machine learning algorithms offers a repro-
ducible, easy-to-use, fast, low-cost technique that can be
implemented by several researchers worldwide to test the re-
liability of this marker. Moreover, the widespread use of MALDI-
TOF in clinical laboratories will allow an easy transition into the
hospitals.

Limitations of the study

This study has focused on the fractionated plasma focusing on a
limited mass range “m/z” 2,000–20,000. Moreover, the concomitant
ionization of proteins/peptides in this region limits the detection of
low abundant ones. Improved large-scale shotgun approaches
combined with extensive fractionation have been applied to
identify potential COVID-19 biomarkers and could be used in as-
sociation with SAA1 and SAA2 provided in this study to create a
panel of more reliable biomarkers. Association of the current
biomarkers with other biomarkers will offer the possibility to im-
prove the prognostic accuracy. Further validation in prospectively

collected samples and proof of benefit to the existing noninvasive
diagnostic strategies are required.

A larger independent cohort of patients should be analyzed to
corroborate these findings. Inter-laboratory studies across coun-
tries should be performed to validate these data. Moreover, a time-
course study during the development of the infection would give
more information on the validity of these markers as early prog-
nostic markers.

Materials and Methods

Study subjects and design

Plasma from a total of 117 patients with COVID-19 divided into high
risk (n = 57) and low risk (n = 60) was collected prospectively from a
Brazilian cohort (Tables 1 and 2) at the Heart Institute (InCor) and
Central Institute, University of São Paulo Medical School, Brazil,
between March, 2020 and July, 2020 in consecutive sampling. The
study was approved according to the principles expressed in
Declaration of Helsinki by Comissão nacional de ética em pesquisa
and local Ethics Committees (CAAE 30299620.7.0000.0068). All pa-
tients signed an informed consent form. Patients with high risk
were defined based on clinical parameters evaluated at the time of
admission that required hospitalization compared with low-risk

Table 3. Sequences of truncated serum amyloid protein A-1 and A-2 identified as discriminant peaks in the MALDI-TOF MS analysis and sequenced using
nLC-MS/MS.

Protein name Sequence MW, experimental (D) MW, theoretical (D)

Serum amyloid A-1 (SAA1) 19RSFFSFLGEAFDGARDMWRAYSD—AGLPEKY122 11,683 11,675.49

Serum amyloid A-1 (SAA1) 20SFFSFLGEAFDGARDMWRAYSD—AGLPEKY122 11,530 11,519.39

Serum amyloid A-1 (SAA1) 21FFSFLGEAFDGARDMWRAYSD—AGLPEKY122 11,443 11,432.00

Serum amyloid A-2 (SAA2) 19RSFFSFLGEAFDGARDMWRAYSD—AGLPEKY122 11,633 11,640.60

Serum amyloid A-2 (SAA2) 20SFFSFLGEAFDGARDMWRAYSD—AGLPEKY122 11,476 11,484.50

Serum amyloid A-2 (SAA2) 21FFSFLGEAFDGARDMWRAYSD—AGLPEKY122 11,393 11,397.47

Figure 5. 1D-SDS–PAGE of C18-fractionated plasma from high- (3) and low- (6) risk patients.
(A) The region between 10 and 15 kD is highlighted in yellow. (B) Quantification of the 10–15 kD region in the high and low-risk groups.
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patients. Cases were included with a clinical picture suggestive of
COVID-19 defined as two or more of the following: cough, fever,
shortness of breath, diarrhea, myalgia, headache, sore throat,
running nose, sudden gustatory or olfactory loss, and detection of
viral RNA in nasopharyngeal SARS-CoV-2 PCR positive. Patients with
high and low risk of hospitalization were matched for confounding
variables such as age, sex, and comorbidities to explain the dif-
ference between groups (Table S1). Plasma samples were collected,
aliquoted and stored at −80°C for further analyses.

