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Abstract

The identifiability of the two damping components of a Generalized Rayleigh Damping model is investigated through
analysis of the continuum equilibrium equations as well as a simple spring-mass system. Generalized Rayleigh Damping
provides a more diversified attenuation model than pure Viscoelasticity, with two parameters to describe attenuation
effects and account for the complex damping behavior found in biological tissue. For heterogeneous Rayleigh Damped
materials, there is no equivalent Viscoelastic system to describe the observed motions. For homogeneous systems, the
inverse problem to determine the two Rayleigh Damping components is seen to be uniquely posed, in the sense that the
inverse matrix for parameter identification is full rank, with certain conditions: when either multi-frequency data is available
or when both shear and dilatational wave propagation is taken into account. For the multi-frequency case, the frequency
dependency of the elastic parameters adds a level of complexity to the reconstruction problem that must be addressed for
reasonable solutions. For the dilatational wave case, the accuracy of compressional wave measurement in fluid saturated
soft tissues becomes an issue for qualitative parameter identification. These issues can be addressed with reasonable
assumptions on the negligible damping levels of dilatational waves in soft tissue. In general, the parameters of a
Generalized Rayleigh Damping model are identifiable for the elastography inverse problem, although with more complex
conditions than the simpler Viscoelastic damping model. The value of this approach is the additional structural information
provided by the Generalized Rayleigh Damping model, which can be linked to tissue composition as well as rheological
interpretations.
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Introduction

The importance of damping models in elastography has become

clearer in recent years as attenuation levels measured by

elastographic imaging have been linked to diseases of the liver

[1–6] and brain [7–13]. A number of methods have been

proposed for reconstructing the Viscoelastic (VE) properties of

soft tissue [14–18], including an iterative, nonlinear inversion

method [19,20]. These methods have all targeted the development

of images of the storage (G
0
) and loss (G

00
) modulus distributions

within the tissue in question. Some have gone on to investigate the

frequency dependent behavior of these two parameters [5,11], as

well as multi-frequency reconstruction methods to improve the

quality of the VE parameters reconstruction across a range of

frequencies [18]. While these methods have already demonstrated

the important role of tissue attenuation in differentiating tissue

type and identifying lesions, linear VE provides a relatively

simplified model for understanding the complex, non-linear

attenuation observed in in-vivo tissue.

Rayleigh Damping (RD), also known as proportional or

Caughey damping, is a damping model with origins in numerical

structural mechanics and is characterized by providing attenuation

effects that are proportional to both elastic and inertial forces. As

such, RD is a more diversified damping model than VE, where

attenuation forces are related uniquely to elastic forces. From a

numerical perspective, RD has the advantage that the damping

matrix can be can be modally decomposed using the eigensystem

developed from the undamped system, and has been shown to be

useful in applications such as an absorbing boundary layer to

remove spurious reflections in machine vibration and seismic

models [21]. A rheological interpretation of RD can also be

developed for weak to moderate damping levels [22].

A Generalized RD formulation has been developed previously

for use in elastography imaging [23]. This time-harmonic

formulation differs from the traditional RD configuration in the

sense that damping effects are developed through complex valued

shear modulus (m) and density (r) parameters, where the imaginary

parts of m and r are allowed to vary independently from their real

counterparts. This is in contrast with the classical RD structural

model, where the damping matrix is composed of scalar

combinations of the mass and stiffness matrices. The difference

is subtle, but important, as the use of the complex shear modulus

value separates damping effects in distortional and dilatational

waves, which will be seen to be critical for identifiability of the

system. The use of Generalized RD in elastography is of interest

mainly due to: a) the simplicity of the model, particularly in Finite

Element (FE) formulations; b) the larger range of attenuation

behavior the model is able to accommodate, where biological

tissue is known to exhibit high levels of complex, non-linear

damping; and c) the additional damping parameter provided by
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the imaging process, which has shown sensitivity to material

structure, such as the difference between gel and porous materials

as well as cancerous and healthy breast tissue [24].

The goal of this paper is to investigate the conditions in which

the parameters for a Generalized RD model can be identified in

the elastography problem, based on measured motion data within

the specimen. The reason to be concerned with identifiability in

the RD case has to do with the simplified form of the classical RD

reconstruction problem, which can be written as

c1Azc2B~U,

where complex valued A and B represent the stiffness and mass

components of the structure. These parameters are to be identified

based on measurements of complex valued U. While this case is

only identifiable to a linear relation between A and B,

A~
1

c1

U{
c2

c1

B,

it will be shown that this is in fact an over-simplification of the

Generalized RD reconstruction problem that does not account for

the dual modes of elastic wave transmission. Additionally, even in

the single wave transmission case, it can be shown that the

addition of multi-frequency information is sufficient to make the

Generalized RD inverse problem uniquely posed.

