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Abstract: 

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by 

deficits in social communication and repetitive behaviors. A diagnosis of ASD is provided by a 

clinician following cognitive and behavioral evaluations, but there is currently no biomarker 

associating these metrics with neurological changes. Our lab has previously found that g-ratio, 

the proportion of axon width to myelin diameter, and axonal conduction velocity, which is 

associated with the capacity of an axon to carry information, are both decreased in ASD 

individuals. By associating these differences with performance on cognitive and behavioral tests, 

we can evaluate which tests most reveal changes in the brain. Analyzing 273 participants (148 

with ASD) ages 8-to-17 (49% female) through an NIH-sponsored Autism Centers of Excellence 

(ACE) network (Grant#: MH100028), we observe widespread associations between behavioral 

and cognitive evaluations of autism and between behavioral and microstructural metrics. 

Analyzing data from all participants, conduction velocity but not g-ratio was significantly 

associated with many behavioral metrics. However, this pattern was reversed when looking 

solely at ASD participants. This reversal may suggest that the mechanism underlying differences 

between autistic and non-autistic individuals may be distinct from the mechanism underlying 

ASD behavioral severity. Two additional machine learning cluster analyses applied to 

neuroimaging data reinforce the association between neuroimaging and behavioral metrics and 

suggest that age-related maturation of brain metrics may drive changes in ASD behavior. By 

associating neuroimaging metrics with ASD, it may be possible to measure and identify 

individuals at high risk of ASD before behavioral tests can detect them. 

 

Significance Statement:  
This study establishes numerous relationships between multiple behavioral, language, 

and social metrics in ASD. Subsequently, this study is the first to then show associations between 

diffusion microstructure and subscales of behavioral assessments. Limited associations of these 

behaviors with conduction velocity may indicate that axonal diameter is a predominating factor 

in characterizing ASD over other metrics, such as myelination, however within ASD subjects the 

g-ratio is more closely related to behavioral metrics, suggesting a potential role for myelination 

in ASD severity. These findings suggest that some subscales and metrics more accurately capture 
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behaviors associated neurologically with ASD than others, including composite scores, 

demonstrating the potential to identify children at high risk for ASD at an earlier age.  
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Introduction  

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a prevalence of 

approximately 1 in 36 children (Maenner et al., 2023). ASD is characterized by deficits in social 

communication and atypical behaviors, particularly restrictive repetitive behaviors and interests 

(Lord et al., 2020). In a clinical setting, a diagnosis of ASD is made by a clinician according to 

criteria established by the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) that 

describe persistent social or communication deficits, repetitive behaviors or interests, and 

atypical response to sensory information (Diagnostic and Statistical Manual of Mental 

Disorders, 2013). Recently, to counteract variability in clinical decision-making, there has been 

an increased emphasis on assessing performance on one or more behavioral and cognitive tests 

(Constantino & Charman, 2016). Several tests have been developed and normed, but the 

relationship between different test metrics and the neural structure underlying ASD is still 

unclear.  

ASD and the Brain: Studies demonstrating altered functional connectivity in subjects 

with ASD have led to the underconnectivity theory of ASD, which postulates that ASD 

individuals have lower functional connectivity in frontal and posterior processing as a result of 

lower cortical bandwidth (Just et al., 2012). Changes in the cellular microstructure of neurons 

may underline these differences in cortical bandwidth. Diffusion MRI can examine 

microstructural axonal properties at the sub-voxel level, such as diameter and anisotropy (Afzali 

et al., 2021). Axonal defects may slow action potentials or reduce their efficiency. Myelin sheath 

thickness in cortical white matter is correlated with inner axon diameter, which is directly related 

to conduction velocity (Liewald et al., 2014). Furthermore, long-range connections rely on 

larger-diameter axons for signal transduction (Das & Gilbert, 1995; Stepanyants et al., 2009). 

Diffusion Microstructure and ASD: Structural differences in the axons of ASD 

participants have been observed in previous diffusion studies. In particular, ASD individuals 

exhibited abnormal white matter microstructural patterns in the splenium of the corpus callosum 

(Zhao et al., 2022). Findings suggest ASD participants have lower fractional anisotropy and 

higher diffusivity in white matter tracts associated with behaviors commonly disrupted in ASD 

individuals. Fixel-based analysis of white matter tracts demonstrated that ASD individuals have 

lower fiber density in the splenium, corresponding with greater social impairments (Dimond et 

al., 2019). Alternatively, neurite orientation dispersion and density imagining (NODDI) has 
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found that ASD participants had higher extracellular free-water levels and lower neurite density. 

These differences were mainly present in long-range association tracts that guide ASD behaviors 

(Andica et al., 2021). 

Conduction Velocity, G-ratio, and Extracellular Water: A recent paper (Newman et al., 

2024) demonstrated architectural differences in the axonal microstructure of ASD participants. 

G-ratio is a proportion of axon to myelin diameter with an optimal range of around 0.6-0.7 

(Rushton, 1951). As axon and myelination thickness play a role in signal transduction speed and 

efficiency, g-ratio is related to conduction velocity, a measure associated with an axon's capacity 

to carry information sensitive to myelin and axonal development differences. This study found 

that in ASD participants, extracellular water, g-ratio, and conduction velocity, was altered in the 

brains of ASD participants compared to non-ASD participants. These microstructural differences 

were present throughout the cortex, subcortex, and white matter skeleton. Decreases in 

conduction velocity and g-ratio, in particular, suggests deficits in long-range connections that 

rely on larger axon and myelination diameters (Newman et al., 2024). 

