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Abstract

A joint analysis of the NCI60 small molecule screening data, their genetically defective

genes, and mechanisms of action (MOA) of FDA approved cancer drugs screened in the

NCI60 is proposed for identifying links between chemosensitivity, genomic defects and

MOA. Self-Organizing-Maps (SOMs) are used to organize the chemosensitivity data. Stu-

dent’s t-tests are used to identify SOM clusters with enhanced chemosensitivity for tumor

cell lines with versus without genetically defective genes. Fisher’s exact and chi-square

tests are used to reveal instances where defective gene to chemosensitivity associations

have enriched MOAs. The results of this analysis find a relatively small set of defective

genes, inclusive of ABL1, AXL, BRAF, CDC25A, CDKN2A, IGF1R, KRAS, MECOM,

MMP1, MYC, NOTCH1, NRAS, PIK3CG, PTK2, RPTOR, SPTBN1, STAT2, TNKS and

ZHX2, as possible candidates for roles in chemosensitivity for compound MOAs that target

primarily, but not exclusively, kinases, nucleic acid synthesis, protein synthesis, apoptosis

and tubulin. These results find exploitable instances of enhanced chemosensitivity of com-

pound MOA’s for selected defective genes. Collectively these findings will advance the inter-

pretation of pre-clinical screening data as well as contribute towards the goals of cancer

drug discovery, development decision making, and explanation of drug mechanisms.

Introduction

The emergence of extensive human tumor cell line compound screening data, coupled with

advances in cancer genomic technologies, has generated comprehensive and complex data-

bases [1]. Strategies for analyzing this data may identify important links between genetic

changes that contribute to the hallmarks of cancer biology [2] and the discovery of leads in the

pursuit of small-molecule cancer therapy [3]. The present report examines links between

genetically defective genes in the National Cancer Institute’s panel of sixty tumor cell lines

(referred to hereafter as NCI60), chemosensitivity, as measured by growth inhibition

(GI50NCI60; adopting the convention of an under bar to describe the vector of GI50NCI60

(N = 59) measurements for each screened compound) and preferences for mechanisms of

action (MOA) of identified linkages. An elegant study by Ikediobi et al. [4] addressed this goal

by examining relationships between mutations in 24 cancer genes in the NCI60 tumor cell
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lines and the GI50NCI60 activity of ~8k screened compounds. Their finding of a strong associa-

tion between the BRAF mutation (V600E) and the GI50NCI60 activity of phenothiazines sup-

ports important links between altered genes, chemosensitivity and MOAs. The current

analysis extends this work, with significant differences.

• GI50NCI60 results for ~53k screened compounds are analyzed (DTP database).

• A larger set of gene mutations (N = 368) for the NCI60 tumor cell lines are analyzed (CBio-

Portal database).

• A novel analysis of GI50NCI60, based on Self-Organizing-Maps (SOMs), emphasizing FDA

approved compounds with assigned MOAs in the NCI60 screened compounds, is used to

derive links between tumor cell chemosensitivity, genetically altered genes and MOAs.

Efforts to develop links between pre-clinical tumor cell screening data, genomic defects and

drug mechanisms may contribute to advances in small-molecule cancer therapies. An impor-

tant element of these efforts requires more informed interpretations of small-molecule screen-

ing results in the context of genomic profiles and drug action. These associations may yield

undiscovered opportunities for drug re-purposing and new applications of gene mutations

towards personalized medicine.

Data

Three publicly available data sources are used for this analysis. First, chemosensitivity data

consists of the 2019 release of GI50NCI60 measurements from the Developmental Therapeutics

Program (DTP) in the National Cancer Institute. Historically the NCI60 screen was designed

to identify relationships between chemotypes and cellular responses [5]. Their bulk download

(https://dtp.cancer.gov/discovery_development/nci-60) includes GI50 values for 159 tumor

cell types. A subset of 70 tumor cell lines, identified previously [6] as representing an informa-

tion-rich component of this data, consists of ~53k screened compounds, which for this analy-

sis was reduced to 46,798 GI50NCI60 records when filtered for a coefficient of variation above

0.1. Z-score normalized GI50NCI60 measurements of the filtered data (~46K) were used for

chemosensitivity analysis. The raw data file is included in the S1 master_appendix sheet

GI50.

Second, genetic data is obtained from the cBioPortal database (https://www.cbioportal.org/

) [7,8]. A total of 368 altered genes are listed for the NCI60; with either a mutation (MUT),

copy number alteration (CNA) or fusion/splice (FUSION). These genomic changes are

grouped, so that a gene alteration due to any or all types of variations will be designated as

genetically defective. In this context, a defective gene indicates only a modification from the

wild-type allele. Genes designated as defective genes can have wide-ranging effects including

gain-of and/or loss-of gene function. Defective genes occur within each NCI60 tumor cell indi-

vidually or as pairs, doublets, triplets, etc. S1 Appendix Fig 1 in S1 File displays a histogram

for the frequency of defective genes within the NCI60. The highest frequency exists for tumor

cell lines having a single defective gene. This frequency decreases progressively down to less

than one percent for tumor cell lines sharing 10 defective genes. The cumulative frequency of

tumor cell lines sharing any defective gene is 0.97, an indication that the probability of tumor

cell lines sharing any defective gene is approaches one. S2 Appendix Fig 2 in S1 File displays

the histogram of defective genes shared between tumor cell lines. These results find that shared

defective genes, comprised of doublets and triplets are more common compared to the appear-

ance of only a single defective gene (consistent with Ikediobi et al. [4]). S3 master_appendix

sheet appendix_table_I lists the singlets, doublets and triplets of defective genes observed in
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the NCI60. S4 master_appendix sheet appendix_table_II summarizes their counts. Inspec-

tion finds a diverse set of defective genes, some of which are not considered to have important

roles in cancer. CDC25A, TP53, CDKN2A, CDKN2B, MYC, BRAF, EP300, KRAS, NOTCH1
and PTK2 are the top ten most frequently occurring defective genes. To summarize, defective

genes appearing as doublets or triplets finds these top ten defective genes to appear in combi-

nation with themselves and other genes. Collectively these results indicate that shared defective

genes, with diverse roles in cellular biology, are common within the NCI60.

Third, CellMiner [9] (https://discover.nci.nih.gov/cellminer/home.do) provides informa-

tion about mechanism of action (MOA) for Food and Drug Administration (FDA) approved

compounds. CellMiner reports 270 FDA compounds with unique NSC (National Service Cen-

ter) and Name assignments that have been screened in the NCI60 (ca. 2019). One-hundred

and ninety FDA screened compounds appear in the 46,798 GI50NCI60 responses. One-hundred

and four MOA assignments exist for this set of compounds. These assignments consist of a pri-

mary MOA designation followed by secondary MOAs. For example the assignment

BCR-ABL|YK,FYN,LYN indicates BCR-ABL at the primary MOA, with YK (tyrosine kinase),

FYN and LYN (both Proto-Oncogene, Src Family Tyrosine Kinases) as secondary MOAs.

Thirty primary MOAs are assigned to this data. The complete set of MOAs for FDA screened

compounds is listed in S1 S5 master_appendix sheet appendix_table_III. Seven of the most

frequent primary MOA classes spanning this data function to target tubulin:Tu, topoisomerase

2:T2, topoisomerase 1:T1, alkylation:A (A2: Alkylating_at_N-2_position_of_guanine, A6:

Alkylating_at_O-6_of_guanine, A7: Alkylating_at_N-7_position_of_guanine, AlkAg: Alkylat-

ing agent and anti-metabolites:AM), DNA:D (Db:DNA_binder, DDI/R,

Fig 1. Results for selecting optimal cluster size using the elbow method (Panel A), silhouette method (Panel B)

and the gap_statistic method (Panel C). Selection for the elbow method is based on the largest local derivative of the

within groups sum of squares (Panel A triangles), the maximum silhouette width (Panel B) and the first non-negative

value for Gap(k)-(Gap(k + 1)−sdk+1) (Panel C triangles). These results indicate an optimal number of clusters in the

26–28 range. Panel D displays the GI50codebook dendrogram (Euclidean, Ward’s) with cuts at 28 (red lines) and 7

clusters (green lines), respectively.

https://doi.org/10.1371/journal.pone.0243336.g001
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DNA_damage_repair/inducer, Df:antifols, Ds: DNA_synthesis_inhibitor), kinases:PK and

apoptosis:Apo. MOA:PK consists of over 100 kinase targets. FDA compounds screened in the

NCI60, and their assigned CellMiner MOA, will be used for the linking MOA to

chemosensitivity.

METHODS: Data clustering

The methods for linking chemosensitivity, defective genes and MOA apply a sequential, multi-

tiered approach. First, the GI50NCI60 data is organized into clusters. Many statistical tools are

now available for clustering GI50NCI60 data [10]. Relying on our prior analysis [6], the results

presented here use Self-Organizing-Maps (SOMs) [11,12]. Parameters from prior SOM analy-

ses are selected for clustering (hexagonal nearest neighbors, Epanechnikov Function kernal

[13]). SOM dimensions are based on a heuristic using the ratio of the first and second principal

components of the data. The y-axis dimension is calculated as round(sqrt(munits/ratio�sqrt

(0.75))), where munits = 5�nsamples^0.543. The x-axis dimension is calculated as round

(munits/y-dimension). This heuristic is derived from the developers of SomPak, based on

their usage. The sqrt(0.75) multiplier is explained as follows, “in the hexagonal lattice, the side

lengths are not directly proportional to munits (= 5�nsamples^0.543) since the units on the y-

axis are squeezed together by a factor of sqrt(0.75)”. Applying this procedure yields SOM map

dimensions of 44 rows and 28 columns.