Analysis and Methods

Generalized Time-Harmonic Rayleigh Damping
Classical RD is a structural mechanics formulation based on the

discretized dynamic model

M€uuzC _uuzKu~0, ð1Þ

with mass and stiffness matrices, M and K, and a damping matrix,

C, of the form

C~aMzbK: ð2Þ

In contrast, the Generalized RD formulation considered in this

work is a continuum interpretation of discretized classical RD,

with damping effects proportional to shear and inertial forces. In

the case of time-harmonic displacements, where

~uu(x,t)~< �uu(x)eivtf g for the complex valued �uu~�uuRzi�uuI , the

damping coefficients in Eq. 2 can be defined in terms of complex

valued density, r~rRzirI , and shear modulus, m~mRzimI ,

where [23]

rI~
{arR

v
and mI~vbmR: ð3Þ

We note here that the complex valued shear modulus

components are directly related to the storage and loss modulus,

with mR~G
0
and mI~G

00
. The damping ratio, j, for an RD system

is then given by [25],

j~
1

2

a

v
zbv

� �
~

1

2

mI

mR

{
rI

rR

� �
: ð4Þ

The elastography problem in a Generalized RD system is then

to reconstruct the distribution of the elastic properties mR(x), mI (x)
and rI (x) from a measured displacement field, �uu(x). In general,

for soft tissue elastography, the mass density, rR, can be assumed a

priori as equal to that of water, i.e. 1000
kg

m3
. As a point of

comparison, the time-harmonic VE model provides damping

effects due to a single elastic property, mI , such that the

elastography problem in a purely VE system is to reconstruct

mR(x) and mI (x) from a measured displacement field, �uu(x).
Defining the Generalized Rayleigh Damping

Parameters. A physical interpretation of the Generalized RD

parameters can be developed by considering the elastic equilib-

rium of the time-harmonic system through Navier’s equation,

written as

+: m +�uuz+�uuT
� �� �

z+ l+:�uuð Þ~{rv2�uu, ð5Þ

with complex valued m and r defined as above in Eq. 3. In general,

for soft tissue elastography, the system is considered nearly

incompressible, with a real valued bulk modulus K*O(1E9) and

l~K{
2m

3
: ð6Þ

Dilatational attenuation can be considered, where

K~KRziKI , however the levels of damping in this compressional

wave propagation will be negligible for higher frequencies where

poroelastic effects are minimal [26].

Eq. 5 can be rewritten in the form of an undamped elastic

operator K, a damping operator D and an inertial operatorM, all

acting on the time harmonic displacements, �uu. This gives

K�uuziD�uu~{v2M�uu, ð7Þ

with

K�uu~+: mR +�uuz+�uuT
� �� �

z+ lR+:�uuð Þ, ð8Þ

D�uu~Db�uuzDa�uu~ +: mI +�uuz+�uuT
� �� �

z+ lI+:�uuð Þ
� 	

zrI v2�uu ð9Þ

and

M�uu~rR�uu: ð10Þ

Substitution of lI~vclR and Eq. 3 into Eq. 9 and defining the

time-harmonic velocity as �vv~iv�uu, gives the viscoelastic damping

operator,

Cb�vv~iDb�uu~+: bmR +�vvz+�vvT
� �� �

{+ clR+:�vvð Þ, ð11Þ

while substitution of Eq. 3 into Eq. 9 gives an inertial damping

operator,

Ca�vv~iDa�uu~{arR�vv: ð12Þ
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From Eqs. 11 & 12, the interpretation of the Generalized RD

damping operator, C~CbzCa, is relatively straightforward. The

component Cb represents traditional viscoelastic damping, where

attenuation is related to strain rate. The component Ca provides a

second damping term directly proportional to local velocity, as if

the solid matrix were moving through a stationary viscous fluid. In

the case of medical imaging, both of these components have a

meaningful mechanical analogy to soft tissue structure.

This Generalized RD formulation can be compared with the

classical RD formulation by considering the case where c~b,

+:b~0 and +c~0, so that

Cb�vv~ibK�uu, ð13Þ

and

Ca�vv~{iaM�uu: ð14Þ

We note that, in this case, Eq. 7 becomes

1zibð ÞK�uu~{ v2{ia
� �

M�uu, ð15Þ

which, as a single complex valued equation, cannot be solved for

two independent parameters a and b. However, the conditions

which lead to this case, notably the requirement that a and b be

essentially homogeneous, are not expected in in-vivo tissue, and Eq.