To continue this work, here we evaluate a large cohort of autistic and non-autistic 

individuals from the NIH-sponsored (Grant#: MH100028) Autism Centers of Excellence (ACE) 

cohort. This is a large and carefully evaluated group of age, sex, and diagnosis-matched 

individuals. This study will assess which metrics best correlate with underlying subject 

neurology by comparing microstructural results across many brain regions to performance on 

cognitive and behavioral metrics, including assessments frequently used in diagnosing or 

evaluating autism. The results will inform clinical decisions regarding which tests to administer 

and how these tests relate to neurological differences observed in brain cellular microstructure 

between autistic and non-autistic individuals. 

 

Methods: 

Participants: 

Two-hundred seventy-three (mean age = 154.3 months ±35.21 S.D., age range = 96-216 

months; 133 female [49%]) participants from Wave 1 of an NIH-sponsored Autism Centers of 

Excellence Network were included in this study. The study cohort included 148 individuals 

diagnosed with ASD (mean age = 150.8 months ±34.31 S.D., 70 female [47%]) and 124 
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neurotypical participants (mean age = 154.3 months ±35.21 S.D., 62 female [50%]). Data used in 

this study is available from the NIH National Database for Autism Research (NDAR). 

 

________________________________ 
 

TABLE 1 ABOUT HERE 
________________________________ 

 

 

Behavioral and Cognitive Assessments: 

 Participants were administered the battery of behavioral and cognitive tests summarized 

in Table 1 at each participating site (Harvard University, Yale University, Seattle Children’s 

Hospital with the University of Washington, and the University of California, Los Angeles). All 

participants within the ASD cohort were validated via the administration of the ADI-R and 

ADOS, including separate social and behavioral subcomponents, by a clinician. Participants 

family members were also asked about age of language acquisition. The social, behavioral, 

overall, and composite ADOS scores were included for ASD participants only. Participants not 

meeting ASD criteria in the ASD cohort were excluded from the study. Participants in the final 

ASD cohort were paired using age and sex-matched non-autistic participants. The behavioral 

tests utilized in this study are as follows: 

The Clinical Evaluation of Language Fundamentals—Fourth Edition (CELF-4) is a test 

given to participants ages 5 through 21 to evaluate language ability through expressive and 

receptive language-based subtests that measure phonology, morphology, syntax, semantics, and 

working memory. CELF-4 is administered by a professional, typically a speech pathologist. 

Language skills vary greatly among children with ASD (Salem et al., 2021). While children with 

ASD tend to have impairments in both expressive and receptive language skills, deficits in 

receptive language are usually more significant (Mody et al., 2012). 

The Behavior Rating Inventory of Executive Functions (BRIEF) is a behavior rating scale 

used to screen for executive function deficits in children ages 5 to 18. Parents and teachers 

complete the BRIEF questionnaire and ask how the child behaves in everyday situations, 

particularly those that require problem-solving. Children with ASD have been found to have 
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significantly elevated BRIEF scores compared to neurotypical children, corresponding to 

executive function ability deficits (Blijd-Hoogewys et al., 2014). 

The Repetitive Behavior Scale-Revised (RBS-R) evaluates an array of restrictive, 

repetitive behaviors (RRBs) an individual with ASD may exhibit. RRBs, a common presentation 

of ASD, are divided into subscales of stereotypic behaviors, self-injurious behaviors, 

compulsions, ritualized behaviors, insistence on sameness, and restricted interests (Lam & 

Aman, 2007). Caregivers self-report the RBS-R questionnaire. As RRBs are a hallmark of ASD, 

children with ASD are expected to score higher on subscales of the RBS-R. 

The Adolescent/Adult Sensory Profile (AASP) measures sensory processing and 

individual sensory preferences that lead to behaviors in participants 11 and older. AASP is a self-

reported questionnaire that scores components such as sensory sensitivity and avoidance for the 

five senses. Children with ASD have been found to have abnormal sensory processing behaviors 

that match in intensity but differ in processing patterns from neurotypical children (Crane et al., 

2009). 

The Child Behavior Checklist (CBCL) component of the Achenbach System of 

Empirically Based Assessment assesses a range of behavioral and emotional syndromes, 

including anxiety, depression, aggression, and defiant behavior problems. The syndromes are 

grouped into internally and externally focused behaviors and emotions. The CBCL questionnaire 

is administered to parents of children ages 6 to 18. Children with ASD have been found to have 

higher scores on CBCL subscales for depression, social problems, thought problems, and 

attention problems compared to neurotypical children (Arias et al., 2022). 

The Social Responsiveness Scale version 2 (SRS-II) is a rating scale measuring 

behavioral associated with ASD and can be completed by raters with at least 1 month of 

experience with the rated individual. Different rating forms are available for age groups, 

including a self-report form for individuals aged 19 and up. The SRS-2 focuses on social 

differences and each item is responded with a 4-point Likert scale rating(Bruni, 2014; 

Constantino & Gruber, 2012). 

The Vineland Adaptive Behavior Scales – II (Vineland-II) is utilized for the assessment 

of social and adaptive functions, also termed social competency. Vineland-II is sometimes used 

as a substitute for traditional intelligence testing in situations where the participant’s verbal 
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ability is inadequate or there is active psychopathology due to the shortness and ease of 

administration(Doll, 1935). 