Each of these 1232 SOM nodes defines a vector representing the average GI50NCI60 for all

compounds clustered within each SOMDTP node (referred to hereafter as a node’s

Fig 2. Panel A displays a heatmap of GI50codebook, colored spectrally from green(chemoinsensitive) to red

(chemosensitive) response. Dendrogram at the left represents hierarchical clustering (Euclidean, Ward’s) of

GI50codebooks (reproduced from Fig 1 Panel D). Panel B displays the SOMDTP colored according to hierarchical cutree

[18] specified at the optimal number of 28 meta-clades. The 28 colors appear spectrally from meta-clade 1 (dark blue),

at the bottom of the hierarchical dendrogram, to meta-clade 28 (dark red), at the top of the hierarchical dendrogram.

Grayscale bar adjacent to the 28 meta-clade spectrally colored bar displays the 7 meta-clades groupings. The NCI60

tumor cell lines clustered in the heatmap are ordered, left to right, as: SK.OV.3.Ovarian, NCI.H322M.Lung, DU.145.

Prostate, A549.ATCC.Lung, HOP.62.Lung, OVCAR.5.Ovarian, TK.10.Renal, EKVX.Lung, A498.Renal, NCI.H226.

Lung, SK.MEL.28.Melanoma, SK.MEL.2.Melanoma, BT.549.Breast, UACC.257.Melanoma, MALME.3M.Melanoma,

SN12C.Renal, OVCAR.8.Ovarian, NCI.H23.Lung, IGROV1.Ovarian, MDA.MB.231.ATCC.Breast, OVCAR.4.Ovarian,

CAKI.1.Renal, ACHN.Renal, UO.31.Renal, HS.578T.Breast, RXF.393.Renal, T.47D.Breast, HOP.92.Lung, HCC.2998.

Colon, HT29.Colon, COLO.205.Colon, NCI.H460.Lung, KM12.Colon, PC.3.Prostate, OVCAR.3.Ovarian, M14.

Melanoma, MDA.MB.435.Breast, UACC.62.Melanoma, SK.MEL.5.Melanoma, SW.620.Colon, HCT.15.Colon,

HCT.116.Colon, LOX.IMVI.Melanoma, MCF7.ATCC.Breast, MCF7.Breast, NCI.H522.Lung, K.562.Leukemia,

RPMI.8226.Leukemia, HL.60.TB..Leukemia, SR.Leukemia, MOLT.4.Leukemia, CCRF.CEM.Leukemia.

https://doi.org/10.1371/journal.pone.0243336.g002
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GI50codebook). S2 master_appendix sheet SOM_codebook lists the 1232 GI50codebooks. Each

compound’s SOMDTP node will be referred to as its projection. The best projection can be

extended to include the 2nd, 3rd, 4th, etc. SOMDTP nodes to determine whether a compound’s

next best projections appear as SOMDTP neighbors. Prior analyses found GI50codebook patterns

to be associated with a compound’s MOA (e.g. alkylating agents, tubulin targeting agents,

DNA/RNA damaging agents and agents affecting mitochondrial function [6]). Analysis of

GI50codebook patterns has also been proposed for use in the development of clinical strategies

based on differentially expressed molecular targets within classes of tumors [14,15]. Other

applications include the recent identification of unique GI50codebook patterns within the

NCI60 renal subpanel as the basis for further testing of the natural product-derived family of

englerins [16].

While each SOMDTP node represents a cluster of GI50NCI60 values, a more global, lower res-

olution representation, that optimally groups SOMDTP nodes into meta-clades, is proposed.

Three state-of-the art procedures are used to determine the optimal number of meta-clades;

the elbow method minimizes the within-cluster sum of squares, WSS (a measure of within

cluster similarity) and maximizes the between-cluster sum of squares (a measure of how

separated each cluster is from the others), the silhouette method computes the average silhou-

ette of observations for different numbers of clusters (selecting the optimal cluster size that

maximizes the average silhouette) and the gap_statistic method [17] determines the total

within intra-cluster variation for different numbers of clusters (selecting the cluster size that

maximizes the gap_statistic). Fig 1 displays the results for these three methods applied to

GI50codebooks. The optimal cluster size is indicated by the vertical lines in each plot. The elbow

and gap methods rely on an inflection point on each curve for optimal cluster size, while the

silhouette method seeks the largest value for silhouette width. Panel A displays WSS as circles

for the elbow method and the first derivative of WSS, normalized by the local average WSS, as

triangles. The maximum value of the derivative of WSS occurs for 28 clades. The silhouette

method yields a maximum value at 26 clusters (cf. Panel B). The criterion for optimal cluster

size using the gap statistic seeks the smallest number of clusters such that the gap statistic is

within one standard deviation of the next gap statistic: Gap(k)�Gap(k + 1)−sd(k+1) (displayed

as triangles in Panel C), yields 28 clusters as optimal. Panel D displays the GI50codebook cluster

dendrogram using the cutree tool [18] to group the dendrogram into 28 meta-clades (red

lines) and 7 meta-clades (green lines). Based on these results a value of 28 was selected for the

optimal number of meta-clades used in this analysis. The rationale for cutting the dendrogram

at 7 clusters will be provided later in the analysis of MOAs.

A visual perspective of SOMDTP and the 28 meta-clades appears in Fig 2. The 1232 GI50co-

debooks appear as a clustered heatmap (Euclidean,Ward’s) in Panel A. The dendrogram at the

left edge of the heatmap, displays the dendrogram appearing in Fig 1, Panel D. The vertical

ribbon, adjacent to this dendrogram, colored spectrally from blue to red, represents the subdi-

vision of the hierarchal clade tree into 28 meta-clades. The pvclust utility [19], using random

resampling, confirms this set of 28 meta-clades with a confidence p-value above 0.995 across

resampling (n = 1000 resamples). Panel B in Fig 2 displays the 28 meta-clades on SOMDTP,

colored according to the spectral-colored vertical ribbon in the left panel. The data reduction

of 1232 SOMDTP nodes to 28 meta-clades yields a lower resolution, more manageable, perspec-

tive of the complete SOMDTP. The gray ribbon in Panel B displays the dendrogram cut into 7

major groups. Groupings consist of A: meta-clades 1–6, B: meta-clades 7–9, C: meta-clades

10–15, D: meta-clades 16–18, E: meta-clades 19–20, F: meta-clades 21–24 and G: meta-clades

25–28. The vertical grayscale colored bar in Fig 2 displays these seven groupings from A(bot-

tom:black) to G(top:light gray). SOMDTP meta-clades will be assessed according to the differ-

ential chemosensitivity of tumor cell lines with and without defective genes.
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Noteworthy is the mapping of the 28 cutree clades to discontinuous SOMDTP regions. Ide-

ally, cutree clades might appear as contiguous regions the 2-dimensional SOMDTP. However,

this is not the case. To obtain contiguous SOMDTP regions, an alternative hierarchical cluster-

ing algorithm would need to be used that only combines adjacent dendrogram clades that

appear beside each other on SOMDTP. Although not pursued here, assigning contiguous SOM

regions is an active area of research in dimensionality reduction [20], with specific focus on

representing SOMs in one dimension [21]. Many of these efforts use randomized resampling

to identify contiguous map regions by consensus. Usually standard hierarchical clustering suf-

fices, and any outlying (noncontiguous) points can be accounted for manually. Towards this

end, SOMDTP singletons, appearing as a hierarchical clade that maps to SOMDTP as a node

without the same meta-clade neighbors, have been replaced by their neighborhood meta-clade

assignments. There are 12 such cases (0.0097 = 12/1232) for this data set.

An additional consideration for non-contiguous SOMDTP meta-clades may result from the

assignment of distances used for clustering (Euclidean for hierarchical clustering and Epa-

nechnikov Function [13] for SOMs). Our choice of the Epanechnikov Function for SOM clus-

tering consistently yielded the lowest SOMDTP quantization errors [6]. However, a more likely

explanation for non-contiguous SOMDTP meta-clades involves differences in clustering meth-

odology. SOMs organize data by mapping each cluster to its most similar neighbors (six in the

case of hexagonal mapping); whereas hierarchical clustering, as used to obtain heatmap den-

drograms, builds each branch of the dendrogram by pairwise associations. The failure to map

hierarchical clustering methods directly to contiguous SOMDTP regions is not unexpected and

points more to the limitations of hierarchical methods to match non-hierarchical methods,

regardless of distance metrics.

METHODS: Identification of SOMDTP nodes with enhanced

chemosensitivity

SOMDTP nodes are analyzed for enhanced chemosensitivity of tumor cell lines with versus with-

out defective genes. Each GI50codebook is divided into subsets comprising tumor cell lines with

(GI50defective) and without (GI50wild-type) a defective gene. A Student’s t-test is used to identify

cases of relatively higher chemosensitivity for GI50defective versus GI50wild-type. SOMDTP nodes

with Student’s p-values less than or equal to 0.05 were further assessed for statistical significance

by bootstrap resampling [22,23]. Each node’s GI50codebook was randomly shuffled and a Stu-

dent’s t-test performed, while maintaining the tumor cell’s wild-type and defective gene status.