6 is commonly used to define lI , so that Eq. 9 becomes

C�vv~iD�uu~b +: mR +�vvz+�vvT
� �� �

{+
2mR

3
+:�vv

� �
 �
{arR�vv: ð16Þ

The implications of this particular case on the identifiability of

the RD parameters will be seen in the following sections.

Uniqueness of the Generalized Rayleigh Damping System
A first step in analyzing the identifiability of the RD parameters,

mR, mI & rI , is to consider the existence of a VE system equivalent

to the RD system but with a strictly real valued density of rR. If

such a system exists, the RD parameters needed to define a

particular motion field, �uu, are not unique, and thus they cannot be

identified without additional information. To develop the equiv-

alence condition, we consider alternative operators for Eq. 7, so

that we have

K
^

�uuziD
^

�uu~K�uuziD�uu~{v2M�uu, ð17Þ

where

K
^

�uu~+: ~mmR +�uuz+�uuT
� �� �

z+ ~llR+:�uu
� �

, ð18Þ

and

D
^

�uu~+: ~mmI +�uuz+�uuT
� �� �

z+ ~llI+:�uu
� �

: ð19Þ

The form of K
^

and D
^

can be determined by first moving Da to

the right-hand-side of Eq. 7, to obtain

K�uuziDb�uu~{ v2MziDa

� �
�uu~{rv2�uu, ð20Þ

and then multiplying both sides by by
rR

r
, which, after expansion

of the derivative terms and combining m~mRzimI and

l~lRzilI , gives

rR

r

� �
+mð Þ:+�uuz

rR

r
m

� �
+2�uuz

rR

r

� �
+mð Þ: +�uuð ÞT

z
rR

r
m

� �
+: +�uuð ÞT

z
rR

r

� �
+lð Þ+:�uuz

rR

r
l

� �
++:�uu~{v2rR�uu:

ð21Þ

Making use of the product rule formulation

a(Lb)~L(ab){b(La), as well as effective moduli ~mm~(
rR

r
)m and

~ll~(
rR

r
)l [24], Eq. 21 can be rewritten as

K
^

�uuzD
^

�uu{ m+
rR

r

� �
:+�uu{ m+

rR

r

� �
: +�uuð ÞT{ l+

rR

r

� �
+:�uu

~{v2M�uu,

ð22Þ

with the operators defined in Eqs. 18 & 19. We see from Eq. 22

that Eq. 17 only holds for the case when the spatial derivative + rR
r

is zero, i.e. when r is homogeneous or when rI~0. In the case of

heterogeneous density or rI=0, Eq. 22 indicates that some

evidence of the intertial RD operator, Da, will be present in the

motion field, �uu. We note that

~mm~~mmRzi~mmI~
mRr2

RzmI rRrI

r2
Rzr2

I

� �
zi

mI r2
R{mRrRrI

r2
Rzr2

I

� �
,

and

~ll~~llRzi~llI~
lRr2

RzlI rRrI

r2
Rzr2

I

� �
zi

lI r2
R{lRrRrI

r2
Rzr2

I

� �
,

such that, even in the case where + rR
r ~0, the condition rI=0

ensures that ~mmR=mR, ~mmI=mI , ~llR=lR and ~llI=lI . The presence

of Da in the system that generates �uu will thus effect measurements

of both shear stiffness and viscosity made with a damping operator

in the form of D
^

.

Conclusions from Analysis of the Generalized System
Eq. 22 shows that a direct VE equivalent to an RD system is

only possible when +
rR

r
~0. This is an important result as, in

general, the material property distributions observed within soft-

tissue will be highly heterogeneous, and thus the RD and VE

systems are, in general, not equivalent. The task still remains to

correctly identify the parameters of the RD system based on the

measured motions. Eq. 15 has already indicated that this is

generally possible so long as the tissue is heterogeneous and b=c,

i.e. dilatational wave attenuation is not at the same level as shear
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wave attenuation. The exact conditions under which parameter

identification is possible are analyzed in the following section.

A Spring-Mass Analogy
To explore the concept of parameter identification in Gener-

alized RD elastography more closely, we start by considering a

simple, locally homogeneous spring-mass system, where the spring

stiffness, k, has a VE component, k
0
, while the mass, m, has an

inertial damping component, m
0
. To focus on the case of

elastography imaging, the spring system is constructed of three

masses, connected by two springs, all in series, as shown in

Figure 1. The reason for this arrangement is that typically, in

elastography imaging, the applied forces, f , are unknown, and

therefore cannot be called upon for the inverse problem of solving

for the elastic parameters given the motions. Instead, only motion

data is obtained, so in the two cases presented here we will

consider the data as the axial displacements of the system, u1, u2

and u3, measured at positions x1, x2 and x3. In addition, we will

see that supplementary data can be obtained from measuring the

corresponding transverse displacements, v1, v2 and v3. Without

forcing information, the trivial solution, m~k~m
0
~k

0
~0, is a

possibility for the general inverse problem. To eliminate this

solution, elastography methods typically assume the mass, m, is a

known quantity. In soft-tissue imaging, this corresponds to the

assumption that biological soft tissue has a density equal to that of

water.

