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Abstract

Taste and odor (T&O) problems, which have adversely affected the quality of water supplied to millions of residents, have
repeatedly occurred in Taihu Lake (e.g., a serious odor accident occurred in 2007). Because these accidents are difficult for
water resource managers to forecast in a timely manner, there is an urgent need to develop optimum models to predict
these T&O problems. For this purpose, various biotic and abiotic environmental parameters were monitored monthly for
one year at 30 sites across Taihu Lake. This is the first investigation of this huge lake to sample T&O compounds at the
whole-lake level. Certain phytoplankton taxa were important variables in the models; for instance, the concentrations of the
particle-bound 2-methylisoborneol (p-MIB) were correlated with the presence of Oscillatoria, whereas those of the p-b-
cyclocitral and p-b-ionone were correlated with Microcystis levels. Abiotic factors such as nitrogen (TN, TDN, NO3-N, and
NO2-N), pH, DO, COND, COD and Chl-a also contributed significantly to the T&O predictive models. The dissolved (d) T&O
compounds were related to both the algal biomass and to certain abiotic environmental factors, whereas the particle-
bound (p) T&O compounds were more strongly related to the algal presence. We also tested the validity of these models
using an independent data set that was previously collected from Taihu Lake in 2008. In comparing the concentrations of
the T&O compounds observed in 2008 with those concentrations predicted from our models, we found that most of the
predicted data points fell within the 90% confidence intervals of the observed values. This result supported the validity of
these models in the studied system. These models, basing on easily collected environmental data, will be of practical value
to the water resource managers of Taihu Lake for evaluating the probability of T&O accidents.
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Introduction

Algal blooms have occurred frequently and intensively around

the world in recent decades [1]. During their growth and decay,

these algae can produce unwanted metabolites, such as biotoxins

and/or T&O compounds [2–5]. Currently, the T&O compounds

are causing global concerns because they influence the use,

aesthetic and economic values of the waters. Especially, massive

occurrences of T&O compounds in lakes and reservoirs frequently

lead to odor pollution of both drinking water and aquatic products

[2,6–9], greatly prompting consumer complaints [10,11] and

economic losses [12]. Thus, considerable economic and social

benefit would accrue if the development of unwanted T&O

contamination could be predicted before full outbreaks occur.

Fortunately, a few studies suggest that it is feasible to predict the

occurrence of off-flavors using certain closely related environmen-

tal factors that can be measured by simple and low-cost methods

[9,13,14]. Clearly, it is of practical value to use models with easily

detectable parameters to predict the occurrence of T&O events

a few days before they occur, which is undoubtedly important for

the implementation of appropriate and timely measures by

departments responsible for the management of water quality.

The production and occurrence of objectionable T&O

compounds are known to be correlated with various biological

and environmental factors, such as phytoplankton [15–18],

nutrient concentrations and their ratios [13,19], water tempera-

ture, pH and dissolved oxygen [16,20,21]. Nevertheless, only a few

studies have reported models constructed to identify the key

factors determining the T&O events. For example, Dzialowski et

al. [13] constructed models for dissolved geosmin (d-GEO) in the

drinking water reservoirs of Kansas (USA) using several abiotic

factors and four cyanobacterial genera. Sugiura et al. [22]

developed predictive models for dissolved 2-methylisoborneol (d-

MIB) and d-GEO using data on abiotic environmental parameters

and 25 genera of phytoplankton collected from Lake Kasumigaura

(Japan). However, there are still many unknowns concerning the

development of predictive models for the T&O compounds. First,

most previous investigations concentrated on the dissolved

compounds [9,14], with little attention to those in the particulate

form, which could be massively released into the water when algal

cells are damaged [18,23] and cause secondary pollution. Second,

previous models were developed without distinguishing the

different algal growing seasons [14,24], which are important to

distinguish because the blooming and nonblooming seasons in
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many eutrophic waters like Taihu Lake differ markedly in both the

composition and the abundance of the phytoplankton community.