One-thousand trials were conducted for each GI50codebook and a p-value was estimated by

counting the number of times the shuffled p-value was less than the initial, unshuffled, p-value.

Dividing this value by 1000 yields an estimate for the probability of the observed p-value occur-

ring by chance. SOMDTP nodes with measured p-values less than 0.05 and below their estimated

chance occurrence were accepted for further analysis. Sixty-five percent (65%, n = 635) of the

1232 SOM nodes pass this criterion and account for 121 defective genes.

Fig 3 summarizes the results for GI50codebook at SOM1,13 (subscripting refers to the SOM

node, i.e. SOMrow,column). Five NCI60 tumor cell lines have the defective ABL1 gene; with

these tumor cell lines having a mean GI50defective response nine-fold higher than GI50wild-type

(p = 6.91e-3). Panel A in Fig 3 displays GI50codebook, ordered from most chemosensitive to

least chemosensitive values. NCI60 tumor cell lines with the ABL1 alteration, highlighted in

red and representing GI50defective, are ranked at positions 3, 6, 8, 25 and 51. SOMDTP can also

be viewed according to each NCI60 tumor cell (referred to as GI50component). Panel B of Fig 3

displays GI50component for each of the 5 tumor cell lines with defective ABL1. Regions of great-

est and least chemosensitivity for each tumor cell are displayed spectrally from red to blue,
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respectively. Noteworthy is the location of Gleevec chemosensitivity to the most sensitive (e.g.

red) GI50component SOMDTP regions for K-562, RMPI-8226 and HS578T.

Panel A of Fig 4 projects onto the SOMDTP the Students t-statistic for tumor cell lines with

defective ABL1; where the t-statistic values are colored spectrally from low(blue) to high(red)

significance. SOMDTP nodes without statistical significance (p>0.05) are not colored. The

most significant t-statistics for defective ABL1 are located mainly in SOM meta-clades 1, 10, 14

and 26. Gleevec appears as the most significant SOM5,15 node in meta-clade 14. For compari-

son, the results for KRAS are projected in Panel B of Fig 4. There are 12 tumor cell lines

(A549/ATCC-Lung, CCRF-CEM-Leukemia, HCC-2998-Colon, HCT-116-Colon, HCT-

15-Colon, HOP-62-Lung, NCI-H23-Lung, NCI-H460-Lung, OVCAR-5-Ovarian, RPMI-

8226-Leukemia, SK-OV-3-Ovarian and SW-620-Colon) harboring defective KRAS, with sig-

nificant chemosensitive SOMDTP nodes appearing in meta-clades 21, 22 and 27. SOM meta-

clade 21 is the location of the FDA compound cytarabine (ara-C) and is consistent with the

conclusion of Ahmad et al [24] that adult AML patients carrying defective KRAS benefit from

higher ara-C doses more than wt KRAS patients.

Fig 3. Panel A displays GI50codebook for SOM1,13, ordered from most to least chemosensitivity. The 5 tumor cell

lines with the defective ABL1 gene appear as red bars. Panel B displays GI50component for the 5 tumor cell lines with

defective ABL1. SOMDTP nodes are colored spectrally from highest chemosensitivity (red) to lowest chemosensitivity

(blue).

https://doi.org/10.1371/journal.pone.0243336.g003
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S3 and S4 Appendix Figures 3 and 4 in S1 File display additional examples for the defective

genes PIK3RI and IGF1R, respectively. PIK3R1 (Phosphatidylinositol 3-Kinase Regulatory

Subunit Alpha) and a related gene, PIK3CA (PI3-Kinase Subunit Alpha) are lipid kinases capa-

ble of phosphorylating the 3’OH of the inositol ring of phosphoinositides. Both are responsible

for coordinating a diverse range of cell functions including proliferation and survival. Defec-

tive PIK3CA has been documented by Whyte and Holbeck [25] to enhance tamoxifen sensitiv-

ity in selected NCI60 tumor cell lines. The results here also find chemosensitivity in NCI60

tumor cell lines having defective PIK3R1. The second example of defective IGF1R supports the

importance of evaluating drug sensitivity for compounds targeting leukemia cell lines [26] and

the emergence of IGF1R as a potential therapeutic target for the treatment of different types of

cancer including plasma cell myeloma, leukemia, and lymphoma [27]. Both examples illustrate

potential role of defective genes in chemosensitivity.

The Students t-statistic represents the significance when comparing the chemosensitivity of

a SOMDTP node for tumor cell lines with, versus without, defective genes. Parametric tests,

such as the Student’s t-test, are applicable over non-parametric tests (Wilcoxon/Whitney/

Mann, Kruskal-Wallis) when the underlying sample distribution is known and normal. The

data analyzed here represents a strongly normal distribution (p< 0.001, lognormal test) with

small deviations at the tails from a linear log normal quantile-quantile plot; supporting the use

of a parametric statistic.

The application of a bootstrap procedure to cases with a significant Student’s t-test is

applied as a correction against Type I error for the following reasons. First, a bootstrap method

can be used to estimate the sampling distribution of GI50codebook for each SOMDTP node. This

test utilizes the node’s codebook vector as the initial sample representative and applies a boot-

strap procedure to estimate the sampling distribution. Since 1000 samples were used, the p-

value estimate corrects the empirical estimate using a division by 1000. This correction paral-

lels multiple test corrections for traditional statistics [28]. Second, in this design there are 1000

statistical tests performed for each of the 1232 SOMDTP nodes. An important caveat of jointly

using GI50codebook to create some type of correction for multiple test is their lack of indepen-

dence [11,12]. This non-independence is disallowed when applying a Bonferroni, Holm or

Benjamini-Hochberg [29] corrections. None-the-less, the long-standing debate continues to

Fig 4. Panels A and B display significant chemosensitive SOMDTP nodes (projected as their t-statistic from a Student’s t-test; blue:least, red:

most significant) for tumor cell lines with defective ABL1 and KRAS, respectively. Panel C displays the 28 SOMDTP meta-clades.

https://doi.org/10.1371/journal.pone.0243336.g004
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exist about bootstrap applications, possible overestimation of ‘true’ values, and appropriate

corrections for random noise [30].

Methods: Mapping MOA to SOMDTP

SOMDTP projections for the most frequent primary CellMiner MOA assignments (Tu, T1, T2,

A, D, Apo and PK) are displayed Panel A of Fig 5. Panel B displays the histogram of SOMDTP

node counts for these MOA assignments. Inspection indicates that MOA classes A, D, T1 and

T2 appear mainly in the upper right SOMDTP region (SOM meta-clade 21; Group A), while

MOA Apo appears mainly in the upper left region (SOMDTP meta-clades 25 and 26; Group G).

Tu compounds are found mainly in SOMDTP meta-clades 16, 17 and 18 (Group D). SOMDTP

meta-clade 19(Group E) consists of only MOA PK; while MOA PK compounds are in the

majority for SOMDTP meta-clades 1 through 6(Group A). The horizontal gray scale bar at the

bottom of the right panel identifies the seven meta-clade groups assigned earlier (cf. Figs 1 and

2). Inspection indicates relative similarities of MOA types within each of the seven meta-clade

groups A:G. Notable is the majority representation of MOA:PK in Group A and MOA:Tu in

Group D. Detailed results for MOAs across meta-clade groups will be presented later.

Table 1 lists the most frequent primary MOAs for meta-clade groups A:G. These results

segregate the primary MOAs into separate regions of the cutree = 7 hierarchical dendrogram

Fig 5. Panel A: SOMDTP projections for FDA approved compounds for the primary CellMiner assigned MOAs.

Projections include the top 10th percentile of SOMDTP nodes for each compound. Panel B: histogram of the counts for

these primary MOAs across SOM meta-clade groups. Primary MOAs appear color-coded in each vertical bar, with

their heights corresponding to MOA counts in each meta-clade. Horizontal grayscale bar below Panel B indicates

meta-clade groups A:G (reproduced from Fig 2 Panel A).

https://doi.org/10.1371/journal.pone.0243336.g005

Table 1. Most frequent primary MOA assignments within meta-clade groups A:G.

Meta-clade Groups MOA

A: 1–6 PK

B: 7–9 PK, A

C: 10–15 PK, A, D

D: 16–18 Tu, T2

E: 19–20 PK

F: 21–24 A, D, T1

G: 25–28 Apo, A, D

https://doi.org/10.1371/journal.pone.0243336.t001
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(gray bar in Fig 2 Panel A and Fig 5 Panel B); MOA:PK appears at the bottom, MOAs target-

ing DNA and Apo appear at the top and mixtures of primary MOAs appear in the middle.

These meta-clade grouping will be analyzed in greater detail for links of MOAs to defective

genes.

Methods: Enrichment of MOA

Fisher’s exact and chi-square tests are used to identify cases where the SOMDTP projections of

defective genes are statistically enriched in co-projections of MOA types. These tests are useful

for categorical data that result from classifying objects in two different ways; and are used to

determine a statistical measure for the random likelihood of the intersection of each classifica-

tion. For each defective gene the number of SOMDTP nodes with significant Student’s t-statis-

tics are determined (Ngene). FDA approved compounds that co-project to Ngene determine a

unique set of MOA’s associated with each defective gene (MOAgene). All FDA compounds that

share any MOAgene are collected (NFDA); where the 10th best FDA projections are included in

the count. Extending FDA projections beyond only the best node achieves two goals. First, it

establishes SOMDTP regions rather than individual nodes for MOA classification. Second,

increasing the numbers in the contingency table extends significance testing to include Fisher’s

exact and the chi-square testing. The contingency table entries become; p11 = intersection

(Ngene,NFDA), p12 = Ngene−p11, p21 = NFDA−p22 and p22 = p11 by default to conserve equal

row and column sums.