A note on noise. In general, direct elastography inversion

schemes such as those shown here are highly unstable, and the

condition of the inversion matrix, Q, deteriorates rapidly with the

presence of noise in the measured displacements. However, the

purpose of this work is not to consider the impact of noise on the

elastographic inverse problem. Any suitable approach to elasto-

graphy imaging will have addressed the issue of the poor condition

of the inverse solution matrix, and a number of well documented

methods for resolving these issues have been presented in the

literature. The choice of the direct inversion approach is made

here because it allows explicit inspection of the inversion matrix to

determine if the inverse problem is full rank. The sensitivity of

these problems to noise in the data means that even if the inverse

matrix is full rank, practical solutions from measured data requires

filtering and regularization, despite the problem being ’’well

posed’’.

Case I: A 1D, Homogeneous System
We start with the simplest of all cases, with a single mass,

(m,m
0
), supported in series between two homogeneous springs,

(k,k
0
), with steady displacements applied at both ends, (u1,u3), at

radial frequency v.

Forward Problem. First, we consider the equation of motion

for the interior mass at x2, u2~f (m,m
0
,k,k

0
,u1,u2,v). This is

obtained from considering the equilibrium equation for the

system, given by

m
d2u2

dt2
zm

0 du2

dt
zk(u2{u1){k(u3{u2)zk

0 du2

dt
{

du1

dt

� �

{k
0 du3

dt
{

du2

dt

� �
~0,

ð23Þ

which, with a time-harmonic assumption that the displacement

will have the form u2~<fA2eivtg, (i~
ffiffiffiffiffiffiffiffi
{1
p

), leads to the

equilibrium form

{v2mzivm
0
zk(u2{u1){k(u3{u2)zivk

0
u2{u1ð Þ

{ivk
0

u3{u2ð Þ~0,
ð24Þ

with the solution

A2~
kzivk

0� �
2k{v2mziv m

0
z2k

0� � A1zA3ð Þ: ð25Þ

Eq. 25 can be rewritten in the form

A2~C A1zA3ð Þ,

where C has real and imaginary parts

< Cf g~
k 2k{v2m
� �

zv2k
0

m
0
z2k

0� �h i
2k{v2mð Þ2zv2 m

0
z2k

0� �2
ð26Þ

and

= Cf g~
vk
0

2k{v2m
� �

{vk m
0
z2k

0� �h i
2k{v2mð Þ2zv2 m

0
z2k

0� �2
: ð27Þ

Inverse Problem. The inverse problem in this case is ill

posed, as can be deduced from the fact that the relationship

between A2 and the driving conditions, A1 and A3, is only governed

by two numbers, < Cf g and = Cf g. If we assume m is known, that

leaves k, m
0

and k
0

to determine, with only two equations to use!

The direct inverse problem can be written as

Figure 1. A three mass spring-system as an elastography
analogy. To eliminate the need for known forcing information in the
elastography analysis, a three mass system is analyzed, where the
displacements of masses m1 and m3 are considered measured data and
used to calculate system parameters.
doi:10.1371/journal.pone.0093080.g001
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< A2{A1{A3f g {v= A2f g {v= A2{A1{A3f g
= A2{A1{A3f g v< A2f g v< A2{A1{A3f g

" # k

m
0

k
0

8>><
>>:

9>>=
>>;

~
v2m< A2f g

v2m= A2f g

( )
:

ð28Þ

The inverse solution matrix in this case, Q, is clearly only rank

2, meaning we can compose the solution of any two parameters as

functions of the remaining two. For example:

k(m,k
0
)~

m=fCg2 v2zk
0 =fCgvzm<fCg2 v2

2=fCg2
z2<fCg2

{<fCg
ð29Þ

and

m
0
(m,k

0
)~

{
k
0 =fCg2 4zmv=fCgzk

0 <fCg2 4{k
0 <fCg4zk

0

2=fCg2
z2<fCg2

{<fCg
:
ð30Þ

Conclusions. The inverse problem in this case is not

uniquely posed and the direct inversion matrix is rank deficient.

