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Quantifying the role of motor 
imagery in brain-machine 
interfaces
Silvia Marchesotti1,2,3, Michela Bassolino1,2, Andrea Serino1,2, Hannes Bleuler3 &  
Olaf Blanke1,3,4

Despite technical advances in brain machine interfaces (BMI), for as-yet unknown reasons the ability 
to control a BMI remains limited to a subset of users. We investigate whether individual differences in 
BMI control based on motor imagery (MI) are related to differences in MI ability. We assessed whether 
differences in kinesthetic and visual MI, in the behavioral accuracy of MI, and in electroencephalographic 
variables, were able to differentiate between high- versus low-aptitude BMI users. High-aptitude BMI 
users showed higher MI accuracy as captured by subjective and behavioral measurements, pointing to 
a prominent role of kinesthetic rather than visual imagery. Additionally, for the first time, we applied 
mental chronometry, a measure quantifying the degree to which imagined and executed movements 
share a similar temporal profile. We also identified enhanced lateralized μ-band oscillations over 
sensorimotor cortices during MI in high- versus low-aptitude BMI users. These findings reveal that 
subjective, behavioral, and EEG measurements of MI are intimately linked to BMI control. We propose 
that poor BMI control cannot be ascribed only to intrinsic limitations of EEG recordings and that specific 
questionnaires and mental chronometry can be used as predictors of BMI performance (without the 
need to record EEG activity).

Non-invasive brain machine interfaces (BMI) have enabled humans to control a variety of external devices 
through real-time decoding of brain activity. In non-invasive BMI approaches, users are engaged in a cognitive 
task, such as visual attention or motor imagery (MI), while their brain signals are recorded through electroen-
cephalography (EEG) and on-line processed to ultimately control external devices1,2. Despite important develop-
ments concerning both recording and analysis techniques of brain signals, the ability to control MI-based BMI is 
characterized by large inter-individual differences. The portion of users that cannot achieve successful control is 
usually reported to be in the range of 15–30%3. However, studies employing large number of subjects have shown 
that up to 50% of users are not able to achieve accuracy above 70%, a threshold commonly considered more accu-
rate for identifying successful control4,5.

Previous work using MRI and EEG recordings have identified anatomical (volumetric and connectivity meas-
urements)6,7, functional (extent of the cortical activation)8, as well as electrophysiological indices (power mod-
ulation over specific frequency bands)9–11 as potential factors for this variability in BMI-control. In addition, 
psychological, cognitive and motor characteristics have been evaluated. These include (i) questionnaires aimed at 
the self-assessment of personality and psycho-pathological traits12,13, (ii) individual intrinsic characteristics such 
as age and the per-day amount of hand-arm movement14, and (iii) behavioral tasks assessing motor and cognitive 
skills, such as visuo-motor coordination and concentration15.

However, the specific ability to perform the particular cognitive task required for MI-based BMI, i.e. motor 
imagery (MI), has not been investigated in detail. Although different self-reporting motor imagery questionnaires 
have been employed in the context of BMI7,12,16,17, these have led to inconsistent results. It should be noted that as 
with BMI control skills, MI ability, that is the ability to mentally perform or rehearse an action without actually 
executing it (see for reviews)18,19, also presents marked differences across the general population. These differ-
ences have been extensively evaluated in the field of cognitive neuroscience using subjective methods such are the 
aforementioned self-reporting motor-imagery questionnaires, but also through different behavioral measures. 
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These include objective measurements assessing the relationship between the duration of executed and imaged 
movements, such as the mental chronometry task20–22. In addition, the effects of MI translate into physiological 
(e.g. skin conductance, heart beat variation and respiratory rate) and neurophysiological modulations that can be 
evaluated with neuroimaging techniques23 and transcranial magnetic stimulation24.

In the present study we directly addressed whether the variability in the ability to control a BMI and in per-
forming MI are linked in the sense that in MI-based BMI paradigms, variations in BMI control performance 
can be related to the different individual skills in MI. Better understanding this potential relationship might 
elucidate whether BMI and MI rely on common mechanisms and whether MI ability as quantified by measures 
from cognitive neuroscience may be a predictor of BMI-performance. We investigated MI accuracy in high- and 
low-aptitude BMI users and used a reliable behavioral task that has previously been employed to collect an objec-
tive (mental chronometry) measure of MI ability21,25. We additionally used a self-reporting questionnaire with 
two sub-scales that separately assess kinesthetic and visual features of MI26. If variations in BMI control perfor-
mance are associated with the different individual skills in MI, we predicted to find better motor MI performance 
(mental chronometry task) and higher MI scores in the questionnaires in high-aptitude rather than low-aptitude 
BMI users. Kinesthetic MI has previously been shown to activate motor-associated brain structures23 involved in 
BMI control8 to a greater extent than visual MI. Therefore, we tested the hypothesis that kinesthetic MI would be 
more strongly associated with BMI aptitude as compared to visual MI. Finally, we compared neural MI correlates 
extracted from EEG signals in high- and low-aptitude BMI users. Since BMI-based control has been related to 
specific lateralized activity in bilateral motor and premotor cortices8,27, we hypothesized that the lateralization of 
cortical activity recorded during pure MI (that is without visual feedback as during BMI control) would discrim-
inate between high- and low-aptitude BMI users.