Fig 6 illustrates a sample result of the steps for calculating the Fisher’s exact statistic using

ABL1. Panel A (reproduced from Fig 4) displays the significant SOMDTP nodes for defective

ABL1, where Ngene = 48. Collecting the MOA’s for the 11 FDA compounds co-projected to

Ngene finds 6 MOAs (Apo, Ho, HSP90, NonCan, PK and BCR-ABL). Panel B in Fig 6 displays

the top 10th percentile of all FDA compounds sharing any one of these 6 MOAs, to yield NFDA

= 189. Completing the contingency table with their intersection (22, results in a Fisher’s exact

score of 1.958262e-09 (logpval(-20.051208)).

Fig 6. Panel A displays the significant SOMDTP nodes for ABL1 (Ngene = 48). Eleven FDA compounds are co-

projected to Ngene; yielding 6 MOAs. The SOMDTP in Panel B displays the top 10th percentile of projections for FDA

compounds sharing these MOAs (NFDA = 189). The intersection of Ngene and NFDA = 22, yielding a Fishers exact p-

value of 1.958262e-09, log(p-value = -20.05).

https://doi.org/10.1371/journal.pone.0243336.g006
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Fig 7 displays a bar chart of the log(pvalue) for the 47 genes with significant (p< = 0.05)

Fisher’s exact scores, when tested over the complete SOMDTP. Defective genes with the top-

most significance scores include MTOR, SPEN, CDC25A, PTK2, TEK, CYP11B1, CYP11B2,

NCOR2, PIK3CG, MSH2, APC and MMP1. Note that this subset of defective genes is not exclu-

sively associated with human cancers. Fisher’s exact and chi-square tests for MOAs will be

applied to meta-clade groups (A-E). The average log(pvalue) for both statistics will be reported

as a contingency score.

Results

The multi-tiered approach described in the METHODS builds a framework to achieve the

study’s goal of associating chemosensitivity, defective genes and MOA. In summary: chemo-

sensitivity data(n = 46k, GI50NCI60) is clustered as SOMDTP (n = 1232, GI50codebooks), subdi-

vided into meta-clades (n = 28) and 7 meta-clade groups (A-G). Defective genes (n = 368) are

analyzed according to significant chemosensitivity on SOMDTP (n = 121, Student’s t/bootstrap)

and enrichment for type of MOA of defective genes (n = 47 genes, contingency score; reported

as the average log(Fisher’s exact and chi-square scores). Contingency scores will be used to

identify significant MOA enrichments for defective genes across meta-clade groups (A-G).

The results for SOMDTP clustering will be presented first, followed by the results for MOA

enrichments in groups A-G.

Results: SOMDTP

Fig 8 Panel A displays SOMDTP, colored according to similarity of neighboring GI50codebooks;

where the most similar GI50codebook neighbors are displayed in deep red and the most dis-sim-

ilar GI50codebook neighbors appear in bright yellow. The 28 optimal meta-clade boundaries are

displayed as a black line, with the boundaries of the 7 meta-clade groups super-imposed as a

Fig 7. Fisher’s exact scores (log(pvalue), pvalue< = 0.05). Results are based on classifications using up to the 10th

best SOM projection nodes for FDA compounds. Forty-seven defective genes have significant Fisher’s exact scores

when tested over the complete SOMDTP.

https://doi.org/10.1371/journal.pone.0243336.g007
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white line. Two distinctive features characterize SOMDTP. First, the best projections of FDA

approved compounds appear as blue hexagons in Fig 8 Panel A, where hexagons are sized

according to the number of FDA agents appearing in any SOMDTP node. Inspection finds a

general tendency for approved agents to project to SOMDTP nodes with unique patterns (e.g.

dissimilar GI50codebooks). Statistical support for this observation is displayed in Fig 8 Panel B,

in the form of histograms based on intra-node GI50codebook distances for nodes containing

FDA approved agents (top histogram) and lacking FDA approved agents (bottom histogram).

A Student’s t-test for the vector distance between these two groups finds a p-value of 5.3e-7, in

support of the visual association of FDA compounds and unique (e.g dis-similar) chemosensi-

tivity patterns. Second, compound names for FDA screened agents are listed as a table in Fig 8

Panel C and projected on to SOMDTP in Fig 8 Panel D. A listing of these nodes and their

SOMDTP projections also appears in S5 master_appendix sheet appendix_Table_III. In brief,

FDA compounds with known MOAs are grouped together, with, for example, nucleic acid tar-

geting agents appearing in the upper right corner of SOMDTP (meta-clade 21), tubulin target-

ing agents (meta-clades 16 and 18) and defective BRAF targeting agents (meta-clade 19).

Collectively, these results support our prior report [6] of associations between NCI60 screened

compounds, their MOAs and projections on SOMDTP.

Results: Group A (meta-clades 1 through 6)

The results for SOM meta-clade group A find twelve defective genes with significant contin-

gency scores (ABL1, ACVR2A, CDC25A, MMP1, MTOR, NCOR2, NF1, PIK3R1, RB1, RPTOR,

SOX9 and ZHX2) associated with eleven MOA classes (PK, Ang, Ho, PARP, AM, BCR-ABL,

NonCan, Db, HDAC, HYP and Pase). Fig 9 Panel A displays the contingency scores, ordered

left to right, from the most to least significance. Fig 9 Panel B displays the SOMDTP projections

for these significant defective genes. Projections, colored according the legend, represent

instances where significant Student’s t-statistics co-project with compounds having these

MOAs. For example, ABL1 projections (blue) appear mainly in the lower right region. Color

coding is unique for all defective genes analyzed herein; intended to provide a visual separation

for each defective gene. Fig 9 Panel C lists the SOMDTP node counts, ordered from top to bot-

tom and left to right. Fig 9 Panel D displays a histogram for these counts.

The most frequently appearing defective genes are MMP1; associated mainly with MOAs

PK, AM and Ho, and NF1; associated with MOAs PK, BCR-ABL, PARP and Ho. MOA:PK

occurs most frequently with MMP1, NF1 and PIK3R1 as the most frequent defective genes.

The second highest count is for MOA:Ang, which is associated with defective genes RPTOR,

SOX9 and MTOR. The next most frequent counts are associated with MOA:HO(MMP1, NF1,

PIK3R1, NCOR2 and ABL1), MOA:PARP(NF1, NCOR2, PIK3R1 and ACVR2A), MOA:AM

(MMP1 and ZHX2) and MOA:BCR-ABL(NF1 and PIK3R1). Inspection of Fig 9 Panel D sum-

marizes these results. For example, MOA:PK has MMP1 (teal) and NF1 (light red) as repre-

senting the majority of co-projections, while MOA:BCR-ABL is dominated by NF1 (light red).

Fig 8. Panel A. SOMDTP is colored according to similarity of GI50codebooks, where the most similar node neighbors are

displayed in deep red and the most dis-similar node neighbors appear in bright yellow (see vertical bar adjacent to

SOMDTP). The 28 optimal meta-clade boundaries are displayed as a black line, with the boundaries of the 7 meta-clade

groups super-imposed as a white line. FDA approved compounds are projected onto SOMDTP as blue hexagons, where

hexagons are sized according to the number of FDA agents appearing in any node. Panel B displays the between node

GI50codebook Euclidean distances for nodes with FDA compound projections (top) and without (bottom). Panel C lists

FDA compound names grouped by 28 meta-clades. Panel D displays SOMDTP with FDA compounds (blue hexagons),

meta-clade boundaries (solid lines) and meta-clade labels as numbers. FDA approved projections to SOMDTP nodes

are listed in S5 master_appendix sheet appendix_Table_III.

https://doi.org/10.1371/journal.pone.0243336.g008
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The common feature of the defective genes associated with SOM meta-clade Group A is

their potential to influence the Ras/Raf/MEK/ERK and the PI3K/AKT pathways. The Ras/

Raf/MEK/ERK mitogen activated protein kinase (MAPK) cascade is constitutively active

and is the dominant pathway driving the production MMP1 [31], the defective gene with the

highest SOMDTP node count. MMP1 also modulates cytoskeleton organization, cell motility

and additional metastasis signature genes [32] which in turn are mediated by the ERK pathway

[33]. In general, the expression of the family of matrix metalloproteinases (MMP) is broadly

affected by intracellular signaling via the MAPK family. Targeting the RAF-MEK-ERK

mitogen-activated protein kinase cascade is being actively pursued for the treatment of cancer

[34].

A direct role of MMP1 on chemosensitivity has not been reported. However, Zhou et al.

[35] identify MMP1 as a potential gene conferring resistance of EGFR drugs targeting in non-

small cell lung cancer. Rapamycin significantly enhanced the expression of interstitial collage-

nase (MMP1) at the protein and mRNA levels [36]. An assessment of upregulated expression

levels in serous ovarian cancer cell lines by Zhang et al. [37] find matrix metalloproteinase 1

(MMP1) to be among the most upregulated mRNAs in the chemoresistant cell lines. Given

that MMP1 is the most frequent defective gene associated with MOA:PK (cf. Fig 9), combined

with its role in chemosensitivity, suggests that defective MMP1 may play a role in the weak

GI50NCI60 responses to PIK3 and EGFR targeting agents screened in the NCI60.