There is no way to calculate a unique value of k
0

and m
0

given a

single displacement measurement in a single dimension. We could

consider adding an additional mass to the system to obtain more

information, essentially adding another instance of Eq. 25, in the

form

A3~
kzivk

0� �
2k{v2mziv m

0
z2k

0� � A2zA4ð Þ: ð31Þ

However, the additional measurement of A3 provides no new

information, as

C~
A2

A1zA3ð Þ~
A3

A2zA4ð Þ ,

and the expanded inversion matrix, Q, is still rank 2, with

< A2{A1{A3f g {v= A2f g {v= A2{A1{A3f g

= A2{A1{A3f g v< A2f g v< A2{A1{A3f g

< A3{A2{A4f g {v= A3f g {v= A3{A2{A4f g

= A3{A2{A4f g v< A3f g v< A3{A2{A4f g

2
666664

3
777775

k

m
0

k
0

8>><
>>:

9>>=
>>;

~

v2m< A2f g

v2m= A2f g

v2m< A3f g

v2m= A3f g

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
:

ð32Þ

Case II: A 1D System, with Multiple Frequencies
The detection of the individual RD components requires

additional, independent information in order to be uniquely

posed. One option for obtaining this information is to consider

measurements at different excitation frequencies, say va and vb,

such that

ua~<fAeivatg

and

ub~<fBeivbtg:

The inverse problem system then becomes

< A2{A1{A3f g {va= A2f g {va= A2{A1{A3f g

= A2{A1{A3f g va< A2f g va< A2{A1{A3f g

< B2{B1{B3f g {vb= B2f g {vb= B2{B1{B3f g

= B2{B1{B3f g vb< B2f g vb< B2{B1{B3f g

2
666664

3
777775

k

m
0

k
0

8>><
>>:

9>>=
>>;

~

v2
am< A2f g

v2
am= A2f g

v2
bm< B2f g

v2
bm= B2f g

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
:

ð33Þ

We can examine the rank of this system by considering the

determinant of the submatrix Q(1 : 3, : ), whose numerator, for

the case where A1~A3~B1~B3~
1
2
, is given by

numeratorf Q(1 : 3, : )j jg~

mv 3
a v 2

b v 2
a {v 2

b

� �
2k
0
zm

0� �
k
0
m
0
{km

� �
:
ð34Þ

Eq. 34 has two real valued roots, va~vb and k
0
~k

m

m
0 (k

0
and

m
0
are positive reals, so the factor 2k

0
zm

0
will never be zero). The

first of these roots reduces the system to the single mass, single

frequency case described above. All additional information is

identical to the original data, and the inversion matrix Q is once

again rank 2. The importance of the second root is seen in

considering the determinant of the submatrix Q(1; 2; 4, : ), which

has the numerator

numeratorf Q(1; 2; 4, : )j jg~

mv 3
a vb v 2

a {v 2
b

� �
2k{mv 2

b

� �
k
0
m
0
{km

� �
,
ð35Þ

where we see the common roots at va~vb and k
0
~k

m

m
0 . Both of

these conditions will thus reduce the inversion matrix to rank 2.

The third root of 35, 2k{mv 2
b , corresponds to undamped

resonance at vb, but due to the fact that this root does not appear

in Eq. 34, this condition does not reduce the inverse problem

matrix to rank 2.

Conclusions. From Eqs. 34 & 35 we see that the multi-

frequency inverse problem for RD systems is generally uniquely

Parameter ID in Rayleigh Damping Elastography
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posed, and, except in the case where k
0
~k m

m
0 , Eq. 33 allows the

determination of the two independent damping components k
0

and m
0

from data taken at two distinct frequencies. In practice, we

note that material properties will often change with frequency,

meaning that k, k
0
, and even m

0
should be expected to be different

at frequencies va and vb, thus making the inverse problem more

complex than that posed in Eq. 33. This issue can be addressed by

developing simple frequency dependency relationships for k, k
0
,

and even m
0
, such as the power law relation, h(v)~h0va, and

then adding additional frequency data, i.e. vc, to account for the

additional parameters to be determined, ak, ak
0 and am

0 .