Third, most studies have examined only the well-known earthy-

musty algal metabolites, GEO and MIB, and just a few have

studied other algal metabolites or derivatives, such as b-ionone
[25,26], b-cyclocitral [25,27], 2-isobutyl-3-methoxypyrazine

(IBMP) [28,29], 2-isopropyl-3-methoxypyrazine (IPMP) [29,30],

dimethyl trisulfide and related alkyl sulfide compounds [31].

The present study was conducted in Taihu Lake, which has

regular cyanobacterial blooms [32,33] and experienced serious

odor-caused drinking water pollution in the summer of 2007 when

a dense cyanobacterial bloom occurred [34]. The seasonal and

spatial dynamics of the T&O compounds, diverse physicochemical

parameters and the biomass of various phytoplankton groups were

monitored monthly during June 2009 to May 2010. The purpose

of the present research was to utilize this massive collection of

biotic and abiotic data gathered in both the blooming and

nonblooming seasons to construct a series of models to predict the

quantities of the predominant dissolved and particle-bound T&O

compounds likely to develop in the lake. We attempted to identify

the key environmental factors responsible for the development of

the T&O compounds and to optimize the predictive models so

that water resource managers can take appropriate and timely

measures to prevent unwanted T&O outbreaks.

Results

Water Quality Conditions
The annual variation in the mean monthly value of several basic

physicochemical variables is shown in Figure 1. The pH, PO4-P,

and NO2-N values showed relatively small ranges compared with

the other parameters, with monthly averages from 7.84 to 8.18,

0.02 to 0.08 mg/L, and 0.02 to 0.05 mg/L, respectively. The

maximum average temperature was 23.84uC in the blooming

season and 11.53uC in the nonblooming season. The monthly

averages of the TURB ranged from 22.09 NTU in July to 156.11

NTU in December. The concentrations of the TN and the TP

were extremely variable at several sampling sites and during some

months (Fig. 1); for example, the TN in August and September

and the TP in June. Most of the concentrations ranged from 0.34

, 3.54 mg/L for the TN and 0.04 , 0.46 mg/L for the TP. The

Cyanophyta composed the greatest proportion of the total

phytoplankton biomass (55.9%), followed by the Bacillariophyta

(27.9%). Cyanophyta had huge amounts of biomass in the

blooming season, with Microcystis being the dominant genus. The

biomass of the Bacillariophyta and Chrysophyta was greater in the

nonblooming than in the blooming season. Chlorophyta owned

varieties of taxa throughout the study period (Fig. 2).

Data Analysis of the T&O Compounds
The boxplots (Fig. 3), coupled with the variance analyses,

showed that the concentrations of the d-b-cyclocitral and the d-

b-ionone were significantly lower than those of the p-b-
cyclocitral and the p-b-ionone, respectively. In contrast, there

was more MIB in the dissolved than in the particulate fraction.

For DMS, no significant difference was found between the two

fractions. Seasonally, the concentration of the d-b-cyclocitral
was lower in the winter than in the late spring and early

summer (the highest value was 49 ng/L). For the p-b-
cyclocitral, the concentration was lower in the winter and

spring than in the summer and autumn (the peak value was

2155 ng/L). The p-b-ionone showed a trend similar to that of

the p-b-cyclocitral, whereas the d-MIB concentration was higher

in the spring and autumn than in the summer and winter. The

highest p-MIB concentration occurred in July. The monthly

average d-DMS concentration was higher in the summer than

in the other seasons, with a peak value of 22 ng/L in August.

The maximum d-DMS value recorded was 143 ng/L.

Model Development
Models for d-DMS. The d-DMS level was positively related

to the levels of the TDN and the Planktolyngbya (Cyanophyta) and

the Cocconeis (Bacillariophyta) algal genera, and negatively related

to the NO2-N level during the blooming season (Table 1, Eq. (1)).

In this season, Planktolyngbya level was strongly associated with the

d-DMS level and showed the greatest relative weight of 0.6832.

The TDN and the NO2-N were more weakly associated with the

d-DMS, with relative weights of 0.0344 and 0.1065, respectively.