Fig 9. Panel A displays the contingency scores, ordered left to right, from the most to least significance. The

horizontal dashed lines represent significance thresholds of p< = 0.05 (lower line) and p< = 0.1 (upper line). Panel B

displays the SOMDTP co-projections of significant defective genes and MOAs for FDA compound. Only co-

occurrences for SOMDTP projections of FDA compounds are displayed. The SOMDTP region displayed in Panel B

represents the boundary for meta-clades 1 through 6 (see the white border in Fig 8 Panel A). Panel C lists the counts

for co-occurrence (see S6 master_appendix sheet gp_A). Panel D displays the tabular results in Panel C as a

histogram. Node colors for defective genes correspond to the legend inserted into the upper left panel. The counts

displayed in Panel C represent the top 10th percentile of SOMDTP co-projections for FDA compounds. A consistent

coloring scheme is used for this and all subsequent figures, such that all defective genes presented in the RESULTS are

assigned a unique color. S13 master_appendix_sheet gp_A_FDA list the counts for each FDA and MOA entry for

these significant genes.

https://doi.org/10.1371/journal.pone.0243336.g009
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NF1 has the 2nd highest node count in group A and has links to the MAPK cascade. For

example, loss of NF1 gene expression leads to increased RAS activation and hyperactivation of

the downstream RAS effectors, including the RAF/MEK/ERK and the PI3K/AKT pathways

[38]. Abnormal activation of RAS by defective NF1 is a central driver event in some soft-tissue

sarcomas (MPNST). Receptor tyrosine kinases (RTKs), including PDGFRA and EGFR, can

activate RAS signaling and downstream factors such as MEK and mTOR. Ki et al. [39] find the

addition of mTOR inhibitors to cell lines harboring defective NF1 enhance the activity of

DNA targeting agents. Defective genes that impact PI3K-Akt-mTOR signaling could weaken

the tumor cell and enhance susceptibility to chemotherapeutic drugs.

A noteworthy entry in S6 master_appendix sheet gp_A_FDA is for Olaparib, MOA:PARP

and defective gene NF1. Combination treatment with olaparib and various inhibitors of
PD-L1, VEGFR, PI3K, and AKT may effectively inhibit the growth of rapidly proliferating tri-

ple negative breast cancer cell lines [40]. A review of candidate synthetic lethality partners to

PARP inhibitors in the treatment of ovarian clear cell cancer by Kawahara et al. [41] finds

PARP and NF1 to be synthetic lethality pairs [42]. Synthetic lethality (SL) describes the genetic

interaction by which the combination of two separately non-lethal mutations results in lethal-

ity [43]. Generally, the ablation of two genes located in parallel pathways (leading to cell sur-

vival or a common essential product) is one of the important patterns causing synthetic

lethality. Synthetic lethality appears to be achieved with combined EGFR and PARP inhibition

[44]. SL has recently emerged as a promising new approach to cancer therapy [45].

MOA:Ang ranks 2nd among the MOA’s listed for group A and is associated with defective

RPTOR, SOX9 and MTOR. Oncogenic activation of the phosphatidylinositol-3-kinase (PI3K),

and mammalian target of rapamycin (MTOR) facilitates tumor formation, disease progression,

therapeutic resistance, and the sensitivity of prostate cancer cell lines to PI3K-AKT-mTOR-

targeted therapies [46]. SOX9 is reported to promote of tumor growth, proliferation, migration

and invasion and the metastasis and regulation of Wnt/β-catenin signalling [47]. Inhibition of

SOX9 expression in led to a significant reduction in primary tumor growth, angiogenesis, and

metastasis [48]. The full extent of the PI3K-AKT-mTOR signaling network during tumor/

angiogenesis, invasive progression and disease recurrence remains to be determined. The

existing results link chemosensitivity of MOA:Ang agents to a selective set of defective genes.

Results: Group B(meta-clades 7 through 9)

Eleven MOA classes (PK, Ho, Db, NonCan, Ds, Apo, AM, T2, A7, HDAC, and PARP) are

associated with eight defective genes (ZHX2, MECOM, MMP1, EP300, MTOR, BMP7,

CYP11B1 and CYP11B2) for SOM meta-clades 7 through 9. ZHX2 has the most and EP300 the

least significant contingency scores (Fig 10 Panel A). ZHX2 projects to the central region of

group A, while CYP11B2, MECOM and MMP1 project to the perimeter regions (Fig 10 Panel

B). Fig 10 Panels C and D indicate that defective genes ZHX2, MECOM, MMP1 and PTK2
and MOAs PK, Ho and Db occupy the most SOMDTP nodes. These defective genes are associ-

ated with the GO ontology pathway Regulation_of_Response_to_Stress, with a potential to

influence cellular functions such as differentiation and translation. ZHX2 is a member of the

zinc fingers and homeoboxes gene family that acts as a transcriptional repressor. Ontology

(GO) annotations related to ZHX2 also include DNA-binding_transcription_factor_activity.

MECOM (MDS and EVI1 complex locus protein), with the 2nd highest SOMDTP counts, is

found to be commonly enriched in cancer cell lines. Makondi et al. [49] suggest that targeting

the MAPK signal transduction pathway through the targeting of the MECOM might increase

tumor responsiveness to irinotecan treatment. Saito et al. [50] notes that EVI1 alters metabolic

programming associated with leukemogenesis and increases sensitivity to L-asparaginase. The

PLOS ONE Mining drug screening data for genetic biomarkers of chemosensitivity

PLOS ONE | https://doi.org/10.1371/journal.pone.0243336 April 28, 2021 15 / 35

https://doi.org/10.1371/journal.pone.0243336


3rd most frequent gene, MMP1, is in the family of matrix metalloproteinases that are involved

in the breakdown of extracellular matrix and contribute to metastasis, as noted above. S7 mas-

ter_appendix sheet gp_B (meta-clades 7 through 9) lists the defective genes with a significant

contingency score (p<0.1) for each meta-clade in Group B. Row entries in S14 master_ap-

pendix sheet gp_B_FDA list the counts for each FDA and MOA entry for significant defective

genes.

Results: Group C (meta-clades 10 through 15)

Contingency scores order the defective genes as: NOTCH1, RBPJ, IGF1R, PIK3CG, CDKN2A,

ATM, NRAS, MSH2, CDKN2B, CDC25A, NCOR2, RPTOR, STAT2, EIF5A2, MYC, SPEN and

MTOR (Fig 11 Panel A). IGF1R projects mainly at the perimeter of SOMDTP for group C,

while the remaining defective genes project to more central regions (Fig 11 Panel B). Seven-

teen MOA classes, ordered from most to least node counts, are Ds, PK, HDAC, Apo, Ho, AM,

BCR-ABL, A7, NFkB, BRD, Mito, NonCan, PARP, KLF4, PSM, T1 and SMO (Fig 11 Panel C

and D).

The ten most frequent defective genes, IGF1R, CDC25A, NOTCH1, NCOR2, RPTOR,

CDKN2A, MSH2, NRAS are associated with MOAs Ds, PK, HDAC, Apo, Ho, AM and

BCR-ABL. The salient feature of these defective genes is their role in arresting the cell cycle.

Cellular processes involving phosphorylation function to interrupt the cell-cycle, particularly

from members of the family of tyrosine kinases. For example insulin-like growth factor 1

receptor (IGF1R) belongs to the large family of tyrosine kinase receptors and is activated by a

hormone called insulin-like growth factor 1 (IGF-1) and by a related hormone called IGF-2

[51]. SOMDTP nodes in meta-clades 10 through 15 that are associated with defective IGF1R

Fig 10. Results for group B(meta-clades 7 through 9). The SOMDTP region displayed in Panel B represents the

boundary for meta-clades 7 through 9 (see the white border in Fig 8 Panel A). S7 master_appendix sheet gp_B lists

the table in Panel C. See the legend of Fig 9 for details. S14 master_appendix sheet gp_B_FDA lists the FDA

compounds associated with these defective genes.

https://doi.org/10.1371/journal.pone.0243336.g010
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exist for chemosensitivity mainly to leukemia cell lines. IGF1R is often overexpressed by

tumors and mediates proliferation and apoptosis protection [52,53]. As noted earlier [27],

evaluation of drug sensitivity for compounds targeting leukemia cell lines has prompted the

emergence of IGF1R as a potential therapeutic target for the treatment of leukemia. Weisberg,

et al. [54] report that IGF1R protein expression/activity was substantially increased in mutant

RAS-expressing cell lines, and suppression of RAS led to decreases in IGF1R. Synergy between

MEK and IGF1R inhibitors correlated with induction of apoptosis, inhibition of cell cycle pro-

gression, and decreased phospho-S6 and phospho-4E-BP1. They suggested that given the com-

plexity of RAS signaling, it is likely that combinations of targeted agents will be more effective

than single agents, inclusive of IGF1R inhibitors.

CDC25A, with the 2nd highest node counts, affects cell proliferation and its expression is

thought to be controlled through the PI3K-AKT-MTOR signaling pathway [55]. Sadeghi et al.

[56] suggest that CDC25A controls the cell proliferation and tumorigenesis by a change in

expression of proteins involved in cyclin D1 regulation and G1/S transition. The finding that

defective CDC25A is associated with MOA:PK is consistent with the appearance of pazopanib

and axitinib in the FDA compounds listed in S15 master_appendix sheet gp_C_FDA.