Results
In order to study the relationship between BMI proficiency and MI, we first classified participants (N =  24) as 
high- vs. low-aptitude BMI users, depending on their performance during the BMI task. In the MI task, par-
ticipants were asked to move a cursor to the left or right side of a computer screen by imagining, respectively, 
left or right hand clasping movements. Based on previous BMI studies6,28, we divided our pool of subjects into 
two groups according to the median value (69.5%) of the overall on-line BMI control performance. For each 
subject, the mean BMI performance was computed as the percentage of time frames in which the cursor moved 
in the cued direction. The low aptitude group consisted of 12 subjects, with performance ranging from 49% to 
67%, while the high-aptitude group had a performance ranging from 72% to 87%. We note that the threshold 
around 70% of accuracy is in accordance with that previously proposed by others authors to discriminate effective 
BMI-control from chance in a 2-class paradigm5,28.

MI behavioral abilities and questionnaire discriminate between high- and low-aptitude BMI users.  
MI ability was evaluated through two different measurements: the mental chronometry task29, assessing the dif-
ference in duration between actual and imagined movements and a self-reporting questionnaire, the MIQ-RS26, 
including two subscales measuring visual and kinesthetic features of MI. The mental chronometry task is consid-
ered a reliable measure of MI quality and aims at assessing individual’s ability to preserve the temporal character-
istics of the movement during MI, based on the isochrony between real execution and MI24,29.

Questionnaire.  The MIQ-RS questionnaire showed that for high aptitude users, the kinesthetic experience of 
MI was judged as more vivid and easier to evaluate than for low aptitude users, as shown by higher ratings in the 
former group in the kinesthetic MI scale (t =  −2.255, p =  0.034, Fig. 1(a)). No difference between the groups was 
found for visual MI scale (t =  −0.771, p =  0.449, Fig. 1(b)).

Mental chronometry.  Based on the MI task used for the BMI control, we compared the time required to execute 
and imagine five-hand clasping movements. The temporal congruency between MI and execution is an indicator 
of good imagery abilities, whereas a higher discrepancy between the two modalities have been associated with 
poor imagery quality. The repeated measure ANOVA with imagined hand (left versus right), task (execution ver-
sus MI) and group (high- versus low- aptitude) as factors, performed on the mental chronometry data revealed a 
significant difference in the duration of the MI task, but, importantly, not in the execution task, in the two groups 
(task X group, F(1, 22) =  4.383, p =  0.048). Post hoc comparisons (Newman-Keuls tests) showed that in low-, but 
not in high-aptitude BMI users the imagery of hand clasping movements takes longer than the execution of the 
same movement regardless of the employed hand (low-aptitude BMI users p =  0.002; high-aptitude BMI users: 
p =  0.619). In contrast, the result in high-aptitude users is compatible with the notion of isochrony (see next par-
agraph). Interestingly, the duration of the execution was equal in the two groups and for both hands (p >  0.05, 
Fig. 1(d)).

In addition, we calculated an index of deviation from isochrony, in order to quantify the discrepancy from the 
temporal congruence (isochrony) in the duration of imagined and executed movement (for further details on the 
calculation, refer to Materials and methods). Low values of this index indicate high MI quality, in accordance with 
the fact that good imagery skills are associated to reduced differences between the time required to execute and 
imagine the movement21,24,29. The t-test performed on the deviation from isochrony index revealed a significant 
difference between groups (t =  2.175, p =  0.041, Fig. 1(c)), with values close to zero in high-aptitude users and 
greater values in low-aptitude ones, indicating a link between higher MI accuracy and better BMI control abilities.

EEG data of MI discriminate between high- and low-aptitude BMI users.  In order to compare elec-
trophysiological correlates of MI abilities in low- and high-aptitude BMI users, we analyzed EEG signals collected 
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during pure MI without BMI (with no visual feedback, nor cursor control), at the beginning of each session (cali-
bration session, off-line, see Fig. 2(a)). We used two analyses: we analyzed the modulation of the μ-rhythm and we 
exploited the information contained in the common spatial patterns (CSPs).