During the nonblooming season, the d-DMS was negatively

related to the TN, but positively related to the TDN, NO3-N and

ORP (Table 1, Eq. (2)). The NO3-N was strongly associated with

the d-DMS in this season and was the variable with the greatest

relative weight (0.3176), followed by the TDN and TN (0.2676

and 0.2338, respectively). The environmental factors in the models

explained 83.50 and 71.28% (R2) of the variations in the d-DMS

levels during the blooming and nonblooming seasons, respectively

(Table 1, Eqs. (1) and (2)).

Models for d-MIB and p-MIB. The concentration of the d-

MIB was negatively related to that of the NO3-N but positively

related to the levels of the COND, Cosmarium (Chlorophyta) and

Phormidium (Cyanophyta) during the blooming season (Table 1, Eq.

(3)). For the d-MIB, Cosmarium showed the greatest relative weight

(0.5863), followed by the NO3-N (0.0721). During the nonbloom-

ing season, the d-MIB concentration was mainly determined by

a series of abiotic and biotic factors, which included the pH, the

DO, and the Bacillariophyta (Table 1, Eq. (4)); however, the biotic

factor (Bacillariophyta) was relatively more important (weight of

0.6713) than the abiotic factors. The parameters in these two

models explained 79.13 and 70.96% of the variation in the d-MIB

concentration in the blooming and nonblooming seasons, re-

spectively.

During the blooming season, the p-MIB level was mainly

related positively to that of Oscillatoria (Cyanophyta), but also

negatively to the COND and COD levels, and these three

variables accounted for 77.28% of the variation in the p-MIB

(Table 1, Eq. (5)). For predicting the p-MIB concentration in the

blooming season, the Oscillatoria level was the most important of

the variables, with a relative weight of 0.8770. During the

nonblooming season, the p-MIB was positively related to

Oscillatoria, Pectodictyon (Chlorophyta) and Synedra (Bacillariophyta),

with Oscillatoria having the greatest relative weight (0.4706). These

biotic factors accounted for up to 89.43% of the variation in the p-

MIB concentration (Table 1, Eq. (6)).

Models for d-b-cyclocitral and p-b-cyclocitral. Generally,

the concentration of the d-b-cyclocitral was positively related to

the TN and Chl-a levels, but negatively related to the Pediastrum

(Chlorophyta) biomass, which was the most important predictive

variable during the blooming season (Table 1, Eq. (7)). For

predicting the d-b-cyclocitral concentration during this period, the

TN level displayed a relative important weight of 0.1118. The d-b-
cyclocitral concentration was positively related to the DO and the

Ochromonas (Chrysophyta) levels, but negatively related to the

Cryptomonas (Cryptophyta) level during the nonblooming season

(Table 1, Eq. (8)). The Ochromonas level was the most useful (weight

of 0.9010) for predicting the d-b-cyclocitral concentration in the

nonblooming season. The model variables accounted for 75.49%

(Eq. (7)) and 53.22% (Eq. (8)) of the variation in the d-b-cyclocitral
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concentration during the blooming and nonblooming seasons,

respectively.

The p-b-cyclocitral level was related significantly and positively

to that of Microcystis (Cyanophyta) throughout the year (Table 1,

Eqs. (9) and (10)), and the Microcystis level was the best predictor of

the p-b-cyclocitral concentration during the whole year. Addi-

tionally, the p-b-cyclocitral concentration was positively related to

the TN and Chl-a levels during the blooming season and positively

related to the Chlorella (Chlorophyta) biomass during the non-

blooming season. The relative weight of the TN level for

predicting the p-b-cyclocitral concentration was 0.1393 during

the blooming season. These models accounted for 85.54 and

89.42% of the variation in the p-b-cyclocitral concentration in the

blooming and nonblooming seasons, respectively (Table 1, Eqs. (9)

and (10)).