The evolutionarily conserved NOTCH family of receptors regulates a myriad of fundamen-

tal cellular processes including development, tissue patterning, cell-fate determination, prolif-

eration, differentiation and cell death [57]. The crosstalk among Notch1 (3rd highest node

counts) and other prominent molecules/signaling pathways includes DNA damage repair

Fig 11. Results for group C(meta-clades 10 through 15). The SOMDTP region displayed in Panel B represents the

boundary for meta-clades 10 through 15 (see the white border in Fig 8 Panel A). S8 master_appendix sheet gp_C lists

the table in Panel C. See the legend of Fig 9 for details. S15 master_appendix sheet gp_C_FDA lists the FDA

compounds associated with these defective genes.

https://doi.org/10.1371/journal.pone.0243336.g011
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(DDR) [58]. DDR is a complex protein kinase based signaling pathway which is conducted by

the members of the phosphoinositide 3-kinase-like kinase (PIKK) family, such as ataxia telan-

giectasia mutated (ATM). NOTCH1 is a major oncogenic driver in T cell acute lymphoblastic

leukemia [59]. NOTCH1 siRNA can effectively inhibit the expression of NOTCH1 gene, inhibit

the proliferation of lung cancer A549 cell lines and increase the sensitivity to chemotherapeutic

drugs [60]. Of specific interest is the intersection of defective NOTCH1 and the projection for

imatinib (S15 master_appendix sheet gp_C_FDA). Aljedai et al. [61] explored the role of

NOTCH1 signaling in chronic myeloid leukemia cell lines to find cross-talk between NOTCH1
and BCR-ABL. Their results revealed that imatinib induced BCR-ABL inhibition results in

upregulation of NOTCH1 activity. In contrast, inhibition of NOTCH1 leads to hyperactivation

of BCR-ABL. They proposed that the antagonistic relationship between NOTCH1 and

BCR-ABL in CML suggests a combined inhibition of NOTCH1 and BCR-ABL may provide

superior clinical response over tyrosine-kinase inhibitor monotherapy.

CDKN2A, MSH2 and ATM (with the next most frequent node counts) have roles in cell

cycle arrest. CDKN2A is capable of inducing cell cycle arrest in the G1 and G2 phases. Gene

Ontology (GO) annotations related to CDKN2A include transcription factor binding. MSH2
and ATM are components of the post-replicative DNA mismatch repair system (MMR),

whereby activation of checkpoint arrest and homologous DNA repair are necessary for main-

tenance of genomic integrity during DNA replication [62]. Germ-line mutations of the ataxia

telangiectasia mutated (ATM) gene result in the well-characterized ataxia telangiectasia syn-

drome, which manifests with an increased cancer predisposition. Somatic ATM mutations or

deletions are commonly found in lymphoid malignancies. Such mutations may be exploited

by existing or emerging targeted therapies that produce synthetic lethal states. Cancers with

mutations in genes encoding proteins involved in DNA repair may be more sensitive to treat-

ments that induce synthetic lethality by inducing DNA damage or inhibiting complementary

DNA repair mechanisms.

Results: Group D(meta-clades 16 through 18)

Contingency scores order the defective genes as: MAP2K3, PTK2, BRAF, CYP11B1, CYP11B2,

MMP9, MYC, FLT1 and RBPJL (Fig 12 Panel A). MYC, BRAF and FLT1 project to mainly

non-overlapping SOMDTP regions (Fig 12 Panel B). Eight MOA classes, ordered from most to

least node counts, are Tu, HSP90, NonCan, PSM, DB, T1, PK, T2 and Pase (Fig 12 Panels C

and D). MOA:Tu dominates these results, while MOA:HSP90, MOA:NonCan and MOA:PSM

appear with the next highest node counts. The most frequent defective genes include MYC,

RBLJL, FLT1 and MMP9. S16 master_appendix sheet gp_D_FDA lists the FDA compounds

associated with these defective genes.

Most of the defective genes in group D are involved with the mitotic component of tumor

cell proliferation. For example, MYC encodes a nuclear phosphoprotein that has been impli-

cated in the regulation of cell proliferation and the development of human tumors [63] and is

regarded as a major determinant of mitotic cell fate [64]. Inhibition of microtubule polymeri-

zation has been reported to block mitosis and induce cell death [65]. Conacci-Sorell et al. [66]

report the expression of MYC results in the induction of the actin-bundling protein fascin, for-

mation of filopodia, and plays a role in cell survival, autophagy, and motility. MYC also recruits

acetyltransferases that modify cytoplasmic proteins, including α-tubulin. Marzo-Mas et al.

[67] find the antiproliferative activity of colchicine to inhibit tubulin polymerization to be

modulated by the downregulation of c-MYC expression. Alexandrova et al. [68] report that the

N-terminal domain of c-MYC associates with alpha-tubulin and microtubules. Marzo-Mas

et al. [67] also found that tubulin binding compounds were able to downregulate the
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expression of the VEGF, hTERT and c-MYC genes. Others [69] have proposed targeting onco-

genic MYC as a strategy for cancer treatment, proposing the destruction of a microtubule-

bound MYC reservoir during mitosis contributes to vincristine´s anti-cancer activity [70]. Col-

lectively these results support a role of defective MYC in chemosensitivity to tubulin targeting

agents.

The 2nd most frequent defective gene is RBPJL. RBPJL binds to DNA sequences almost

identical to that bound by the Notch receptor signaling pathway transcription factor recom-

bining binding protein J (RBP-J). A related family member RITA (RBPJ Interacting And

Tubulin Associated 1) also acts as a negative regulator of the Notch signaling pathway that

induces apoptosis and cell cycle arrest in human hepatocellular carcinoma [71]. Structural and

biophysical studies demonstrate that RITA binds RBP-J and biochemical and cellular assays

suggest that RITA interacts with additional regions on RBP-J [72]. Emerging evidence reveals

Notch as a microtubule dynamics regulator and that activation of Notch signaling results in

increased microtubule stability [73]. The RBPJL/RITA association raises the possibility that

RITA-mediated regulation of Notch signaling may be influenced by RBPJL and potentially

play a role in the chemosensitivity of Tu agents.

The 3rd most frequent defective gene is FLT1 (Fms-related tyrosine kinase (FLT) or VEGF

receptor 1). The role of FLT1 in the chemosensitivity of tubulin agents would appear to be

unexpected. However, the blockade of VEGFR-1 and VEGFR-2 enhances paclitaxel sensitivity

in gastric cancer cell lines [74]. Microtubule-targeted drugs inhibit VEGF Receptor-2

Fig 12. Results for group D(meta-clades 16 through 18). The SOMDTP region displayed in Panel B represents the

boundary for meta-clades 16 through 18 (see the white border in Fig 8 Panel A). S9 master_appendix sheet gp_D lists

the table in Panel C. See legend of Fig 9 for additional details. S16 master_appendix sheet gp_D_FDA lists the FDA

compounds associated with these defective genes.

https://doi.org/10.1371/journal.pone.0243336.g012
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expression by both transcriptional and post-transcriptional mechanisms [75]. Novel anti-

mitotics, which target the mitotic spindle through interactions with non-microtubule mitotic

mediators like mitotic kinases and kinesins, have been identified and are now in clinical testing

[76]. Included in clinical testing are compounds that have low nanomolar potency against

ABL, FLT1 and PDGFR [77]. Tumor endothelial cell lines demonstrate a strong activation of

VEGF and Notch signaling [78]. VEGF-B is a growth factor that binds FLT1 and is considered

the odd member of the VEGF family, with mainly angiogenic and lymphangiogenic activities.

VEGF-B has protective effects on neuropathy [79]. FLT1 has been proposed as a prognostic

indicator in endometrial carcinoma [80].

The 4th most frequent defective gene, MMP9 (matrix metalloproteinases 9) and its associ-

ated vascular endothelial growth factor (VEGF) are critical for tumor vascularization and inva-

sion. A recent study of the expression of MMP-9 and VEGF(FLT1) in breast cancer patients

found their correlation significant enough to propose these genes as prognostic indicators

[81]. Inspection of these SOM meta-clades finds MOA:PK agents to be located mainly in the

upper portion of SOM meta-clades 16 through 18, where defective genes MMP9 and RBPJL
also appear. Crizitonib is co-projected to these SOM nodes. Cizitonib is a small molecule TKI

that inhibits the activity of the ALK fusion proteins, MET, ROS1, and MST1R (RON) [82,83].

Noteworthy is the impressive clinical responses to crizotinib and other small-molecule drugs

inhibiting the ALK tyrosine kinase [84]. Defective MMP9 or RBPLJ may contribute to

enhanced crizitonib chemosensitivity.

MOA:HSP90 is the 2nd most frequent MOA class in SOM meta-clades 16 through 18. Sev-

eral studies have suggested a possible connection between HSP90 and the microtubule cyto-

skeleton. Weis et al. [85] find that HSP90 protects tubulin against thermal denaturation. Anti-

tumor selectivity of a novel Tubulin and HSP90 dual-targeting inhibitor has been identified in

non-small cell lung cancer model [86]. The presence of geldanamycin within the list of agents

in this SOM region is consistent with this observation. Liu et al. ([87]) find evidence that mis-

regulated HSP90 can affect drug sensitivity, an effect proposed to be due the altered regulation

of HSP90 client proteins, inclusive of tubulin.