μ-rhythm.  In order to investigate differences in μ-rhythm power spectra between high- and low-aptitude BMI 
users in all subjects we considered a fixed frequency range (8–12 Hz). This range over sensorimotor regions has 
been classically referred to as the μ-rhythm, and it has been consistently reported to be modulated during motor 
imagery (see for instance30). We selected two clusters of electrodes located over sensorimotor regions in each 
hemisphere (Fig. 3). We considered the average value of each cluster, separately for the two imagined hands. 
Finally, an index of laterality was computed considering the difference between the contralateral and ipsilateral 
cluster, for both hands. A repeated measure ANOVA with factors imagined hand (right and left) and group (high 
and low-aptitude BMI users) run on the index of laterality revealed a main effect of group (F(1, 22) =  5.778, 
p =  0.025), independently of the imagined hand (imagined hand, F(1, 22) =  0.326, p =  0.574; imagined hand X 
group, F(1, 22) =  0.213, p =  0.649, Fig. 4(a)). Thus, irrespectively of the hand involved in MI, high-aptitude users 
showed a more negative index of laterality compared to low-aptitude users (group, F(1, 22) =  5.778, p =  0.025). 
Note that a more negative value corresponds to a stronger difference between the contralateral and the ipsilateral 
activity, in the direction of a more marked suppression over the contralateral hemisphere. Thus, these results 
reflect a higher difference in μ-rhythm suppression in the hemisphere contralateral to the imagined hand (with 
respect to the ipsilateral one) in high- as compared to low-aptitude BMI users, as depicted in Fig. 3. We note 
that our choice of the electrodes selected to be included in the two clusters was further corroborated by results 
at the level of single channels (uncorrected). High-aptitude users showed more strongly suppressed activity over 
electrodes located in the hemisphere contralateral to the imagined hand. More specifically, for right-hand MI, 

Figure 1.  Significant differences between high- and low-aptitude users in motor imagery abilities evaluated 
by using a MI questionnaire and mental chronometry. Average ratings (±standard error) among all items 
of the MIQ-RS questionnaire separately for the visual and kinesthetic subscales (upper panels). High aptitude 
users rated kinesthetic motor imagery as significantly easier than low aptitude users (a), while no difference 
between the groups was found for the visual MI subscale (b). Results (mean values ±  standard error) related 
to the chronometric measurements are shown in the bottom panels. The Deviation from isochrony index (i.e. 
the deviation from an equal time required to execute and to imagine five hand clasping movements) was 
worse (higher) in low rather than high aptitude users (c). Conversely, the average time required to execute the 
movement did not differ between the two groups (d). Data in (c,d) are collapsed across left and right hands 
since they did not statically differ.
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we found a statically significant effect over electrodes FC5, FC3, C5, C3, CP5 and CP3, while for left-hand MI, 
electrodes FC2, FC4, FC6 and C4.

CSP analysis.  CSPs are subject specific spatial filters that weigh each electrode according to its contribution to 
the classification31. We expected to identify a stronger contribution from those channels which are located in the 
hemisphere contralateral to the imagine hand (Supplementary Figure 1). To evaluate the presence of this lateral-
ized pattern, we computed the correlation coefficient between one CSP referring to right-hand MI (first CSP) and 
the mirrored-image of one CSP relative to left-hand MI (last CSP). Thus, if this lateralized pattern is associated 
to a more proficient modulation of neural activity for both hands during MI, the correlation coefficient should 
be higher in high-aptitude BMI users. The CSP analysis showed that in high-aptitude BMI users, the first and last 
CSPs were more strongly correlated (t =  −2.153, p =  0.043) than in low-aptitude BMI users (Fig. 4(b)), suggesting 
a higher lateralization during MI in the high-aptitude group.

Prediction of BMI-control abilities.  Given the significant difference between high- and low-aptitude users 
on the kinesthetic sub-scale and the mental chronometry task, we next used a linear classifier (logistic regression 
algorithm) to investigate whether these subjective and behavioral indices are potential predictors of BMI-control 
ability. More specifically, we tested how accurately the estimated model would predict the assignment of each 
individual subject to either the high- or low-aptitude BMI group. This analysis lead to an average accuracy of 
73.7% of correct classification and was above the threshold derived with a binomial cumulative distribution for 
a two-class classification problem5,32 (70%; sample size: 24 subjects). The control analysis, performed using as 
predictors the ratings on the visual subscale of the MIQ-RS and the duration of executed clasping movements 
acquired during the mental chronometry task, resulted in a lower average accuracy (57.1%), that it is below the 
significant threshold obtained with the binomial cumulative distribution.