Models for p-b-ionone. The p-b-ionone concentration was

positively related to the NO2-N, the Chl-a, and Microcystis levels

during the blooming season (Table 1, Eq. (11)), and related

positively to the DO, the COD, and Microcystis levels in the

nonblooming season (Table 1, Eq. (12)). The Microcystis level was

the best predictor of the p-b-ionone concentration throughout the

year. For predicting the p-b-ionone concentration during the

blooming season, the NO2-N level showed a relative weight of

0.3402. These models accounted for 88.24 and 88.84% of the

variation in the p-b-ionone concentration in the blooming and

nonblooming seasons, respectively (Table 1, Eqs. (11) and (12)).
Diagnosis and test for the models. In the scatter plots of

the residuals (Fig. 4), a random dispersal of the data points around

the zero line would indicate that the developed models can be

considered appropriate. Fortunately, the data points in most of the

plots in Fig. 4 were randomly distributed. Although some of the

plots displayed scatter points slightly away from the zero line, they

Figure 1. Annual variation of water physicochemical variables from June 2009 to May 2010. (Data represent monthly averages from
thirty samples).
doi:10.1371/journal.pone.0051976.g001

Figure 2. Phytoplankton community composition in Taihu Lake from June 2009 to May 2010. (Data represent only the main genera and
are the monthly total biomass from thirty samples).
doi:10.1371/journal.pone.0051976.g002
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did not show a clear tendency to be curved (e.g., U-shaped and

inverted U). Therefore, the scatter plots provided little evidence to

question the appropriateness of the linear regression models, and

the models for the T&O compounds were considered to be valid.

The test results with the independent data set collected from

Taihu Lake in 2008 showed that most of the values predicted with

the models fell within the 90% confidence intervals of the observed

values (Fig. 5). For instance, 85.7 , 92.9% of the predicted p-b-
cyclocitral and p-b-ionone data points fell within the 90%

confidence intervals of the observed values in both the blooming

and nonblooming seasons. The timing and intensity of these odors

were well predicted with a few deviations. Therefore, models

Figure 3. Boxplots for four S_T&O compounds. S_DMS= (d-DMS) - (p-DMS), S_MIB= (d-MIB) - (p-MIB), S_cycloc= (d-b-cyclocitral) - (p-b-
cyclocitral), S_ionone= (d-b-ionone) - (p-b-ionone), S_T&O compound= (dissolved T&O compound) - (particulate T&O compound).
doi:10.1371/journal.pone.0051976.g003

Table 1. Statistical equations for the predominant T&O compounds in Taihu Lake models.

Season Models R2 Adj R2 Sign

B d-DMS= 3.8245 TDN –36.5282 NO2-N +1256.41 Planktolyngbya +100.694 Cocconeis 0.8350 0.8302 Eq. (1)

N d-DMS= –1.9913 TN +6.1900 TDN +28.0145 NO3-N +0.0120 ORP 0.7128 0.7070 Eq. (2)

B d-MIB = –4.3869 NO3-N +0.216 COND +391.325 Cosmarium +745.074 Phormidium 0.7913 0.7892 Eq. (3)

N d-MIB = 0.1960 COND –0.3861 TDS –9.5015 pH +8.1671 DO +5.1561 Bacillariophyta 0.7096 0.7003 Eq. (4)

B p-MIB = –0.0020 COND –0.0798 COD +108.050 Oscillatoria 0.7728 0.7679 Eq. (5)

N p-MIB = 26.6792 Oscillatoria +4.2806 Pectodictyon +0.2150 Synedra 0.8943 0.8927 Eq. (6)

B d-b-cyclocitral = 0.5512 TN +0.0550 Chl-a –1.3141 Pediastrum 0.7549 0.7493 Eq. (7)

N d-b-cyclocitral = 0.0354 DO –0.0505 Cryptomonas +603.952 Ochromonas 0.5322 0.5211 Eq. (8)

B p-b-cyclocitral = 2.7228 TN +5.5838 Chl-a +4.8124 Microcystis 0.8554 0.8522 Eq. (9)

N p-b-cyclocitral = 16.6857 Microcystis +48.7448 Chlorella 0.8942 0.8932 Eq. (10)

B p-b-ionone = 195.500 NO2-N +1.1645 Chl-a +3.6887 Microcystis 0.8824 0.8799 Eq. (11)

N p-b-ionone = 0.2642 DO +0.3474 COD +5.1278 Microcystis 0.8884 0.8861 Eq. (12)

All p-values ,0.0001; B, Blooming season; N, Nonblooming season.
doi:10.1371/journal.pone.0051976.t001
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developed here could predict well the occurrences and levels of the

corresponding odors in Taihu Lake.