The Differential Ability Scales (DAS) is a cognitive battery designed to test a range of 

abilities with a narrower and more specific domain than general intelligence tests. The DAS is 

intended to provide a profile of specific cognitive strengths and weaknesses to educators in order 

to tailor interventions. The various subtests are altered depending on participant age and ability 

and subdivisions cover verbal and nonverbal domains (Elliott et al., 1990, 2007). 

 

Statistical Analysis: 

All behavioral and cognitive test results were compared to the mean microstructural 

values in each ROI using general linear models. All models featured sex-as-assigned at birth, 

participant age, full scale IQ, scanner/evaluation site, and intracranial volume as control terms. 

All resulting aggregate g-ratio and conduction velocity p-values were corrected for multiple 

comparisons using the Benjamini & Hochberg (Benjamini & Hochberg, 1995) method across all 

214 ROIs. Test scales were not batch altered or z-scored for linear model testing as several tests 

are highly bimodally distributed in scoring by design, with non-autistic individuals frequently 

scoring at or near 0. 

 

Image Acquisition: 

Diffusion, T1-weighted, and T2-weighted images were acquired from each subject. 

Diffusion images were acquired with an isotropic voxel size of 2x2x2mm3, 64 non-colinear 

gradient directions at b=1000 s/mm2, and 1 b=0, TR=7300ms, TE=74ms. T1-weighted 

MPRAGE images with a FOV of 176x256x256 and an isotropic voxel size of 1x1x1mm3, 

TE=3.3; T2-weighted images were acquired with a FOV of 128x128x34 with a voxel size of 

1.5x1.5x4mm3, TE=35. 

 

Image Data Processing: 

 All image data was processed per the protocol described in Newman et al. (Newman et 

al., 2024) to generate aggregate g-ratio and aggregate conduction velocity maps. In brief, 

preprocessing was performed following prior work (Newman, Dhollander, et al., 2020); diffusion 

images were denoised (Veraart et al., 2016), corrected for Gibbs ringing artifacts (Kellner et al., 
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2016), and corrected for inhomogeneity fields using FSL’s topup and eddy commands utilizing 

outlier detection and replacement (Andersson et al., 2003, 2016; Andersson & Sotiropoulos, 

2016), The final preprocessed diffusion images were up-sampled to an isotropic voxel size of 

1.3x1.3x1.3mm3 (Greenspan, 2009). WM, GM, and CSF tissue response functions were 

generated using the Dhollander algorithm (Dhollander et al., 2016), and single-shell 3-tissue-

constrained spherical deconvolution were used to generate the WM fiber orientation distribution 

(FODs) and GM and CSF representations. 3-Tissue Constrained Spherical Deconvolution 

(Dhollander et al., 2017; Kelly et al., 2022; Mito et al., 2018, 2020) was used to calculate the 

voxel-wise maps of the fraction of signal arising from each of 3 compartments: an intracellular 

anisotropic, intracellular isotropic, and extracellular isotropic freely diffusing water compartment 

by setting the sum of all FOD coefficients equal to unity. WM-FODs were then used to create a 

cohort-specific template with a subset of 40 individuals counterbalanced between sex and 

diagnosis (D. Raffelt et al., 2012). All subject’s WM-FODs were registered to this template using 

an affine non-linear transform warp, and then the template was registered to a b-value matched 

template in stereotaxic MNI space (Hsu et al., 2015; Newman, Untaroiu, et al., 2020). A fixel-

based morphometry (FBM) (D. Raffelt et al., 2012; D. A. Raffelt et al., 2017) approach was used 

to estimate the intra-axonal cross-sectional area within each voxel to be used as an apparent 

axonal volume fraction (AVF). Each subject’s AVF maps were then registered to MNI space 

using the ANTs SyN nonlinear registration technique by aligning each to the 11-year-old 

adolescent template developed by Richards et al. Note that a template approximately one 

standard deviation below the mean age of this study was used to better register the comparatively 

smaller younger subjects (Richards et al., 2016; Richards & Xie, 2015). T1w and T2w images 

were processed as described in the MICA-MNI pipeline (Cruces et al., 2022), including N4-bias 

correction (Avants et al., 2009), rescaling both images from 0-100, co-registration using a rigid 

transform, and subsequently non-linear ANTs SyN registration to the same Richards et al., 

template as the diffusion-based images (Avants et al., 2014; Richards et al., 2016). While there 

are noted shortcomings to using T1w/T2w ratio to measure myelin in white matter regions 

(Sandrone et al., 2023), the method has also been shown to correlate well with myelin in the 

cortex (Glasser & Van Essen, 2011; Sandrone et al., 2023). No calibration or adjustments were 

performed because g-ratio values are generally not well established in adolescents, and there is a 
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desire not to alter or introduce additional error to g-ratio measurements before proceeding to 

aggregate conduction velocity calculation.  

 

Code Accessibility: 

All work was performed using publicly available software, and additional code for calculating g-

ratio and conduction velocity from WM FODs and T1w/T2w ratio images are available here: 

https://github.com/btn6sb/Conduction_Velocity.  