Case III: A 2D System
The frequency dependency of mechanical properties can be

avoided in RD parameter reconstruction by considering a single

frequency 2D wave propagation model for the spring-mass system

shown in Figure 1. By allowing the mass to vibrate both axially,

with displacement u~< Aeivtf g, and transversely, with displace-

ment v~< Beivtf g, the model allows the propagation of both

shear and longitudinal waves. From linear elastic theory,

propagation of shear and longitudinal waves is governed by the

elastic ’’moduli’’ s~m and k~lz2m, respectively. For soft tissue

imaging, it is common to make use of the fact that tissue is nearly

incompressible due to its high water content. Thus, the bulk

modulus, K , of the tissue can be specified at a very high numerical

value (O(1E9)). The value of l can then be calculated from the

relation

l~K{
2m

3
, ð36Þ

which leads to the longitudinal wave ’’modulus’’

k~Kz
4m

3
~Kz

4s

3
: ð37Þ

To determine the VE component of k, it is assumed that K is

real valued, so that k
0

is determined by substituting the imaginary

shear modulus component, mI~=fmg, into Eq. 37. We’ll consider

the case of complex valued K shortly. Thus, we have for the

longitudinal wave attenuation

k
0
~= Kz

4m

3


 �
~0z

4mI

3
~

4s
0

3
: ð38Þ

Forward Problem. With the time-harmonic assumption

noted above and the effective longitudinal wave modulus and

attenuation given by Eqs. 37 & 38, we have the equilibrium

conditions

{v2mzivm
0
zk(u2{u1){k(u3{u2)zivk

0
u2{u1ð Þ

{ivk
0

u3{u2ð Þ~0,
ð39Þ

and

{v2mzivm
0
zs(v2{v1){s(v3{v2)zivs

0
v2{v1ð Þ

{ivs
0

v3{v2ð Þ~0,
ð40Þ

with the solutions

A2~
kzivk

0� �
2k{v2mziv m

0
z2k

0� � A1zA3ð Þ ð41Þ

and

B2~
szivs

0� �
2s{v2mziv m

0
z2s

0� � B1zB3ð Þ: ð42Þ

Inverse Problem. The inverse problem system then becomes

4

3
< A2{A1{A3f g {va= A2f g { 4va

3
= A2{A1{A3f g

4

3
= A2{A1{A3f g va< A2f g 4va

3
< A2{A1{A3f g

< B2{B1{B3f g {vb= B2f g {vb= B2{B1{B3f g

= B2{B1{B3f g vb< B2f g vb< B2{B1{B3f g

2
666666664

3
777777775

s

m
0

s
0

8>><
>>:

9>>=
>>;

~

v2
am< A2f g{K< A2{A1{A3f g

v2
am= A2f g{K= A2{A1{A3f g

v2
bm< B2f g

v2
bm= B2f g

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
:

ð43Þ

We can examine the rank of this system by considering the

determinant of the submatrix Q(1 : 3, : ), whose numerator, for

the case where A1~A3~B1~B3~
1

2
, is given by

numeratorf Q(1 : 3, : )j jg~

12Kv5 m
0

zm2v2
� �

m
0
z2s

0
� � ð44Þ

Eq. 44 has no real roots, given that s
0
w0 and m

0
w0 for RD

systems. We note also that the determinant of the submatrix

Q(1; 2; 4, : ) has the numerator

numeratorf Q(1; 2; 4, : )j jg~

12Kv4 m zm2v2
� �

2s{mv2
� � ð45Þ

with a root at s~
1

2
mv2, which corresponds to the undamped

resonance case in the shear displacements, v. However, as this root

only appears in Eq. 45, this condition does not reduce the inverse

problem matrix to rank 2.

Conclusions. From Eqs. 44 & 45 we see that the 2D problem

for RD systems is generally uniquely posed, and Eq. 43 allows the

determination of the two independent damping components k
0

and m
0

from shear and longitudinal wave data.

ð43Þ
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Case IV: A 2D System, with Relative Damping
Components

The 2D problem above can be generalized for a system where

attenuation occurs in both dilatational and distortional wave

propagation. In this case, the shear and longitudinal stiffnesses, s

and k, as well as their VE components, s
0

and k
0
, can be directly

related by factors ar and ai, such that

k~ars

and

k
0
~ais

0
:

Forward Problem. With the time-harmonic assumption, we

have the equilibrium conditions

{v2mzivm
0
zars(u2{u1){ars(u3{u2)zivais

0
u2{u1ð Þ

{ivais
0

u3{u2ð Þ~0,
ð46Þ

and

{v2mzivm
0
zs(v2{v1){s(v3{v2)zivs

0
v2{v1ð Þ

{ivs
0

v3{v2ð Þ~0,
ð47Þ

with the solutions

A2~
arszivais

0� �
2ars{v2mziv m

0
z2ais

0� � A1zA3ð Þ ð48Þ

and

B2~
szivs

0� �
2s{v2mziv m

0
z2s

0� � B1zB3ð Þ: ð49Þ

Inverse Problem. The inverse problem system then becomes

ar< A2{A1{A3f g {va= A2f g {vaai= A2{A1{A3f g

ar
4

3
= A2{A1{A3f g va< A2f g vaai< A2{A1{A3f g

< B2{B1{B3f g {vb= B2f g {vb= B2{B1{B3f g

= B2{B1{B3f g vb< B2f g vb< B2{B1{B3f g

2
6666664

3
7777775

s

m
0

s
0

8>><
>>:

9>>=
>>;

~

v2
am< A2f g

v2
am= A2f g

v2
bm< B2f g

v2
bm= B2f g

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
:

ð50Þ

We can examine the rank of this system by considering the

determinant of the submatrices Q(1 : 3, : ) and Q(1; 2; 4, : ),

whose numerators, for the case where A1~A3~B1~B3~
1

2
, are

given by

numeratorf Q(1 : 3, : )j jg~

{mv5 ai{arð Þ
2arm

0
s2{2aim

0
v2s

0
2{aim

0
2v2s

0
{aim

2v4s
0

z2aimv2s
0
sz2armv2s

0
s

 !
ð51Þ

and

numeratorf Q(1; 2; 4, : )j jg~

{mv6 ai{arð Þ
arm s{2arms2z2aim

0
s
0
sz2arm

0
s
0
s

z2aimv2s zarm
2v2s

 !
,
ð52Þ

respectively. We note that both numerators share the factor ai{ar,

meaning that the inverse problem becomes ill posed in the case

where
k
0

s
0 ~

k

s
.

Conclusions. From Eqs. 51 & 52 we see that the 2D problem

for RD systems is generally uniquely posed, except for the case

where the damping ratios for distortional and dilatational wave

attenuation are equal, i.e. whenever

k
0

k
~

s
0

s
: ð53Þ

Equivalent to Eq. 4, the damping ratio, j, for wave propagation

in a mode governed by stiffness t is given by the relation

j~
1

2

t
0

t
z

m
0

m

 !
,

where t
0

is the VE attenuation in the given propagation mode (i.e.

either s
0

for shear waves or k
0

for longitudinal waves). In this case,

we see that the condition for which the inverse problem becomes

ill posed, given by Eq. 53, is equivalent to the damping ratio for

wave attenuation for the shear and longitudinal waves being equal.

In this case, no new information is added to our inverse problem

system by considering the two different wave propagation cases,

and the problem becomes rank deficient.

Case V: A 2D System, with Dilatational Damping
The generalized case discussed above breaks down in the case

where ar~ai. In the case of damped dilatational waves, the

coefficients ar & ai are defined as

k~ars~Kz
4s

3
~

K

s
z

4

3

� �
s

and

k
0
~ais

0
~Kz

4s
0

3
~

K
0

s
0 z

4

3

 !
s
0
:

The condition ar~ai is then equivalent to

ð50Þ

ð51Þ
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K
0

K
~

s
0

s
,

i.e. the condition of equivalent damping ratios for distortional and

dilatational wave propagation. This singularity condition can be

eliminated by considering K
0

as a separate unknown in the RD

inverse problem (we can maintain the ’’nearly incompressible’’

condition by assuming K*O(1E9)).
Forward Problem. With the time-harmonic assumption, we

have the equilibrium conditions

{v2mzivm
0
z Kz

4s

3

� �
(u2{u1){ Kz

4s

3

� �
(u3{u2)

ziv K
0
z

4s
0

3

 !
u2{u1ð Þ{iv K

0
z

4s
0

3

 !
u3{u2ð Þ~0,

ð54Þ

and

{v2mzivm
0
zs(v2{v1){s(v3{v2)zivs

0
v2{v1ð Þ

{ivs
0

v3{v2ð Þ~0,
ð55Þ

with the solutions

A2~

Kz
4s

3

� �
ziv K

0
z

4s
0

3

 ! !

2 Kz
4s

3

� �
{v2mziv m

0
z2 K

0
z

4s
0

3

 ! ! A1zA3ð Þð56Þ

and

B2~
szivs

0� �
2s{v2mziv m

0
z2s

0� � B1zB3ð Þ: ð57Þ

Inverse Problem. The inverse problem system then becomes

4

3
< A2{A1{A3f g{va= A2f g{ 4va

3
= A2{A1{A3f g{= A2{A1{A3f g

4

3
= A2{A1{A3f g va< A2f g 4va

3
< A2{A1{A3f g < A2{A1{A3f g

< B2{B1{B3f g {vb= B2f g {vb= B2{B1{B3f g 0

= B2{B1{B3f g vb< B2f g vb< B2{B1{B3f g 0

2
666666664

3
777777775

s

m
0

s
0

K
0

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

~

v2
am< A2f g{K< A2{A1{A3f g

v2
am= A2f g{K= A2{A1{A3f g

v2
bm< B2f g

v2
bm= B2f g

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
:

ð58Þ

We can examine the rank of this system by considering the

determinant of the full matrix Q, whose numerator, for the case

where A1~A3~B1~B3~
1

2
, is given by

numeratorf Qj jg~

9v6 m
0

zm2v2
� �

36K
0

mv4z36K
0

Km
0
v2z96K

0
m
0
v2s

�
z96K

0
mv4s

0
z36K

0
K2mv2{9K

0
m
0

mv4z48K
0
m
0

v2s

z128K
0
m
0
v2s

0
s{9K

0
m3v6z48K

0
m2v4sz64K

0
mv4s

0

{64K
0
mv2s2z36K3m

0
z96K2m

0
sz96K2mv2s

0

{9Km
0

v2{48Km
0

v2s
0
{9Km

0
m2v4{64Km

0
v2s

0

z64Km
0
s2{48Km2v4s

0
z128Kmv2s

0
s
�

,

ð59Þ

whose roots, given as values of K
0
~f s, s

0
, m
0� �

, are complex

enough to essentially eliminate the chance of them occurring for

reasonable values of s, s
0

& m
0

in soft tissue.

Conclusions. Eq. 59 indicates that the general RD inverse

problem, even in cases with dilatational wave attenuation, is

generally uniquely posed once we include K
0

among the

parameters for reconstruction. While an interesting theoretical

result, the practicality of obtaining meaningful results from

dilatation measurements in Elastography is severely limited, given

their long wavelengths and the the susceptibility of these

measurements to noise.

Conclusions from Spring-Mass Analysis
A summary of the conclusions from the above cases is given

below:

N From Case I we see that the simple problem of deducing from

k, k
0

and m
0

from the 1D displacement of a single mass at a

single frequency is impossible. This is not a surprise, as the data

here consists of a single complex number, i.e. two measure-

ments cannot produce three parameters. The inverse problem

matrix, Q, is rank 2.

N From Case II we see that, in general, the addition of data taken

at another frequency makes the RD inversion problem

uniquely posed. The inverse problem matrix is rank 3 except

in the special case where k
0
~k

m

m
0 , which corresponds to a

damping ratio j~
1

2

m2z(m
0
)2

mm
0

 !
.

N From Case III, and more generally Case IV, we see that the

addition of shear wave data from the transverse direction

makes the problem uniquely posed, so long as the attenuation

differs between the shear and longitudinal wave propagation.

N From Case V, we see that the general problem of RD

parameter reconstruction becomes uniquely posed if we

include the dilatational attenuation, K
0
, as an unknown

parameter, even in the case where
k
0

k
~

s
0

s

ð58Þ
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We see that the spring-mass RD reconstruction problem is

generally uniquely posed with additional measurements, either

from the propagation of waves along a different mode, or from

additional frequency information. In practice, these two informa-

tion sources contain their own challenges. In the case of

measurements at additional frequencies, the frequency dependen-

cy of the parameters comes into play, and in itself requires

additional information (as well as good models for this frequency

dependency) in order to pose a reasonable reconstruction problem.

In the case of deducing information from longitudinal waves in

elastography, the problem arises from the nearly incompressible

nature of soft tissue, where the longitudinal wavelength becomes

very long O(1m) in comparison to the size of the objects being

measured O(10cm). Accurately characterizing these wavelengths

within the medium is thus highly susceptible to noise.

Discussion

Overall, we can say that the RD parameters are identifiable,

given certain conditions and assumptions on the damping

behavior of the elastic material. To start with, in a region of

heterogenous material properties, where the term + rR

r is unlikely

to disappear, analysis of the generalized RD system shows that it

has no purely VE equivalent, and thus there is a valid reason to

consider RD reconstruction. Next, to determine the RD param-

eters, the assumptions required for identification are not partic-

ularly onerous, specifically, the idea that the attenuation of

dilatational waves is of a different order to the attenuation of shear

waves is quite reasonable and easy to justify. The real

issue, however, is the dependence of the reconstruction on

measurements of the dilatational wave component itself, which

are easily corrupted by the presence of noise. One way to alleviate

this problem is by introducing multiple frequency data into the

reconstruction problem, which, except in special circumstances,

renders the RD identification problem uniquely posed. Multi-

frequency reconstruction introduces its own set of complications

however, due to the frequency dependence of the parameters in

the elastic equilibrium equations. In short, RD parameter

identification is possible, but not a simple affair. The intrigued

reader asking ‘‘why bother?’’ is encouraged to consult the results

presented in [24] for some evidence of the potential value of RD

parameter data in elastography imaging.
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