Discussion

The Importance of Developing Predictive Models for
Both Dissolved and Particle-bound T&O Compounds
In the present study, the dissolved T&O compounds in the

water column were closely related to both the algal biomass and

the abiotic environmental factors, whereas the particle-bound

T&O compounds were more strongly related to the algae. For

some of the T&O compounds, such as b-cyclocitral, both fractions

should react similarly and produce similar models because the

dissolved fraction is released from the particulate fraction present

in the algal cells [15,35]. However, the dissolved odors in water are

easily influenced by environmental processes, such as biodegra-

dation [8,36], photolysis [36,37], volatilization [8] and sorption

[8,38]. In addition, the synthetic pathways of some odors might

also vary between the two fractions. The dissolved forms might

originate from compounds other than the corresponding cellular

T&O compounds, e.g., the d-DMS. Dimethylsulfoniopropionate is

produced intracellularly by many algae [39], and then it is

transferred extracellularly [40] and subsequently transformed

rapidly into DMS through physicochemical degradations [16]. It

is likely that these might have greatly affected the correlations

between the dissolved and particulate T&O fractions, consequent-

ly leading to our use of the different models for the two forms of

the T&O compounds.

Furthermore, the dissolved T&O fraction could directly in-

fluence water quality, and the particle-bound fraction in the algal

cells could become an important source of T&O problems when

the cells are damaged or decomposed. Thus, it was necessary to

establish a separate model for each form of the T&O compounds.

Influences of Phytoplankton on the Predictive Models
Some of the T&O compounds (e.g., DMS, MIB, b-cyclocitral,

and b-ionone) are often assumed to be produced by specific algae,

bacteria, or fungi. Such organisms include Oscillatoria for the MIB

in Eqs. (5) and (6), and Microcystis for the b-cyclocitral and b-
ionone in Eqs. (9) , (12). However, some algae that have not been

reported to produce odors were included in the models; for

example, Bacillariophyta in Eq. (4), Pectodictyon and Synedra in Eq.

(6), and Chlorella in Eq. (10). These algae contributed greatly to the

models, as demonstrated by their large relative weights: 0.6713 for

the effect of the Bacillariophyta on the d-MIB in Eq. (4); 0.2742

and 0.2552 for the effect of the Pectodictyon and Synedra, re-

Figure 4. Residual scatter plots for T&O compound models. B=blooming season, N =nonblooming season.
doi:10.1371/journal.pone.0051976.g004
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spectively, on the p-MIB in Eq. (6); and 0.3376 for the effect of

Chlorella on the p-b-cyclocitral in Eq. (10). Apparently, the growth

and extinction of these algae, which are not considered to be

producers of the T&O compounds, influenced the T&O producers

or the physicochemical properties of the water and consequently,

influenced the T&O compounds indirectly. Recent studies have

also reported that some algae that were previously considered to

be incapable of producing odors could be influenced by these off-

flavors [41,42]. For example, it has been reported that diatom as

well as cyanobacteria could be used by Streptomyces from sediment

as a C source to produce MIB [43,44]. In the study by Sugiura et

al. [22], the MIB levels were significantly correlated with the

concentrations of the green algae and the diatoms in Lake

Kasumigaura. It is known that Microcystis can produce the b-
cyclocitral and b-ionone [2,35], and Sommerburg et al. [45]

demonstrated that the oxidative cleavage of b-carotene can

generate both compounds. There is also speculation that

phytoplankton species (such as Chlorella in Eq. (10)) that contain

b-carotene have the potential to produce the b-cyclocitral and b-
ionone [46]. Because b-carotene exists widely in all phytoplankton,

the b-carotene contained in these algae (e.g. Pediastrum in Eq. (7),

Cryptomonas in Eq. (8) and Chlorella in Eq. (10)) can likely be

transformed into b-cyclocitral and b-ionone. In summary, the

odor-producing algae played important roles in the dynamics of

the T&O compounds in Taihu Lake, and other phytoplankton

species might also have substantial influences on these compounds.