Group E(meta-clades 19 through 20)

Contingency scores order the defective genes as: BRAF, EGFR, JAK3, RPTOR, PIK3CG and

SPTBN1 (Fig 13 Panel A). BRAF dominates the central region of SOMDTP for group E (Fig 13

Panel B). Nine MOA classes, ordered from most to least node counts, are Pk, BCR-ABL,

HDAC, NonCan, PSM, A7, Ds, HSP90 and Ho (Fig 13 Panels C and D). The most frequent

defective gene is BRAF and is associated with the most frequent MOA:PK, followed by MOA:

BCR-ABL, MOA_HDAC. PIK3CG, RPTOR and JAK3 are the 2nd, 3rd and 4th ranking defective

genes. This SOMDTP region corresponds to the projection of known FDA approved BRAF tar-

geting agents; dabrafenib, hypomethicin, selmutinub and vemurafenib (S17 master_appendix

sheet gp E_FDA). These results are consistent with the findings of Ikediobi et al. [4].

The association of defective BRAF with compounds that target this condition are well docu-

mented [4,88]. Mutant BRAF (v-Raf murine sarcoma viral oncogene homolog B1) inhibitors

such as vemurafenib and dabrafenib have achieved unprecedented clinical responses in the

treatment of melanomas [89,90]. The association of defective BRAF to MOA:HDAC is consis-

tent with literature reports. Recent studies have shown that histone deacetylase (HDAC) and

mutant BRAF (v-Raf murine sarcoma viral oncogene homolog B1) inhibitors synergistically

kill melanoma cell lines with activating mutations in BRAF by induction of necrosis [91].

A role for defective PIK3CG is indicated in SOM meta clades 19 through 20 for MOA:PK

and MOA:BCR-ABL. The publications from Shi et al. [92], Van Allen et al. [93] and Rizos
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et al. [94] addressed the roles of PI3K pathway gene’s mutations. Resistance to BRAF inhibitors

can be associated with upregulation of the PI3K/AKT pathway, resulting from AKT1/3 muta-

tions and mutations in positive (PIK3CA, PIK3CG) and negative (PIK3R2, PTEN and

PHLPP1) regulatory genes [95]. The results in Fig 13 Panels C and D indicate a role for

HDAC in BRAF chemosensitivity. Gallagher et al. [96] find that HDAC inhibitors affect

BRAF-inhibitor sensitivity by altering PI3K activity.

A role for defective RPTOR is indicated for MOA:BCR-ABL. Drugs simultaneously target-

ing two or more pathways essential for cancer growth could slow or prevent the development

of resistant clones. Puausova et al. [97] identify dual inhibitors of proliferative pathways in

human melanoma cell lines bearing the V600E activating mutation of BRAF kinase. They

found these inhibitors to simultaneously disrupt the BRAF V600E-driven extracellular signal-

regulated kinase (ERK) mitogen-activated protein kinase (MAPK) activity and the mechanistic

target of rapamycin complex 1 (mTORC1) signaling in melanoma cell lines, yielding dynamic

changes in mTOR(RPTOR) signaling.

The non-receptor tyrosine Janus kinases (JAK) are involved in various processes such as

cell growth, development, or differentiation. The result presented here finds an enhanced che-

mosensitivity to HDAC inhibitors for tumor cell lines with defective JAK3. DUAL kinase and

HDAC inhibitors have been developed based on the reasoning that specifically blocking more

than one oncogenic pathway simultaneously with a combination of different drugs may be a

more effective cancer treatment [98]. Dual inhibitors of Janus kinases and HDAC have been

developed [99,100], As an example, Dymock’s group has designed and synthesized a novel

series of dual JAK and HDAC inhibitors based on the core features of ruxolitinib [101]. Upre-

gulation of JAK3 has been observed in response to increases of oxygen-containing species fol-

lowing HDAC inhibition [102]. Although the design of dual JAK/HDAC inhibitors was based

Fig 13. Results for group E(meta-clades 19 through 20). The SOMDTP region displayed in Panel B represents the

boundary for meta-clades 19 through 20 (see the white border in Fig 8 Panel A). S10 master_appendix sheet gp_E

lists the table in Panel C. See legend to Fig 9 for additional details. S17 master_appendix sheet gp_E_FDA lists the

FDA compounds associated with these defective genes.

https://doi.org/10.1371/journal.pone.0243336.g013
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on simultaneously targeting different oncogenic pathways, a role for defective JAK in chemo-

sensitivity may be important.

Results: Group F(meta-clades 21 through 24)

Contingency scores order the defective genes as: AXL, STAT2, CDKN2A, RPTOR, KRAS and
MYC(Fig 14 Panel A). CDKN2A is the dominant defective gene in meta-clade 21 while

RPTOR and STAT2 are located primarily in meta-clade 22 (Fig 14 Panel B). Eighteen MOA

classes exist, with MOAs appearing with the highest counts all targeting DNA (Ds, T2, A7, Db,

Df and A2)(Fig 14 Panels C and D). CDKN2A as the most frequent defective gene, followed

by AXL, MYC, STAT2 and KRAS. Meta-clades 21 through 24 represent, by far, the largest

number of FDA approved agents. These defective genes affect proliferation largely resulting

from their role in targeting DNA, DNA damage repair and phosphorylation. These genes do

not overlap with a prior analysis of DNA repair genes in the NCI60 and their predictive value

for anticancer drug activity [103].

Su et al. [104] report that CDKN2A loss is significantly associated with the sensitivity of

CDK4/6 inhibitors (also projected to SOM meta-clade 14). Evidence supports the role of

CDKN2A in cell cycle independent functions such as DNA damage repair [105]. CDKN2A
also provides instructions for making several proteins, including p16(INK4A) and p14(ARF),

which function as tumor suppressors that keep cell lines from growing and dividing too rap-

idly or in an uncontrolled way. Overexpression of CDKN2A inhibits cell proliferation and

invasion, to cause cell cycle arrest in the G1 phase. CDKN2A mediates the AKT–mTOR

(RPTOR) signaling pathway by suppressing lactate dehydrogenase (LDHA) [106]. Taken

together, these results suggest therapeutic agents that target CDKN2A and RPTOR in cancers

that share these defective genes. Consistent with chemosensitivity for FDA compounds in

these meta-clades, recent observations report that long term survivorship after high dose DNA

Fig 14. Results for group F(meta-clades 21 through 24). The SOMDTP region displayed in Panel B represents the

boundary for meta-clades 21 through 24 (see the white border in Fig 8 Panel A). S11 master_appendix sheet gp_F

lists the table in Panel C. See legend to Fig 9 for additional details. S18 master_appendix sheet gp_F_FDA lists the

FDA compounds associated with these defective genes.

https://doi.org/10.1371/journal.pone.0243336.g014
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damaging chemotherapy with melphalan is compatible with an increased chemosensitivity

due to impairment of the DNA repair pathway [107]. Loss of CDK2 presents a different chal-

lenge to cell lines, aside from the more conventional role to regulate cyclins, which in turn

might lead to altered DNA damage response and checkpoint activation, mutations in DNA

repair genes drive cancer development [108,109]. Ras proteins play a crucial role as a central

component of the cellular networks controlling a variety of signaling pathways that regulate

growth, proliferation, survival, differentiation, adhesion, cytoskeletal rearrangements and

motility of a cell [110]. KRAS (Kirsten-rat sarcoma viral oncogene homolog) is a prominent

oncogene that has been proven to drive tumorigenesis, modulate numerous genetic regulatory

mechanisms including the induction of DNA damage repair pathways [111,112]. Mutant

RAS-driven tumorigenesis arises independently of wild-type RAS isoforms, but recent evi-

dence indicates wild-type isoforms are involved. Grabocka and colleagues [113] report how

the loss of wild-type RAS alters oncogenic signaling and dampens the DNA-damage response,

thereby affecting tumor progression and chemosensitivity. Since the MOA agents listed for

SOM meta-clades 21 through 24 have roles in DNA damage, defective CDKN2A, RPTOR and

KRAS may contribute to chemosensitivity of tumor cell lines to these agents. While targeting

defective KRAS remains elusive [114], small molecule inhibitors are in the pipeline [115].

Exploration of NCI60 screened compounds that project to meta-clades 21 through 24 may

provide a starting point for lead discovery.

Pyrazoloacridine, palbociclib, methotrexate, fluorouracil, 8-Chloro-adenosine, pralatrexate,

pemetrexed, pelitrexol, by-product_of_CUDC-305, 6-Mercaptopurine and oxaliplatin appear

most frequently in the SOM region for group F (S18 master_appendix sheet gp_F_FDA). A

study of gastric cancer patients detected a high frequency of mutations in MLL4, ERBB3,

FBXW7, MLL3, mtor(RPTOR), NOTCH1, PIK3CA, KRAS, ERBB4 and EGFR [116]. KRAS
mutations have been reported as predictors of the response of lung adenocarcinoma patients

receiving platinum-based chemotherapy [117,118]. NOTCH1 mutations target KRAS mutant

CD8+ cells to contribute to their leukemogenic transformation [119,120]. Notable in the list of

FDA approved agents associated with SOM meta-clades 21 through 24 is oxaliplatin. Oxalipla-

tin-based chemotherapy is more beneficial in KRAS mutant than in KRAS wild-type metastatic

colorectal cancer [121]. SOM meta-clade 21 is the location of cytarabine (ara-C) and is consis-

tent with the conclusion of Ahmad et al [24] that adult AML patients carrying defective KRAS
benefit from higher ara-C doses more than wt KRAS patients. Enhanced chemosensitivity of

tumor cell lines with defective KRAS may represent a link to these observations.