Discussion
Our study aimed at investigating whether MI ability underlies proficiency in BMI control. We found that EEG 
signals during MI (as captured by μ-rhythm and CSP) as well as behavioral and subjective measurements of MI 
accuracy (mental chronometry; kinesthetic sub-scale of the MIQ-RS questionnaire) distinguished between users 
with high- and low-aptitude for BMI control. In particular, high-aptitude BMI users showed higher MI accuracy 
and more lateralized neural activation during MI as compared to low-aptitude BMI users. In addition, our results 
suggest that questionnaire and behavioral measures can be used as predictors of BMI performance, without the 
need for recording EEG signals.

Higher motor imagery ability in high-aptitude BMI users.  We used two reliable cognitive indices of 
MI abilities: self-reporting scores concerning kinesthetic features of MI activity (based on MIQ-RS questionnaire) 
and an objective behavioral measure based on mental chronometry. Both measures exhibited a significant differ-
ence between the high- and the low-aptitude group. We will discuss the subjective questionnaire data first. In the 
context of our chosen questionnaire, higher ratings indicate an ease in performing the task. Kinesthetic MI rat-
ings from proficient BMI performers were significantly higher than those from the low-aptitude group, whereas 
there was no such group difference for subjective ratings of visual MI, highlighting the importance of motor and 

Figure 2.  Experimental procedure during the BMI session. (a) Calibration session, off-line: subjects were 
instructed to imagine clasping movements performed either with the left or the right hand as indicated by a 
visual cue (red arrow) without receiving any visual feedback. (b) The collected EEG data were then used to 
extract EEG correlates of motor imagery, to train a linear classifier and to extract subject specific spatial filters. 
(c) These parameters were then used in the on-line session, during which subjects were asked to control in 
real-time the movement of a cursor (black rectangle) by performing the same motor imagery task as in the 
calibration session.
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kinesthetic imagery (participant’s ability to feel imagined movements) rather than visual imagery (participant’s 
ability to see imagined movements) in BMI control.

Different MI questionnaires (e.g. Vividness of movement imagery questionnaire in12,17; the revised Movement 
Imagery Questionnaire in7; The Kinesthetic and Visual Imagery questionnaire in16) have already been employed 
in the context of evaluating BMI abilities. However, to date only one study reported a significant relationship 
between BMI performance and imagery scores for visual versus kinesthetic modalities16. In line with our results, 
Vuckovic and collaborators16 found a stronger correlation between participants’ ratings in kinesthetic versus 
visual MI. Crucially, they considered the accuracy of an off-line EEG classifier using data recorded during MI, 
but not during BMI control as in the present study. Our study significantly extends that finding in showing the 
prominent role of kinesthetic imagery in explaining inter-subject differences, not only during MI, but also during 
on-line BMI control. We note that previous studies had underlined the importance of instructing subjects to 
perform kinesthetic rather than visual motor imagery in BMI paradigms9,33. Moreover, kinesthetic MI activates 
similar sensorimotor areas, whose activity is classically decoded for MI-based BMI, namely primary motor34,35, 
SMA, and ventral premotor cortex23. Compatible with the present discrimination between high- and low-aptitude 
BMI users in kinesthetic versus visual MI, visual MI fails in producing a clear activation in these areas36 and acti-
vates more posterior regions in occipital and parietal cortex23.

Importantly, the present study is the first to use mental chronometry to investigate difference in BMI ability. 
We note that MI questionnaire, despite being a validated tool in MI and  previously used in BMI ability estima-
tion, reflect a subjective assessment of MI abilities based on verbal rating scales. In contrast, mental chronometry 
is an objective behavioral measurement based on motor responses and thus less prone to participant biases: for 
this reason it has been argued to be a more reliable criterion of MI quality, compared to questionnaire scores21. 

Figure 3.  μ-rhythm suppression during motor imagery over two sensorimotor clusters. The panel illustrates 
the mean power spectrum (±standard error across subjects) in the μ-band (8–12 Hz) over two clusters of 
electrodes located over sensorimotor regions in the left (yellow) and the right (purple) hemisphere during left 
(on the left) and right (on the right) hand motor imagery. Traces in the contralateral cluster with respect to the 
imagined hand show a clear μ-rhythm suppression, stronger in the high-aptitude (upper plots) as compared to 
the low-aptitude (lower plots) group. Conversely, the mean power over the ipsilateral cluster presents a weaker 
suppression with respect to the contralateral cluster. These effects have been quantified with the proposed index 
of laterality.
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Results from the mental chronometry task revealed that low-aptitude BMI users (as compared to high-aptitude 
users) show a greater difference between the time required to perform versus imagine a hand clasping movement, 
indicating reduced MI abilities. This interpretation is supported by an extensive body of literature showing that 
poor isochrony is an indicator of impaired imagery abilities, both in healthy participants21 and in different patient 
groups19,37–39. These behavioral results demonstrate that the isochrony in MI is also relevant to BMI proficiency, 
suggesting that higher MI abilities are crucial for BMI control. Thus, we introduce here the mental chronometry 
and the kinesthetic questionnaire sub-scale as predictors of BMI control; this is particularly interesting as espe-
cially the latter measure targets specifically MI skills in a reliable way without the necessity for EEG recordings. 
For instance, by employing the chronometry index it is possible to evaluate and monitor MI abilities in different 
populations (healthy adults; patients), and over various experimental conditions or phases of training or illness. 
Results from the mental chronometry analysis also highlighted that the duration of the executed movement per 
se seems not to influence BMI ability. These data further extended prior cognitive neuroscience works by showing 
that not only MI but also BMI control does not exclusively depend on the ability to actually perform the move-
ment, but also relies on the complex interplay between motor abilities and somatosensory inputs from the body 
part involved in the MI task40,41.