Thus, algal species besides the odor-producing algae should also

be considered when investigating the T&O compounds.

Influences of Physicochemical Parameters on the
Predictive Models
Similar to the results of many previous studies, the current

results showed that abiotic factors are important for predicting the

occurrence of the T&O compounds in Taihu Lake. Notably, most

of the models developed in the present study included various

nitrogen forms (e.g., Eqs. (1), (2) and (11)). A previous investigation

by our laboratory also closely associated the production of the

T&O compounds in Taihu Lake with the nitrogen levels [27]. The

nitrogen could affect the concentrations of the T&O compounds

directly or indirectly [16,39]. Ye et al. demonsrated that the TN

was the best predictor of the peak algal biomass from 1998 to 2008

in Taihu Lake by constructing a modified Monod model with the

TN: TP ratio of approximately 35:1 [47]. In their study period, the

annual average concentration of the TP ranged from 0.014 ,
0.20 mg/L, which was similar to our average TP concentrations

(0.03 , 0.19 mg/L). It has also been reported that nitrogen limits

Figure 5. Test of the predictive models for predominant T&O compounds in Taihu Lake. B =blooming season, N= nonblooming season.
doi:10.1371/journal.pone.0051976.g005
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the phytoplankton growth in Taihu Lake during the summer and

fall months [48]. Thus, it is likely that nitrogen might indirectly

affect the production and release of the T&O compounds by algae.

Additionally, Yang et al. showed that the nitrogen form

preferentially absorbed by the algae differed in the different

sections of Taihu Lake [49]. Therefore, changes in the available

nitrogen forms and their ratios may also influence the phyto-

plankton and the subsequent production of the T&O compounds.

The great heterogeneity is also a characteristic of this huge lake.

Regardless of the mechanisms involved, it should be stressed that

the levels of the various forms of nitrogen were closely related to

the levels of the T&O compounds in Taihu Lake.

Model Test and Extension
The use of the independent data set to test the accuracy of the

models showed that the occurrence and intensity of these T&O

compounds were satisfactorily predicted, though there were

several deviations. In a body of water as large and spatially

heterogeneous as Taihu Lake, the environmental and climatic

conditions may substantially vary both spatially and temporally. In

addition, it is known that the volatility of the compounds

producing the off-flavors causes their concentrations to vary easily

in aquatic environments. The above phenomena could certainly

result in discrepancies between the predicted and observed values.

Nevertheless, the models developed in the present study accurately

predicted the levels of a number of the T&O compounds in Taihu,

which supplies water for drinking, industry and agriculture to

millions of people. Therefore, these models, basing on easily

collected environmental data, are of practical value to water

resource managers for evaluating the probability of T&O

accidents in Taihu Lake.

Previous researchers reported that the dynamics of odor

compounds strongly depend on the local environmental conditions

and vary from system to system [9,13,14]. Even for the same T&O

compound, different models were generated in different reservoirs

of the same region; thus, it is difficult to obtain a universal model

applicable to all ecosystems [9,13,14]. It was not possible to test

our models in other systems because of the lack of sufficient data,

as we mentioned above. Nevertheless, models developed here have

good utilities in such a huge lake based on the quite informative

data in different algal growth seasons for different fractions of the

T&O compounds. We believe that the models in the present study

should provide insights into developing a general model applicable

to a variety of lake systems, especially other shallow eutrophic lakes

with Microcystis blooms.

Conclusion
We developed T&O compound predictive models using massive

data of various abiotic and biotic parameters from Taihu Lake.

Most of these models achieved a good fit and proved adequate for

mapping the practical dynamics of the T&O compounds.