Sample preparation for MALDI-TOF MS analysis and data
processing

Venous punctures from the patients were performed. After the
samples were collected into tubes containing EDTA anticoagulant,
these were centrifuged in a refrigerated unit at 5,000g for 15 min at
4°C. Then, samples were carefully removed from the centrifuge not
to resuspend cells, and the plasma fraction was collected and
aliquoted at −80°C until further analyses.

Different sample preparation strategies were evaluated for
profiling the plasma proteome of COVID-19 patients. (1) Thawed
plasma samples were diluted 1:100 in water. Matrix solution
(sinapinic acid [SA], dihydroxybenzoic acid [DHB], and α-cyano-
hydroxycinnamic acid [HCCA]) were prepared by dissolving in
acetonitrile/water 50:50 vol/vol containing 0.1% or 2.5% TFA at
10 mg/ml and was mixed with 1 μL of diluted serum and directly
spotted in duplicate onto a stainless steel MALDI target plate
(Bruker Daltonics). (2) C18-based plasma protein extraction. C18
polymeric disks were inserted into p200 pipette tips to produce a
micro-column. The disks were activated with 100 μl 100% methanol
and conditioned with 0.1% TFA. 1 µl of plasma samples was diluted
1:10 in 0.1% TFA and further acidified to achieve 1% TFA. After
acidification samples were spun down at 10,000g for 10 min and the
supernatant loaded into themicro-column. The column was further
washed with 100 μl of 0.1% TFA and proteins eluted with a matrix
directly onto the MALDI plate. All steps except the elution were
performed in a bench centrifuge at 1,000g for 2 min to improve
sample processing and reproducibility of the entire strategy.

Samples were analyzed in a MALDI-TOF Autoflex speed smart-
beam mass spectrometer (Bruker Daltonics) using FlexControl
software (version 3.3; Bruker Daltonics). Spectra were recorded in
the positive linear mode (laser frequency, 500 Hz; extraction delay
time, 390 ns; ion source 1 voltage, 19.5 kV; ion source 2 voltage, 18.4
kV; lens voltage, 8.5 kV; mass range, 2,400–20,000 D). Spectra were
acquired using the automatic run mode to avoid subjective in-
terference with the data acquisition. For each sample, 2,500 shots,
in 500-shot steps, were summed. All spectra were calibrated by
using Protein Calibration Standard I (Insulin [M+H]+ = 5,734.52,
Cytochrome C [M+ 2H]2+ = 6,181.05, Myoglobin [M+ 2H]2+ = 8,476.66,
Ubiquitin I [M+H]+ = 8,565.76, Cytochrome C [M+H]+ = 12,360.97,
Myoglobin [M+H]+ = 16,952.31) (Bruker Daltonics).

The data preprocessing was performed using the ClinProTools,
FlexAnalysis 4.0 (Bruker Daltonics), and R-packages. The ClinProTools
software was used for MS spectra visualization and R-packages for
data processing. The pipeline for processing the raw files and ap-
plying the models was adapted from reference 16. Fid files were
converted to mzML using the MSconvert function from the

ProteoWizard suit (version: 3.0.20220) (17). Then, the files were
preprocessed using MALDIquant and MALDIquantForeign packages
(18). The spectra range was trimmed (2.5–15 kD). The resulting
files were transformed (square root method) and smoothed
(Savitzky–Golay method), and the baseline correction was done
by the TopHat algorithm (19, 20). Intensities of all files were
normalized (total ion current calibration method), and the peaks
were detected with a signal-to-ratio noise of two and a half-
WindowSize of 10 (16). For each group, peaks were binned with a
tolerance of 0.003, keeping the ones present in 80% of the
samples; next, the peaks of both groups were binned together.
Sample normality was accessed by a Shapiro–Wilk test and a two-
tailed Wilcoxon rank sum test corrected for multiple hypotheses testing
using the Benjamini–Hochberg was performed. A significant difference
was considered for P-values < 0.05. To evaluate If the observed differ-
ences were simply by chance, we permuted the dataset 100 times and
calculated the global false discovery rate. The resultant dataset was used
for thePCAanalysis and themachine learning analysis. In addition, peaks
were filtered using the information gain (Ig) function of the FSelector
package to search for the most relevant features, this method was used
because it is classifier independent and is faster than wrapper methods,
which is desirable when comparing multiple machine learning algo-
rithms (21). Features with a weight higher than 0 were used for PCA and
machine learning analysis.