Despite having instructed our participants not to perform any overt movement during motor imagery and 
despite close observation by the experimenter, we cannot exclude that sub-threshold movements not detected 
by us could be present or that spinal cord circuitry could be still activated. Concerning, spinal circuitry involve-
ment, previous studies in primates indeed have shown activity at the spinal level during movement preparation 
(e.g.42). Moreover, in humans, a residual muscular activity and spinal cord modulation have been reported dur-
ing motor imagery in some subjects and under certain conditions, as a variation of inhibition at level of spinal 
interneurons18. Although not likely, such potentially undetected movements and spinal cord activity could have 
differentially impacted BMI performance in the high- and low-aptitude group during motor imagery. However, 
it is improbable that these effects, if present, could account also for the differences found in our subjective and 
objective measurements of MI ability between the two groups. Previous studies, indeed, already reported dissim-
ilar scores in good and poor imagers at the mental chronometry task and at the MIQ-R, that were not explained 
by residual muscular activity (e.g.24).

EEG-signatures of motor imagery differ in high- and low-aptitude BMI users.  To investigate 
neural signatures that might reflect differences in hemispheric lateralization during MI between low- and 
high-aptitude users, we found two further indices derived from EEG signals during MI without online BMI con-
trol. First, we compared the difference in μ-band suppression in two clusters of electrodes over the sensorimotor 
cortices and found that the laterality index was larger in the high-aptitude users compared to the low-aptitude 
group, pointing to the importance of the lateralization of a specific frequency band during MI for BMI control. 
This conclusion was further supported by another analysis, aimed at evaluating the neurophysiological informa-
tion carried by the CSP (CSP index computed as the correlation coefficient between the right and left CSP, sepa-
rately for each subject). Results showed that in high-aptitude BMI users, the CSP index was significantly higher 
than in low-aptitude users, indicating that electrodes that discriminate the most between imagery of left and right 
hand movements are located over the contralateral hemisphere. This confirms that this lateralized pattern of neu-
ral activity, weaker in low-aptitude BMI users, is important to achieve good BMI-control.

Figure 4.  Significant differences between high- and low-aptitude BMI users in EEG-correlates of pure 
motor imagery. The difference in μ-rhythm suppression (mean values ±  standard error) between two clusters of 
electrodes, one over each hemisphere (index of laterality) was significantly more marked in the high- than in the 
low-aptitude group, showing the importance of a specific lateralized activation during MI for BMI control  
(a). The correlation (mean values ±  standard error) between the right and left common spatial patterns (CSP) 
was higher in high- rather than low-aptitude users, indicating a more lateralized cortical activity during MI in 
the former group (b).
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Previous BMI studies have extracted predictors able to differentiate between high- and low- aptitude BMI 
users based on EEG signals recorded not only during BMI-control, but also at rest. For instance, an index of the 
average alpha power recorded at rest over both C3 and C4 has been shown to be related to BMI performance9. 
Other studies focused on the importance of different frequency bands, involving sensorimotor gamma oscilla-
tions during MI43, or negative correlations between BMI performance and theta band activity at rest10. Similarly 
even during on-line BMI control, a recent study showed that, the association between a laterality index extracted 
from two central EEG electrodes (computed as a difference between the μ-rhythm desynchronization over C3 and 
C4) and the BOLD signal acquired during simultaneous fMRI recordings, could be used to group BMI users into 
good, moderate and poor performers27. Other studies focused on the importance of different frequency bands, 
involving sensorimotor gamma oscillations during MI43, or negative correlations between BMI performance and 
theta band activity at rest10. Structural brain features such as interhemispheric connections across the corpus 
callosum44 have also been proposed to be important for MI-based BMI6. The present data corroborate the dif-
ferential involvement of the two hemispheres previously reported during BMI control or at rest in high-aptitude 
users. Our data suggest that this pattern in good BMI users is related to MI, showing that different lateralization 
during MI discriminates between high and low BMI proficiency.