Different from previous odor models, we considered two algal

growth seasons (blooming and nonblooming) and two fractions of

the T&O compounds (dissolved and particle-bound). These

attributes contributed to the accuracy and sensitivity of the

models. The dissolved T&O compounds varied with the algal

biomass and with a variety of abiotic factors, whereas the particle-

bound T&O forms varied primarily with the algal biomass. The

use of a previously collected independent data set to test the

equations showed that the models could accurately predict the

concentrations of the T&O compounds in Taihu Lake, supporting

the utility of these models in the studied system. Because Taihu

supplies water for drinking, industry and agriculture to millions of

people and because the models only require the collection of

certain basic environmental data, these models are of practical

value to the water resource managers for predicting the probability

of T&O accidents.

Materials and Methods

Materials and Reagent
The T&O standard compounds, including DMS, dimethyl

trisulfide (DMTS), IBMP, IPMP, GEO, MIB, b-cyclocitral, and b-
ionone, were obtained from Sigma-Aldrich (Milwaukee, WI,

USA). Freshly mixed 1 mg/L standard solutions were prepared in

methanol (Merck, Germany, HPLC grade) before daily use. The

dilution series used to generate the standard curves were prepared

by diluting the standard solutions with HPLC grade water.

Sodium chloride (Sinopharm Chemical Reagent, China, AR) was

dissolved in HPLC grade water to yield a solution with

a concentration of 250 g/L. This solution was used to extract

the particulate T&O compounds. Whatman glass fiber filters (GF/

C, Whatman, Brentford, UK) were used to separate the dissolved

and particulate T&O compounds in the lake water.

Lake Sampling and Data Collection
The study was conducted in Taihu Lake, a freshwater shallow

lake with an area of 2338 km2 in China. At our sampling sites, the

average depth was 1.9 m, and the maximum depth was 2.6 m.

The lake supplies the water needs of the region, supporting

approximately 10 million residents [50]. In recent decades, Taihu

Lake has experienced serious pollution and anthropogenic

eutrophication [51], severely influencing the normal life of citizens.

For example, a 2007 incident in Wuxi City involving malodorous

drinking water seriously influenced the water usage of approxi-

mately two million citizens for nearly one week [34].

The full lake survey was conducted from June 2009 to May

2010. Water samples were collected from 30 sampling sites (Fig. 6),

which represented the distributions of the water-quality conditions

and the T&O compound concentrations at the whole-lake level.

Each water sample from each site was a mixture of two

subsamples: one from 0.5 m below the surface and one from

0.5 m above the bottom. The study measured the concentrations

of the T&O compounds and a variety of environmental

physicochemical parameters, which included water temperature

(Temp), water depth (Wd), transparency (SD), dissolved oxygen

(DO), conductivity (COND), pH, turbidity (TURB), oxidation

reduction potential (ORP), total dissolved solid (TDS) and

chemical oxygen demand (COD), as well as hydrochemical

indices. The hydrochemical indices, including total nitrogen

(TN), total phosphorus (TP), total dissolved nitrogen (TDN), total

dissolved phosphorus (TDP), nitrate nitrogen (NO3-N), nitrite

nitrogen (NO2-N), ammonium (NH4-N), and orthophosphate

(PO4-P), were analyzed using the standard colorimetric methods

described by Strickland and Parsons [52]. The COD was

determined through titration with sodium thiosulfate [53]. The

concentration of chlorophyll-a (Chl-a) was determined spectro-

photometrically [54]. The other abiotic factors were determined at

the time of sampling. The analyses of the T&O compounds and

the hydrochemical indices were completed within 24 h after

sampling. For the phytoplankton analysis, one liter of the mixed

water sample was immediately fixed with Lugol’s solution when

sampling and then concentrated to 50 ml after sedimentation for

48 h. The taxonomic identification was conducted according to

Utermoehl [55]. The algal biomass was estimated from cell

numbers and cell sizes measurements. It was assumed that 1 mm3

of algal volume equals 1 mg of fresh-weight biomass. The

Microcystis colonies were separated using an ultrasonic device
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before the biomass estimation. If there were large quantities of

algae, the mixed water samples were fixed and counted directly

without concentration.