 

Aggregate G-Ratio and Conduction Velocity Calculation: 

Both metrics were calculated according to previously published methods (Newman et al., 

2024). The aggregate g-ratio was calculated on a voxel-wise basis according to Stikov et al. and 

was used according to Mohammadi & Callaghan, as displayed in Equation 1(Campbell et al., 

2018; Mohammadi & Callaghan, 2021; Stikov et al., 2011, 2015). As a measure of intra-axonal 

volume, the fiber density cross section was used as the AVF (D. Raffelt et al., 2012). As a metric 

of myelin density, the T1w/T2w ratio was used as the myelin volume fraction (MVF). These 

metrics represent the total sums of each respective compartment across the volume of the voxel 

and are a volume-based equivalent to the original formulation of g as the ratio of axon diameter 

(d) to fiber diameter (D).  

 

                                      � �  �
�

� �1 � ���

�������
                                                               

(1) 

 

Aggregate conduction velocity was calculated based on the calculations of Rushton 

(Rushton, 1951) and Berman et al. (Berman et al., 2019), reiterating Rushton’s calculation that 

conduction velocity (θ) is proportional to the length of each fiber segment (l) and that this is 

roughly proportional to D, which in turn can be defined as the ratio between d and the g-ratio (g). 

Furthering the considerations of Rushton, Berman et al. show that a value proportional to 

conduction velocity can be calculated using axon diameter and the g-ratio as in equation 2 

(Berman et al., 2019): 
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                                                 � � � � ����ln ��� � 
��ln ���                                                      

(2) 

 

Aggregate g-ratio and conduction velocity were averaged across 214 ROIs from the JHU-ICBM 

WM atlas (48 ROIs) (Mori et al., 2005) and the Destrieux Cortical Atlas (164 ROIs) (Destrieux 

et al., 2010). Additionally, two composite ROIs were included, one of all 48 JHU ROIs and one 

of 150 neocortical regions from the Destrieux Atlas. 

Cluster Analyses: 

To further investigate the relationship between the behavioral and cognitive metrics and 

brain microstructure beyond the ROI level, we employed two separate machine learning cluster 

analysis techniques in an exploratory manner. These clustering techniques allow for examining 

the relationship between participants and brain imaging metrics by grouping participants, brain 

areas, and behavioral and cognitive metrics based on similarity across metrics. In performing 

these analyses, we aimed to explore whether groups or clusters of participants features exist that 

describe subtypes or groups within the cohort. We also demonstrated the utility of cluster 

analysis for analyzing structural neuroimaging data. We applied Clustering Hierarchy 

Optimization by Iterative Random Forests (CHOIR) and Exploratory Graph Analysis (EGA) to 

examine similarities across participants (CHOIR) and across metrics (EGA). These clustering 

analyses were performed using the respective R packages for each method. 

EGA is a method for uncovering a sample’s latent factors and underlying metrics (Golino 

& Epskamp, 2017). This is performed via the computation of a correlation matrix, followed by 

graphical LASSO to obtain the inverse covariance matrix. The walktrap random walk algorithm 

then identifies the number of dense subgraphs and captures the community/cluster structure 

(Pons & Latapy, 2005). The number of clusters equals the latent factors in a given dataset. This 

paper includes each metric from neuroimaging (i.e., mean values in each of the 212 ROIs) and 

the behavioral and cognitive metrics in the EGA cluster analysis. The composite ROIs and 

summary behavioral and cognitive metrics are not included, as each is derived from the various 

components and subscales. As EGA is designed to uncover latent factor groupings, we would 

expect that the majority of clusters should reflect the subcomponents of each test and each 

neuroimaging metric, i.e., mean conduction velocity in one ROI should vary more closely with 

the mean conduction velocity in a neighboring ROI than with the BRIEF subscales. 
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Similarly, the various subscales should be expected to correlate most closely with each 

other, especially within tests, rather than with neuroimaging metrics. Deviations from this 

expected pattern may reveal separate brain networks or behavioral tests susceptible to neuronal 

microstructure changes. Clustering was conducted separately for g-ratio and conduction velocity 

metrics, as the strong inverse correlations between each measure in each ROI would be expected 

to dominate the results.  

CHOIR is a repeated iterative random forest and statistical permutation method based on 

distinctive features for clustering data. Initially designed for single-cell analysis, where, for 

example, a cluster might denote a specific biologically distinct cell type or population, here we 

substitute participants for cells and use the mean aggregate g-ratio and conduction velocity in 

each ROI as features. CHOIR generates robust clusters through an iterative random permutation 

testing procedure that merges clusters that fail the prediction testing (Petersen et al., 2024). After 

the final clusters are generated, we can recover the original identity of participants and observe if 

the final clusters correspond with demographic, behavioral, or cognitive variables of interest. As 

the clustering is performed using only neuroimaging metrics, the correspondence of clusters to 

other variables suggests that particular groupings of neuroimaging results across ROIs are 

associated with these variables. 

 

Results:  

Behavioral Metrics: 

The participant scores on each of the behavioral subscales, separated by diagnosis, are presented 

in Fig. 1. On the BRIEF, CBCL, RBS-R, SRS-2, the ASD participants had higher mean scores on 

each metric compared to the non-ASD participants while on the Vineland-II and CELF the ASD 

participants had lower mean scores on each metric compared to the non-ASD participants. The 

AASP was mixed with the ASD participants having a higher score in 10 metrics and non-ASD 

participants having a higher mean score in 3 metrics. 