These findings suggest that the ability to perform the underlying cognitive task (MI) important for BMI con-
trol, is mediated via bilateral connections driving proficient BMI aptitude. Literature on MI again offers support 
for this proposal. During MI, a power decrease over the contralateral hemisphere (event-related desynchroni-
zation, ERD) is often associated with a power increase (event-related synchronization, ERS) over the ipsilateral 
hemisphere45. Other studies46,47 investigated the reciprocal influence of both hemispheres during MI, and the 
inhibition of the contra- versus ipsilateral hemisphere has been described in good MI subjects48. Moreover, this 
effect during MI mimics the pattern of lateralization largely documented for actual unilateral movements: during 
the execution of unimanual movements, the contralateral motor cortex inhibits the ipsilateral one through the 
transcallosal pathway, inducing a decrease of ipsilateral M1 excitability49. Similarly, directionally selective disrup-
tions of oscillations have been also documented during movement preparation in primates50,51. Here we extend 
these neuroscience findings to the field of BMI by showing that MI-based BMI control depends not only on the 
modulation of the contralateral hemisphere, but more importantly, on the differences between the activation in 
the two hemispheres in a specific frequency band (i.e. the μ-rhythm).

Finally, results from the logistic regression analysis show the potential of our behavioral measures, not only 
in explaining differences between high- and low-aptitude BMI users, but also in predicting BMI control ability at 
the individual level. The scores on the kinesthetic scale of the MIQ-RS questionnaire and the index of isochrony 
on the mental chronometry task were indeed significantly above chance in classifying individual participants as 
high- vs. low-aptitude BMI users, whereas this was not the case for control analysis (including execution of move-
ment measurements and visual imagery sub-scale scores). A model based on these two MI indices might present 
a powerful tool for screening and monitoring BMI abilities; moreover these measures do not require collecting 
and analyzing EEG data to estimate BMI aptitude. We note that a previous study directly investigated the use of 
psychological variables as predictors of BMI proficiency12. At present, we cannot exclude that the skills underlying 
the tests used by these authors might be involved in the ability to perform MI or somehow relate to the tasks we 
employed here (some of the tests used may relate to motor prediction52 and concentration53 that are both linked 
to MI). Further research will be required to directly test these issues.

Conclusions
Taken together our results suggest that subjective, behavioral, and EEG measurements of MI ability are intimately 
linked to the ability to control a BMI. The finding that MI ability predicts BMI aptitude provides evidence against 
the hypothesis that BMI illiteracy can be completely ascribed to intrinsic limitations of EEG in recording brain 
signals, in particular due to specific neuroanatomical characteristics27. We cannot exclude that these technical 
limitations might have an impact on BMI proficiency, however the present results reveal the importance of a 
specific cognitive ability - MI - in BMI control. The proposed pre-screening tool based on subjective and behav-
ioral MI measurements aims not at excluding low-aptitude BMI users, but rather at adopting specific strategies to 
improve their MI abilities, and thus potentially their BMI proficiency. Different aspects can influence the ability 
to perform MI, among them being posture54,55, perspective56,57 and the type of MI (visual or kinaesthetic)36,57. Past 
MI research has proposed different strategies for improving motor imagery skills in athletes58 and even in stroke 
patients37, by providing, for instance, verbal information describing the sensation elicited by a given movement59, 
by presenting objects that can stimulate specific affordances and sensations or by using action observation prior 
to the imagination task37. The present data show that these neuroscience-based strategies can now also be applied 
to BMI- “athletes”, aiming at activating the motor representation related to the action to be imagined, thus facili-
tating MI, which, based on the present results, might improve BMI control.

Materials and Methods
Participants.  Twenty-four right-handed (as determined by the Handedness Inventory)60 healthy participants 
(7 females and 17 males, mean age 26.5 years, SD ±  3.8, range 21–34) took part in the experiment which was 
approved by the Ethics Committee of the Faculty of Biology and Medicine of the University of Lausanne and 
was conducted in accordance with the Declaration of Helsinki. Written informed consent was obtained from all 
participants that took part in the experiment.

Experimental procedure.  Two different experimental sessions were run. One session was dedicated to the 
EEG recording and BMI-control while the other aimed to behaviorally assess MI ability. The order of the two 
sessions was counterbalanced across subjects.
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Motor imagery ability.  Questionnaire.  The MIQ-RS26 is composed of two subscales aiming at evaluating par-
ticipant’s ability to see (visual imagery) and feel (kinesthetic imagery) different imagined movements.

Every subscale contains seven items corresponding to seven different movements (e.g. pushing, pulling, reach-
ing and grasping object, make a fist).