Results: Group G(meta-clades 25 through 28)

Contingency scores order the defective genes as PEG3, ABL1 and PIK3CG as the most signifi-

cant and MTOR, KRAS and NRAS as the genes with the least significance (Fig 15 Panel A).

PIK3CG represents the largest count of SOMDTP projections, located mainly in the central

region of meta-clades 25 through 28. MTOR, KRAS and NRAS are located mostly in the bot-

tom of this region (Fig 15 Panel B). Twelve MOA classes exist, with MOAs appearing with the

highest counts as Ds, Apo, and PK (Fig 15 Panels C and D). The most frequently occurring

defective genes are PIK3CG, NRAS, PTK2 and ABL1 (Fig 15 Panels C and D). The defective

genes in meta-clade 25 through 28 represent an amalgamation of many of the previous meta-

clade groups, where sets of defective genes were involved in cellular processes of phosphoryla-

tion and progression through the cell cycle for proliferation. Consequently, many of these

defective genes have been previously discussed, with the exceptions of NRAS and PTK2.

NRAS (ranked 2nd by node counts) is one of the most common targets of oncogenic signal-

ing mutations in hematologic malignancies. Even with the challenge of directly targeting
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mutant RAS oncoproteins, mitogen-activated protein kinase (MAPK) inhibition has been

shown to reduce leukocytosis by targeting the downstream pathway of NRAS [122]. As noted

earlier, combinations of targeted agents may not supersede conventional cytotoxic regimens,

however combinations may enhance treatment efficacy. Identifying compounds that target

defective NRAS and other compounds that target defective PTK2, ABL1 or PIK3CG, in the

case of meta-clades 25 through 28, may offer effective combination therapies. Without doubt,

large numbers of molecular pathways are likely to be synergistically involved in cancer biology,

the contribution of each pathway may be different and identifying which combinations to

select will be experimentally exhausting. Bioinformatic approached as discussed herein may

offer useful clues.

PTK2 (ranked 3rd by node counts) is a non-receptor protein-tyrosine kinase with functions

that include cell migration, reorganization of the actin cytoskeleton, cell cycle progression, cell

proliferation and apoptosis through kinase-dependent and -independent mechanisms [123]. It

is a member of the FAK (focal adhesion kinase) subfamily of protein tyrosine kinases and is

listed as a transcriptional regulator. FAKs are reported to modulate chemosensitivity by alter-

ing chemokine production [31]. Enhanced chemosensitivity to gemcitabine has been reported

with interference of FAKs [124]. Because of the involvement of PTK2(FAK) in many cancers,

drugs that inhibit FAK are being sought and evaluated [125]. A screen to identify mechanisms

of bleomycin resistance identified Sky1, PTK2 and Agp2 as determinants of chemosensitivity

[126].

Fig 15. Results for group G(meta-clades 25 through 28). The SOMDTP region displayed in Panel B represents the

boundary for meta-clades 25 through 28 (see the white border in Fig 8 Panel A). S12 master_appendix sheet gp_G

lists the table in Panel C. See legend to Fig 9 for additional details. S19 master_appendix sheet gp_G_FDA lists the

FDA compounds associated with these defective genes.

https://doi.org/10.1371/journal.pone.0243336.g015
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Discussion

The development of rational strategies for targeted cancer therapy will require integrative anal-

ysis of data derived from diverse sources including, but not exclusive to, large-scale, publicly

available, pre-clinical and clinical small-molecule screening and genomic data. A widely

accepted challenge of linking screening and genomic data is how to gain molecular insight

into the MOA(s) of active compounds. Not unexpectedly, the range of potentially important

links is enormous; yielding massive challenges to the development of statistical/computational

bioinformatic tools that assist integrative analyses. Advances have been made by focusing stud-

ies on fewer compounds (24 compounds in the CCLE [127] or approved FDA compounds

[128]) or by studying small numbers of driver or mutated genes [129].

The results of the present study demonstrate the power of combining genomic data and

small-molecule screens of FDA compounds in the NCI60 to provide mechanistic clues about

compound activity. These results reveal coarse-grained associations between chemosensitivity

of target-directed FDA agents towards tumor cell lines harboring specific genetic defects.

SOM clustering finds seven regions of GI50NCI60 responses, broadly assigned to FDA MOA

classes that target, not exclusively, tubulin, BRAF mutations, RAF/MEK/ERK/mTOR and the

PI3K/AKT pathways, DNA or protein synthesis pathways, the cell cycle and are associated

with a relatively unique set of defective genes for each MOA class. Salient associations include

the role of defective MYC for tubulin targeting agents, defective CDKN2A, NRAS and KRAS
for DNA damaging/targeting agents and the role of defective NOTCH1 for mutant BRAF tar-

geting agents. Remarkably, nearly half of the defective genes reported herein also appear in

Ikediobi et al. [4], albeit using very different methods.

The results described here may be applied to future pre-clinical studies. Notably there are

exploitable instances of enhanced chemosensitivity of compound MOA’s for a few defective

genes. Specifically, there is support for synthetically lethal defective genes as contributing to

chemosensitivity. Defective genes exist withing the NCI60 as doublets, triplets, quartets, etc.,

and a subset of these genes are associated with tumor cell lines that exhibit chemosensitivity.

Exploiting chemosensitive SOMDTP nodes associated with tumor cell lines having more than

one defective gene, that are also associated with numerous screened compounds, may identify

additional synthetic lethal strategies. The notion of targeting parallel pathways can be extend

beyond synthetically lethal genes. Combining agents with enhanced chemosensitivity against

one defective gene, and its related cellular pathways, with other agents showing enhanced che-

mosensitivity towards other defective genes in alternative pathways, may enhance the efficacy

of each agent. For example, each SOMDTP node with significant chemosensitivity for one

defective gene includes many NSCs with similar GI50NCI60 responses, inclusive of FDA com-

pounds. Combinations of NSCs from SOMDTP nodes also exhibiting differential chemosensi-

tivity for one or more defective gene in parallel pathways may be considered for experimental

testing. The goal would be to identify combinations of NSCs that separately target parallel cel-

lular pathways to determine whether their combination would enhance individual efficacies.

The bioinformatic analysis described herein may provide clues for experimental pre-clinical

testing of possible drug combinations.

Important caveats underly the interpretation of the results presented here. First, links of

defective genes to chemosensitivity are not revealed in a clear-cut manner. Rarely is chemosen-

sitivity associated only to tumor cell lines harboring defective genes. Chemosensitivity also

exists within tumor cell lines lacking defective genes (cf. Fig 3). Consequently, while gene-

drug associations may provide a genetic basis for drug selection [130], there is clear evidence

herein that additional, not well understood, factors are in play. Second, combinations of defec-

tive genes appear to play a role in chemosensitivity. For example, 44 defective genes are listed
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in the tables provided in each of the RESULTS subsections. Eighty-eight percent of these

genes are listed only once (N = 24) or twice (N = 14) across the seven meta-clade groups. This

result is an indication that relatively few defective genes contribute to enhanced chemosensi-

tivity across meta-clade groups. In contrast, only two (RPTOR and MTOR) and three genes

(PIK3CG, MYC and CDC25A) appear jointly in four or three of the seven meta-clade groups,

respectively. Consequently, identifying a single defective gene as responsible for chemosensi-

tivity may be rare; while combinations with genes commonly labeled as cancer genes may be

more likely. Third, the 44 defective genes listed in the RESULTS subsections can be compared

to current compendia of cancer gene mutations derived from human studies. The Cancer

Genome Interpreter [131] has been developed to classify protein-coding somatic mutations

and copy number variants into predicted passenger or known/predicted oncogenic mutations.

Half (N = 22) of the defective genes listed here are identified by the Cancer Genome Interpret-

er’s encyclopedia of patient-derived tumor xenografts (PDX) as driver mutations. A recent

report using driver mutation patterns for prioritization of personalized cancer therapy [132]

finds nearly 20% of their 39 tumor biomarkers to be included in this set of defective genes.

Although the defective genes listed here were derived from novel applications of bioinformatic

tools, these results find support within other databases. The absence of overlapping genes sug-

gests potentially important roles for non-driver genes in chemosensitivity. Fourth, global anal-

ysis of modest to large scale genomic and screening data offers only one perspective. The

genetic make-up of the NCI60 represents only a snapshot of data for a small number of tumor

cell lines. The universal application of results derived from the NCI60 may be relevant only in

the rare instance that another tumor cell matches the genetic makeup of any NCI60 cell. This

does not, however, rule out analyses, parallel to that presented here, that jointly examine exist-

ing and new data. Fourth, the absence of defective TP53 in these results has not gone unde-

tected. Most NCI60 tumor cell lines harbor defective TP53. As a result, establishing a

statistically significant Student’s t-test for selective chemosensitivity fails mainly due to too few

responses of tumor cell lines lacking defective TP53. Extending the data analysis to more

tumor cell lines, lacking mutant TP53, may prove helpful. While addressing each of these cave-

ats is massively challenging, resolution of each issue contributes to the understanding of pre-

clinical screening results derived from a small set of human tumor cell lines.

In summary, the challenge of finding meaningful results within complex and noisy data has

been proposed using contemporary data and state-ot-the-art statistical tools. This global analy-

sis of multiple datasets, overlapping in their origins within the NCI60, has provided a unique

perspective for associations of chemosensitivity, defective genes and MOAs.
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