 
________________________________ 

 
FIGURE 1 ABOUT HERE 

________________________________ 
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Correlation Analysis: 

Results from all tests across all subjects were analyzed using a simple Pearson correlation 

analysis to observe cross test associations (Fig. 1). There were widespread significant 

correlations between individual subscales, particularly within tests (please see 

https://tinyurl.com/2dpmjyc8 for a comprehensive table of correlation coefficients and p-

values). Interestingly there was widespread positive correlations between the CBCL, RBS-R and 

BRIEF, and a second group of less positive correlations between the AASP and CELF-4 with 

these two groups significantly negatively correlated from each other, suggesting a split between 

sensory and language processing and behavioral and social domains. 

 
________________________________ 

 
FIGURE 2 ABOUT HERE 

________________________________ 
 
 

Linear Modeling: 

When examining data from all participants, conduction velocity was significantly 

associated with 47 different subscales in at least 1 ROI. Subscales with significant associations 

came from the BRIEF, RBS-R, CELF-4, CBCL, SRS-2, and Vineland-II tests. The BRIEF test, 

in particular, had significant subscales in many ROIs (Fig. 3). For example, the monitor subscale, 

which measures an individual’s ability to monitor plans, thoughts, and emotions, was significant 

for conduction velocity in 168 ROIs after multiple comparison corrections. Significant ROIs 

were located across a wide range of cortical ROIs but were especially prominent in the superior 

parietal and frontal cortex and subcortical gray matter (Fig. 4).  

When considering the same data set, g-ratio was not as widely nor strongly associated 

across ROIs with behavioral metrics. Only seven different subscales were significantly 

associated with at least one ROI. Significant subscales for g-ratio were from the DAS-School 

Age, SRS-2, BRIEF, ADOS, and Language Acquisition tests. The most significant associations 

were found in the deep WM in the BRIEF and DAS, associated with 19 different ROIs. Across 

their different subscales, the CELF-4 was positively associated with conduction velocity, while 

RBS-R was negatively associated with conduction velocity.  
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________________________________ 
 

FIGURE 3 ABOUT HERE 
________________________________ 

 
 

________________________________ 
 

FIGURE 4 ABOUT HERE 
________________________________ 

 
 

While conduction velocity had a much stronger pattern of significance when considering 

all the data, when associations were considered exclusively within the autistic participants, g-

ratio was more strongly associated with behavioral metrics across several ROIs. In ASD-only 

data evaluations, conduction velocity was significant for only three subscales from the Vineland-

II and BRIEF tests. The composite total metric of Vineland-II, which was significant in 33 ROIs 

when analyzing data from all participants, was only significant for 1 ROI when considering 

solely ASD participants. G-ratio, conversely, was significant for nine different subscales derived 

from the BRIEF, ADOS, CBCL, Language Acquisitions, SRS-2, and Vineland-II tests. In 

particular, g-ratio was more strongly associated with the CBCL test than conduction velocity, and 

the total score of the CBCL subscales was significant for g-ratio in 37 ROIs. G-ratio 

relationships were primarily located in the motor cortex and WM. Subscales of the SRS-2 

demonstrated powerful associations across analyses with multiple significant areas in g-ratio 

tests when considering all participants and only those with ASD.  

 

CHOIR Cluster Analysis: 

 CHOIR analysis of the 414 total ROIs resulted in a total of 6 distinct clusters that were 

generally associated with a gradient between higher aggregate g-ratio and lower conduction 

velocity at one pole (lower microstructural maturity) and lower aggregate g-ratio and higher 

conduction velocity at the other pole (higher microstructural maturity; Fig. 5). This pattern was 

broadly similar across all the ROIs used to generate the clusters (please see 

https://tinyurl.com/2dpmjyc8). Demographically, the clusters did not appear to be predictive of 

subject sex or ASD diagnosis (Fig. 6). However, there was a gradient for subject age, with 

clusters 2, 4, and 5 having a higher mean subject age than the overall mean and clusters 1, 3, and 
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6 having a lower mean subject age than the overall mean. Interestingly, this pattern was slightly 

different for brain volume, with clusters 1, 2, and 5 having higher mean subject brain volume 

than the overall mean and clusters 3, 4, and 6 having a lower mean subject brain volume than the 

overall mean. This allows the division of the clusters into four general patterns based on 

demographics: a lower maturity, younger cluster with low brain volume (clusters 3 & 6), a higher 

maturity, older cluster with high brain volume (clusters 2 & 5), a cluster with mixed 

microstructural maturity, younger, with high brain volume (cluster 1), and a cluster with mixed 

microstructural maturity, older, with low brain volume (cluster 4).  

When the behavioral and cognitive test results were projected onto the clusters, the 

pattern generally appeared to follow the age-related poles defined earlier, with subscales having a 

high/low gradient of scoring matching the younger/older divide for clusters 3 & 6 and 2 & 5. 

However, within the same test, like the CELF and AASP Sensory Profile, this polarity was 

switched between different items (Fig. 6). Age, rather than brain volume, appeared to be more 

indicative of which pole the intermediate clusters (1 & 4) were aligned to. The complete list of 

all behavioral results projected onto the CHOIR cluster is also available at 

https://tinyurl.com/2dpmjyc8. 