Each item entails first to perform a movement, then to imagine the same action, and finally rate the difficulty 
of the imagination task using a 7-point scale (from 1 =  very hard to see ⁄ feel; 4 =  neutral (not easy⁄not hard); 
7 =  very easy to see⁄feel, and intermediate levels). Questionnaires have been commonly used to asses motor imag-
inary ability21. The MIQ-RS is a suitable option for examining movement imagery abilities targeting primarily the 
upper extremities26.

Mental chronometry.  Here in accordance with the BMI task, subjects were asked to perform or imagine five 
hand clasping movements, either with the left or the right hand. They were instructed to imagine the feeling of 
performing the movement (kinesthetic MI) with eyes open as in the BMI task. There were in total 4 experimental 
conditions, with hand (left/right) and task (execution/imagination) as factors. Each condition was repeated 10 
times to account for a reliable estimation of the actual and imaged movement duration.

We used a chronometer to measure the time required to complete the 5-hand clasping task. Subjects were 
instructed to verbally report the moment in which they start and complete the task.

The rationale of the mental chronometry task is based on the evidence that imagined and executed move-
ments follow the same rules of motor control22,38 and that a temporal congruence exists between the duration of 
executed and imaged action. For this reason, comparing duration of motor imagery and of the real execution of 
the same action has been previously employed as a simple and reliable method to evaluate imagery accuracy in 
healthy participants and in patients21,24,37,40.

EEG acquisition and BMI loop.  A 64-channel EEG system (g.tec medical engineering GmbH, Graz, Austria) 
was used for the EEG recording. A subset of 27 of a total of 64 available EEG channels were considered for the 
signal recording and the BMI loop, which refers to the processing chain from the decoding of brain activity to the 
feedback presentation. This subset included all the electrodes situated over the sensorimotor cortex, including 
fronto-parietal, central and centro-parietal electrodes. The ground was located on the forehead (AFz) and the 
reference was placed on the right earlobe. The EEG signal was sampled at 256 Hz and Butterworth filters (in the 
range of 1–30 Hz) were used during the recording.

During the EEG-BMI session participants sat comfortably in front of a computer screen onto which the stim-
uli and BMI visual feedback was projected. They were instructed to keep their hands on their thighs with the palm 
facing up (Fig. 5) and to avoid any movement during the motor imagery and BMI-control. The whole experiment 
included two off-line (calibration session, see below) and two online (BMI cursor control, see below) runs.

Calibration session: pure motor imagery and classifier training.  Each recording began with the two off-line runs 
of 40 trials each, during which the subject performed MI without visual feedback while the EEG signal was 
recorded. Subjects were instructed to imagine clasping movements performed either with the left or the right 
hand by focusing on the kinesthetic sensations of the movement (kinesthetic MI). The trial began with a fixation 
cross (2 seconds), followed by a red arrow (cue, 1 second), placed in the center of the screen, indicating which 
hand had to be imagined. Right after the cue disappeared, the subject was instructed to start imagining the move-
ment and continue for a total duration of 6 seconds (Fig. 2(a)). After the motor imagery period, subjects had 7 
seconds of rest.

Figure 5.  Experimental setup during EEG acquisition and BMI-control: A 64-channel EEG system was 
used for recording brain activity. During motor imagery and BMI control, the instructions and the visual 
stimuli, including the BMI feedback as shown in the picture, were presented on a computer screen. Participants 
sat comfortably in front of the screen, keeping their hands on their thighs with the palms up.
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The off-line runs were required in order to select subject-specific discriminant EEG features between the left 
and right hand imaged movements, namely the spatial filters and the linear classifier parameters to be used during 
the on-line control session.

The spatial filters (common spatial patterns, CSPs), were used to improve the efficiency in the discrimination 
of two classes (left and right hand imaged movement) and represents a method commonly used in BMI appli-
cations to increase the signal strength31. The CSP algorithm finds, for each subject, spatial filters (in the same 
number as the electrodes), each of which weights each electrode based on its contribution to the classification 
(Supplementary Figure 1).

In order to compute the classifier and extract the CSP, the EEG data acquired during the offline session were 
first visually inspected to exclude trials that might contain artifacts. Then the EEG signal were band-pass filtered 
between 8 and 30 Hz, to include the μ (8–12 Hz) and β  (12–30 Hz) frequency bands. After this, the signal’s matrix 
of covariance was computed: the CSP algorithm works by maximizing the variance for one class and at the same 
time minimize variance for the other class. The variance of the band-pass filtered signal is equivalent to the band 
power of the signal and the signal variance in the frequency band exploited for the BMI directly reflects the pres-
ence of the typical motor-imagery-related patterns of activity. Based on previous studies31, we expected the firsts 
two CSPs to show a prominent contribution from electrodes located over the hemisphere contralateral to one 
imagined hand movement, and likewise for the last two CSPs, but for the other hand.

For each subject, the first and last two CSPs are used to construct four feature vectors31 and these feature vec-
tors are then used to build the linear classifier (LDA classifier, Fig. 2(b)).