Many techniques exit to extract the T&O compounds, such as

SE [56], CLSA [57], SPME [58,59] and purge-and-trap (P&T)

[60]. Based on our previous studies [61,62], the P&T extraction

device coupled with GC-MS was chosen to determine the T&O

compound concentrations in the present study. The dissolved

T&O compounds in the filtrate of the water samples were directly

determined using an Eclipse 4660 Purge-and-Trap Sample

Concentrator and a 4551A autosampler (O.I. Analytical Compa-

ny, USA) coupled with a gas chromatograph mass spectrometer

(QP2010plus, Shimadzu Corporation, Japan) [61]. The oven

temperature program was as follows: 50uC for 2 min, 10uC/min

to 150uC and then 5uC/min to 220uC. The ion monitoring mode

of the mass spectrometer was selected for better detection [61].

The ions selected for the T&O compounds are listed in Table 2.

The filter residue containing the particulate T&O compounds was

analyzed using the method described by Chen et al. [27].

Model Development
Based on our previous studies [27,61], DMS, DMTS, IPMP,

IBMP, MIB, b-cyclocitral, GEO, and b-ionone were monitored.

Variance analysis was conducted and boxplots were drawn for the

main T&O compounds (d-DMS, d- and p-MIB, d- and p-b-
cyclocitral, and p-b-ionone) (Fig. 3). The T&O compounds present

at low concentrations (d- and p-GEO, d- and p-DMTS, d- and p-

IPMP, d- and p-IBMP, p-DMS and d-b-ionone (Table 2)) were

Figure 6. Sampling sites in Taihu Lake. The red circles represent the sampling sites in June 2009 to May 2010. The green stars represent the
sampling sites in 2008.
doi:10.1371/journal.pone.0051976.g006
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not considered in the following model development. Based on the

phytoplankton biomass and the basic water-quality parameters in

Taihu Lake, the whole year was divided into two periods: the

blooming season (June to November) and the nonblooming season

(December to May). Then, we constructed models for the

dominant T&O compounds using multiple linear regression

analyses, which are widely used in odor studies [22,63]. The

analyses were conducted using SAS/INSIGHT of SAS statistical

software version 9.1 [64] on the biotic (phytoplankton) and abiotic

(physicochemical) environmental parameters collected during the

two seasons. Each model used the concentration of a T&O

compound as the dependent variable (Y) and the other environ-

mental parameters as the independent variables (X). Then, the

parameters with the smallest F statistical value and an insignificant

p-value were deleted using the backward elimination procedure.

The elimination procedure was repeated until all the variables

remaining in the model had probabilities below the significance

level.

To determine the best-fit model, three primary factors were

considered. The p-value (in the significance tests of the regression

model) is the first limiting factor in selecting the best-fit model.

Only statistically significant models with p-values less than

a (significant level) were retained for further consideration.

Second, the R-Sq (coefficient of determination) and the Adj R-

Sq (the adjusted R-Sq, which considers the sample size (n) and the

number of parameters (k) in the model) are indicators for

evaluating the quality of models, as well as the III test table (a

test of significance for the results of the hypothesis of each

independent variable at zero; data not shown) and the parameter

estimates table (a test of significance for results of the intercept at

zero, which measures the degree of collinearity; data not shown).

Third, because the models were developed to monitor T&O

events for water quality management departments, we considered

the costs and timeliness of monitoring and selected the models with

parameters that could be easily collected based on sufficiently high

R-Sq values.

The quality and fitness of the models for predicting the

predominant T&O compounds were further evaluated using

a residual scatter plot for each model. If the points were randomly

dispersed around the zero line, a linear regression model was

considered appropriate for the data; otherwise, a non-linear model

was considered more appropriate [65].

Finally, it is necessary to test the applicability of the predictive

models developed. However, in most field studies, complete data

on the composition of the phytoplankton community, abiotic

environmental factors and T&O compound concentrations are

usually lacking. For these reasons, we used unpublished data

collected across all of Taihu Lake in 2008 (Fig. 6) to test the

applicability of the models developed here. We calculated the

T&O values according to the models using the 2008 abiotic and

biotic environmental data and compared these predicted T&O

values with the T&O values observed in 2008.
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