 

________________________________ 
 

FIGURE 5 ABOUT HERE 
________________________________ 

 
 
 

_______________________________ 
 

FIGURE 6 ABOUT HERE 
________________________________ 

 

 

EGA cluster analysis: 

 The clusters from the EGA analysis largely replicated existing divisions in the data, with 

clusters generally made up of related metrics. All metrics included from the entire cohort clusters 

were entirely related metrics, with no behavioral or neuroimaging metrics in the same cluster. 

This analysis recreated several observable groupings from the correlation analysis presented in 
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Fig. 2, for example the large yellow cluster in the aggregate g-ratio map clusters the CBCL, 

BRIEF, and RBS-R subscale metrics together. However, when only participants from the ASD 

group were used to generate the cluster, only one metric taken from the behavioral tests, the 

inconsistency subscale from the BRIEFS, was found to be more closely with the neuroimaging 

metrics, both aggregate g-ratio and aggregate conduction velocity, than any of the behavioral or 

cognitive metrics (Fig. 7). In the aggregate conduction velocity EGA analysis, the BRIEF 

inconsistency subscale was placed in a cluster with 6 ROIs, including bilateral cerebellum and 

bilateral occipital-temporal regions. In the aggregate g-ratio EGA analysis, the BRIEF 

inconsistency subscale was placed in a cluster with 66 ROIs, including 17 WM regions, bilateral 

hippocampus, amygdala, cerebellum, putamen, and nucleus accumbens and several bilateral 

cortical areas across the brain. 

 

________________________________ 
 

FIGURE 7 ABOUT HERE 
________________________________ 

 

 

Discussion 

This study identifies multiple regions associated with particular behavioral and cognitive 

autism evaluations. Several tests, particularly the CELF-4 and BRIEF, showed excellent 

associations between brain metrics and individual performance. These metrics were also 

observed to be highly correlated to one another by both correlation and cluster analysis. Despite 

differences in assessments, there was much overlap in brain regions associated with the various 

metrics, mainly when non-autistic participants were included. Associations in white matter 

regions demonstrated robust associations for both analysis of all participants and ASD-specific 

tests. However, when only autistic individuals were evaluated, aggregate g-ratio was 

significantly associated with more ROIs than conduction velocity. This switch from more 

significant conduction velocity measurements when all participants were assessed to more g-

ratio associations when evaluating exclusively autistic participants suggests that the observed 

neurological differences between autistic and non-autistic individuals may differ from the 

neurological correlates of autism severity. This finding confirms the consensus among the ASD 
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clinical community that behavioral tests need to be evaluated for effectiveness at assessing along 

separate dimensions of diagnosis and severity and that any single test may not assess both 

components well (Hus & Lord, 2014; Lord et al., 2012). By finding widespread findings between 

behavioral and cognitive tests and brain structure associated with ASD, this study suggests that 

clinical evaluations by experts and parental assessments are both able to predict differences in 

neurological structure to at least some degree. While the linear models showed that many 

different assessments can be reflective of neuronal structure, the cluster analyses suggested that 

the breadth of assessments within many major tests is important to fully capture individuals who 

may present different behavioral profiles depending on age. While several of the tests examined 

in this study showed relationships between brain structure and total or composite scores across 

the internal metrics of the study, only the CBCL total score was significantly associated with 

multiple brain regions within the ASD only cohort, suggesting that the notion of severity within 

ASD may manifest in highly different ways along different behavioral vectors. Interestingly the 

CBCL has been found to have higher validity within subscales, particularly anxiety and 

depression, than the total score(Pandolfi et al., 2014). While we do not delineate specific groups 

or subgroups with this study, these findings do suggest that differential brain regions may be 

involved in different symptom profiles, and lends support for clinical examination of multiple 

subscale scores, rather than composite scores alone. Conversely, it is possible that some of the 

associations between various subscales and brain microstructure is not unique or wholly specific 

to ASD, and it is possible that these tests are capturing behavior not unique to ASD (Havdahl et 

al., 2016). .  

The unequal distribution of significant results across behavioral and cognitive tests 

indicates that diagnostic assessments vary in their correlation to brain structure. Prior to the 

DSM-5 recategorization, the BRIEF assessment was reported to be elevated across subgroups of 

ASD, including autistic disorder, Asperger’s syndrome, and pervasive developmental disorder 

(Blijd-Hoogewys et al., 2014). While these diagnostic labels have been discontinued, the high 

number of associations between microstructural metrics and BRIEF subscales may demonstrate 

that BRIEF captures a breadth of behaviors, some of which may not be specific to autism alone, 

in a way that aligns with what is occurring structurally in the brain. The SRS-2 assessment 

displayed multiple associations with g-ratio when analyzed in the context of all participants and 

the ASD subgroup specifically. The SRS is a valid predictive measure of ASD across time points 
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in childhood, indicating that it captures consistent autistic traits within a child over time (Chan et 

al., 2017). This continuity across development may indicate an underlying neurological 

difference present from a young age, and thus, it has the potential to be detected early on. 

Conversely, the lack of associations between microstructural metrics and widely used diagnostic 

assessments, such as the ADOST, suggests that there may be a disjunction between behaviors 

emphasized in diagnostic measures and those that stem from neurological differences shared 

across ASD individuals. Pinpointing which behavioral metrics align with brain structure across 

ranges of symptom severity may better enable diagnostic tools to accurately distinguish ASD 

children from those that are neurotypical or have other disorders.  