Machine learning

For peaks with and without Ig filtering, six different algorithms (SVM-P,
SVM-R, KNN, neural net [NNET], NB, and RF) were accessed to classify
high- and low-risk samples. To choose between themodels, the training
and testingwere performed through fourfold nested repeated five times
10-fold cross-validation using the Caret package in R, the data were split
randomly into the folds (16, 22). For hyperparameter optimization, a
random search among 10 parameters was performed in the inner loop.
ROC and PR curves were created using theMLeval package. The AUC and
PR curves from the best results were reported. Also, the mean accuracy,
sensitivity, and specificity metrics for the cross-validation predictions
were calculated.

1D SDS–PAGE and nanoflow liquid chromatography coupled to
tandem MS analysis

Proteins from case and control samples were separated by one-
dimensional gel electrophoresis using a 12% gel. Gels were
stained using Coomassie brilliant blue and the gel was scanned to
identify differentially expressed bands. Bands were excised in the
MW range of 10,000–15,000 D corresponding to the “m/z” of
discriminant peaks. Bands were in-gel tryptic digested according
to Shevchenko and subjected to nanoflow LC-MS/MS analysis. The
nLC-MS/MS analysis was performed using an Easy nano LC1000
(Thermo Fisher Scientific) HPLC coupled with an LTQ Orbitrap
Velos (Thermo Fisher Scientific). Peptides were loaded on a C18
EASY-column (2 cm × 5 × 100 μm; 120 Å pore; Thermo Fisher
Scientific) using a 300 nl/min flow rate of mobile phase A (0.1%
formic acid) and separated in a C18 PicoFrit PepMap (10 cm × 10 ×
75 μm; 135 Å pore; New Objective), over 105 min using a linear
gradient 2–30% of mobile phase B (100% ACN; 0.1% formic acid).
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The eluted peptides were ionized using electrospray. The top 20
most intense precursor ions with charge-state ≥ 2 were frag-
mented using collision-induced dissociation at 35 normalized
collision energy and 10 ms activation time. The MS scan range was
set between “m/z” 350–1,500, the MS scan resolution was 60,000,
the MS1 ion count was 1 × 106 and the MS2 ion count was 3 × 104.

Statistical analysis, database search, and quantitative analysis

nLC-MS/MS raw data were searched using Proteome Discoverer
(v2.3.0.498; Thermo Fisher Scientific) for protein identification
and label-free quantification quantification. The raw files were
searched against the Homo sapiens protein database containing
20,359 reviewed protein sequences (UniProt, downloaded in June,
2020). The database search was performed using the Sequest HT
processing node with trypsin semi-specific as the proteolytic en-
zyme, two missed cleavages, 10 ppm precursor ion tolerance, and
0.6 D fragment ions mass tolerance. Carbamidomethylation of
cysteine was set as fixed modification and methionine oxidation as
dynamic modification. Label-free quantification was performed
using the Minora algorithm in the processing workflow embedded
in Proteome Discoverer 2.3. Precursor Ions Quantifier node and the
Feature Mapper were added to the consensus workflow for re-
tention time alignment.

Patient and public involvement

This study analyzed a retrospective case-series cohort. No patients
were involved in the study design, setting the research questions, or
the outcome measures directly. No patients were asked to give
advice on interpretation or writing up of results.

Data Availability

MALDI-TOF MS spectra and the patients’ categories were uploaded in
the PRIDE public repository (https://www.ebi.ac.uk/pride/), dataset
identifier PXD025138, Username: reviewer_pxd025138@ebi.ac.uk, Pass-
word: WEvrGIzv. LC-MS/MS data were submitted to PRIDE (https://
www.ebi.ac.uk/pride/), project number PXD021581, Username: revie-
wer_pxd021581@ebi.ac.uk, Password: 79CZBtm6.
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