The cluster analysis performed here was unique in adapting both methods, previously 

designed for single-cell analysis (via CHOIR) and psychometric latent factor analysis (EGA) to 

neuroimaging data. CHOIR can cluster subjects incorporating multiple features per subject, 

while EGA can associate features across subjects, providing different but complementary 

approaches. While conclusions drawn from this novel approach should be limited and done 

cautiously, CHOIR, in particular, appeared to replicate many demographic and behavioral 

differences from exclusively microstructural neuroimaging data that suggests that accounting for 

multiple ROI measurements may have value in neuroimaging analysis. The CHOIR results 

instead elegantly showcase associations between brain metrics and age as being essential 

markers of change relative to sex or even ASD diagnosis.  

Overlap between age-related clusters and different behavioral metrics suggest that the 

behavioral profile of autism may be modulated by age. Other studies have suggested that some 

ASD behaviors decrease with age during the end of the developmental period, such as restricted 

and repetitive behaviors(Esbensen et al., 2009), while other studies have found more complex 

age-related trajectories of behavioral score increase and decrease (Waizbard�Bartov et al., 

2022). The EGA technique correctly replicated correlations between metrics and replicated 

clusters of imaging metrics despite being provided with these metrics as independent features, 

for example, the purple cluster at the bottom of the conduction velocity figure represents the left 

and right olfactory cortex, left and right nucleus accumbens, and left and right subcallosal gyrus. 

This symmetry between left and right ROIs appearing in the same cluster was common 

throughout the EGA results. Conduction velocity appeared to have more distinct clustering of 

brain regions compared to the 3 clusters of g-ratio ROIs. This may be due to increased sensitivity 
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to the development of axonal tracts that cross or connect, and are thus shared between, multiple 

ROIs.    

A previous study found that ASD was associated with decreased aggregate g-ratio and 

conduction velocity but not a significant difference in T1/T2 ratio, demonstrating that 

neurological differences in ASD may be based on changes in axonal structure and not simply a 

deficit of myelination (Newman et al., 2024). These changes may cause the observed switch 

when evaluating ASD participants solely as differences in axonal architecture manifest uniquely 

in conduction velocity compared to g-ratio. Subtle differences in inner axonal diameter can 

significantly affect conduction velocity, while g-ratio relies on the balance between axonal 

diameter and myelin thickness. Based on our observations, ASD participants with more severe 

behavioral symptoms may have similarly altered ratios between inner axonal diameter and 

myelin diameter. In contrast, high-performing ASD participants may have a more neurotypical 

relationship between diameter and myelin. This range of g-ratios within the ASD cohort may 

underlie the range of behavioral severity seen across the disorder. As g-ratio had more and 

stronger significant relationships with behavioral metrics than conduction velocity, combined 

with the lack of significant associations between T1w/T2w ratio, the critical difference affecting 

g-ratio in ASD participants may be inner axon diameter as opposed to myelin diameter. 

These findings are supported by prior post-mortem electron microscopy studies of the 

corpus callosum of 12 subjects found significantly decreased axon diameters and cross-sectional 

areas in autistic subjects (Wegiel et al., 2018). Additionally, a decrease in the percentage of 

large-diameter axons in all five segments of the corpus callosum was observed in autistic 

individuals. Prior work with the data used in this study found the same result from 

microstructural analysis (Newman et al., 2024). Furthermore, the histological study found that 

autism had a more significant correlation with axon diameter and area than with myelin 

thickness, agreeing with the explanation that the axonal diameter element of g-ratio has a 

predominating effect on autism development compared to myelin diameter. The structural 

abnormalities in axonal development observed in this study demonstrated deficits in 

interhemispheric connection specificity, which may underlie dysregulation of velocity and 

volume of information and issues with information processing. This study reinforces our findings 

that axonal diameter may inform behavior patterns associated with ASD and provides a basis for 

how this property may alter long-range connections. 
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A recent structural MRI study in toddlers and preschoolers found that age-related 

increases in cortical myelination in TD participants were absent in children with ASD, indicating 

that myelin trajectory may follow a different timeline in those with ASD (Chen et al., 2022). A 

significant association was not present between cortical myelin and autism symptoms when 

analyzing results from ASD participants, aligning with our observations that myelination may 

not heavily contribute to ASD behaviors as development continues. The disruption of 

myelination in young children found by this study may reflect that the microstructural 

abnormalities underlying ASD are not constant until the brain is further developed, explaining 

the changes in symptom severity that can be present as a child with ASD gets older. 
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FIGURE CAPTIONS 

 

Figure 1: Boxplots with median, upper and lower quartile (75th & 25th percentile scores, 

respectively), lines denoting 1.5x the intrer-quartile range, and individual scores beyond that 

range, for each subscale metric and each test administered in this study. ASD participants 

typically had a higher median score than non-ASD participants with the exception of the CELF 

and Vineland-II tests. Most tests reliably scored either ASD or non-ASD subjects higher or lower 

at the group level, with the exception of the AASP.   

 

Figure 2: Correlation plot showing the Pearson correlation coefficient between each of the 

cognitive and behavioral test subdomains as well as composite/total scores. Subdomains of tests 

were generally highly positively correlated within tests, but there was significant negative 

correlations between tests, particularly the AASP/CELF and behavioral metrics. Tests measuring 

behavioral and social functioning tended to be highly positively correlated.  

 

Figure 3: Bar charts showing the mean slope of ROIs significantly associated with each subscale 

metric, colored by parent metric and separated by conduction velocity or g-ratio. The number on 

the bar specifies the number of ROIs significantly associated with each metric after multiple 

comparison corrections. Charts show relationships between brain cellular microstructure from a 

sample that includes all autistic and non-autistic participants (A) or exclusively participants 

diagnosed with ASD (B). 

 

Figure 4: Illustrations showing the location of ROIs significantly associated with each 

significant parent evaluation. Color is consistent with the bar charts in Fig. 3 and is darker if the 

region is associated with more subscales within the parent evaluation. Illustrations show 

relationships between brain cellular microstructure from a sample that includes all autistic and 

non-autistic participants (A) or exclusively participants diagnosed with ASD (B). 

 

Figure 5: Results of the CHOIR cluster analysis. CHOIR identified six total clusters from the 

neuroimaging data alone. These tended to be aligned along a gradient with a high aggregate 
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conduction velocity and low aggregate g-ratio pole at clusters 2 & 5 and, in the inverse, a high 

aggregate g-ratio and low aggregate conduction velocity pole at clusters 4 & 6. 

 

Figure 6: Demographic, behavioral, and cognitive metrics displayed over CHOIR clusters 

presented previously in Figure 5. None of these metrics were used in the computation of the 

clusters. Sex and ASD diagnosis were not strongly related to any cluster, but age and brain 

volume were starkly divided. Several behavioral measures also showed stark divides, mainly 

following the age-related clustering but differing directions between different subscales. Some 

metrics, like the SRS and ADOS (ASD only), did not display mapping onto the defined clusters. 

 

Figure 7: EGA cluster analysis output for ASD participants using either aggregate g-ratio or 

conduction velocity metrics. Each circle represents one behavioral metric or the mean value of 

the neuroimaging metric within that ROI. Clusters were largely divided (grey dashed line) 

between behavioral metrics and neuroimaging microstructure ROIs, indicating that each type of 

metric was more highly correlated across the cohort with metrics of the same type rather than 

different types. The exception was the BRIEF Inconsistency, which was included within a cluster 

of otherwise entirely neuroimaging microstructure (colored red in both diagrams). Also of note is 

that conduction velocity appears much more granular with smaller, more specific clusters to 

individual networks whereas all g-ratio ROIs are contained within one of 3 clusters. 
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TABLES 

 

Test Name Focus Administrator Subscales 
The Clinical 
Evaluation of 
Language 
Fundamentals – 
Fourth Edition 
(CELF-4) 

Receptive 
language-skills 
including 
phonology, 
morphology, 
syntax, semantics, 
and working 
memory 

Clinician • Recalling Sentences 
• Formulating Sentences 
• Concepts & Following 

Directions  
• Word Classes (Receptive & 

Expressive) 
• Word Definition 
• Word Structure 
• Core Language 

 
The Behavior 
Rating Inventory of 
Executive 
Functions (BRIEF) 

Executive function 
deficits 

Caregiver • Planning & Organizing 
• Organization of Materials 
• Monitor 
• Inhibit 
• Shift 
• Emotional Control 
• Initiate 
• Working Memory 
• Behavioral Regulation 
• Metacognition 
• Global Executive 
• Negativity 
• Inconsistency  

The Repetitive 
Behavior Scale-
Revised (RBS-R) 

Specifically 
examines repetitive 
behavior  

Caregiver • Stereotyped Behavior 
• Self-injurous Behavior 
• Compulsive Behavior 
• Ritualistic Behavior 
• Sameness Behavior 
• Restricted Behavior 

The 
Adolescent/Adult 
Sensory Profile 
(AASP) 

Sensory processing 
and preferences  

Self  • Sensory Seeking 
• Emotionally Reactive 
• Low Endurance/Tone 
• Oral Sensory Sensitivity 
• Inattention/Distractibility 
• Poor Registration 
• Sensory Sensitivity 
• Sedentary 
• Fine Motor/Perceptual 
• Low Registration 
• Sensation Seeking 
• Sensory Sensitivity 
• Sensation Avoiding 

The Child Behavior Behavioral and Caregiver  • Anxious Depressed 
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Checklist (CBCL) emotional 
syndromes, 
including anxiety, 
depression, 
aggression, and 
defiant behavior 
problems 

• Somatic Complaints 
• Withdrawn 
• Attention Problems 
• Aggressive Behavior 
• Internalizing Problems 
• Externalizing Problems 
• Affective Problems 
• Anxiety Problems 
• Attention 

Deficit/Hyperactivity 
• Oppositional Defiant 

Problems 
• Social Problems 
• Thought Problems 
• Rule-Breaking Behavior 
• Somatic Problems 
• Conduct Problems 

Social 
Responsiveness Scale 
(SRS-II) 

Social behaviors 
associated with ASD 

Caregiver • Social Awareness 
• Social Cognition  
• Social Communication 
• Social Motivation 
• Restricted Interest & 

Repetitive Behavior 
Vineland Adaptive 
Behavior Scales – II 
(Vineland-II) 

Measurement of 
adaptive behavior 
skills. 

Caregiver • Communication 
• Living Skills 
• Socialization 
• Adaptive Behavior 

Differential Ability 
Scales (DAS) 

Primary focus on 
cognitive abilities  

 • Verbal Reasoning 
• Nonverbal Reasoning 
• Spatial Reasoning 
• General Conceptual Ability 

Table 1. Summary of behavioral assessments administered to study participants. 
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