On-line session: BMI cursor control.  During the on-line session subjects were instructed to mentally perform 
left or right hand clasping movements as in the calibration phase but with the aim of attempting to control the 
movement of a cursor (black rectangle) towards the cued side of the screen.

At each time frame, the output of the linear classifier provided the direction and the velocity for the cursor 
displacement.

As in the calibration session, each trial began with the presentation of a fixation cross (2 seconds) followed by a 
central arrow, (1 second, cue), pointing either to the left or to the right, indicating which hand had to be imagined 
(right or left) and the side of the screen towards which the subject should attempt to move the cursor (Fig. 2(c)). 
The hand involved in the imagined movement and the cued side of the screen were always coincident (e.g. right 
hand and right side of the screen). After 1 second, the cursor appeared and the subject could start immediately 
controlling it.

If the cursor reached the side of the screen within the timeout period of 6 seconds, then the cursor disappeared 
and a fixation cross was displayed for the remaining time. At the end of the cursor control period, subjects had a 
7 seconds of rest. The total duration of each trial was 16 seconds. There were a total of 64 trials divided into two 
runs, equally divided into the two imagined hand.

Data Analysis.  Analysis of behavioral data.  Questionnaire.  For each subject, we computed the average 
of the ratings for visual and kinesthetic MI items of the MIQ-RS, separately. Then, we statistically tested for dif-
ferences between the two groups (independent samples t-test, two-tailed), independently for the two subscales.

Mental chronometry.  Therefore, we computed for each subject the average time required to perform the actual 
or imaged clasping movement with the right and left hand in the mental chronometry task. We submitted these 
values to a repeated measure ANOVA with imagined hand (left versus right) and task (execution versus MI) as 
within-subjects factors and with group (high versus low-aptitude BMI users) as between-subjects factor.

Additionally, we calculated an index of deviation from isochrony by computing the ratio between the average 
duration of actual and imaged clasping movement for every subject and finally by considering the absolute value 
of the deviation of this ratio from 1, as indicated by the following formula:

=




−










deviation from isochrony abs MI

EXE
1

A ratio equal to 1 (“isochrony” between MI and actual execution) indicates an equal time required for complet-
ing both tasks. In agreement with the “principle of isochrony” governing the relationship between imagined and 
actual movement duration21,22,38, higher values of “deviation from isochrony” correspond to lower MI abilities. 
We then compare statistically this index between the two groups (independent samples t-test, two-tailed).

Statistical analysis of electrophysiological data.  Analysis of μ-rhythm.  First we computed for each 
subject and separate for the right and left MI, the event shift in the μ band (8–12 Hz) power spectrum (event 
related spectral perturbation, ERSP61), considering as a baseline the first two seconds at the beginning of each 
trial, during the presentation of the fixation cross and the arrow indicating which hand to imagine. Then we 
considered the average over time from 1 seconds after the beginning of the MI period till the end of the 6 seconds 
of MI.

We first investigated the presence of the classical modulation of the μ-rhythm due to MI already reported in an 
extended body of literature45. Then, as an exploratory approach we statistically tested for differences in the μ-band 
desynchronization between the high- and low-aptitude groups, separate for left and right MI over all electrodes, 
except for those lying along the central line and those over fronto-temporal, temporal and temporo-parietal 
regions. We then selected two subgroups of electrode, one over each hemisphere, and extracted the average value 
over each cluster for the two imagined hands (Fig. 3).



www.nature.com/scientificreports/

1 0Scientific Reports | 6:24076 | DOI: 10.1038/srep24076

We computed an index of laterality, representing the different degree of activation between the two hem-
ispheres: to do this we calculated the difference between the contralateral and ipsilateral cluster separate for 
the two imagined hands. This gave us a single index accounting for the difference in activation between the 
hemisphere contralateral to the imagined hand and the ipsilateral one over sensorimotor regions. We expected 
a more pronounced difference, i.e. a higher lateralization between the two hemispheres, in high aptitude users. 
More specifically, since the μ-band modulation is expressed in term of desynchronization with respect to the 
rest period at the beginning of each trial, we expect a stronger suppression, thus a more negative value, for high 
aptitude users than for low-aptitude users. We run a repeated measure ANOVA with imagined hand (right versus 
left) as within-subjects factors and with group (high versus low-aptitude BMI users) as between-subjects factor. If 
the ANOVA revealed a significant interaction, we performed post hoc comparisons using Newman-Keuls tests.

Analysis of Common Spatial Pattern.  We decided to investigate whether the different performance between the 
two groups could be depicted by the topography of the first and the last CSP. This analysis was motivated by the 
observation that a high aptitude BMI user would likely present a clear lateralized pattern of activation (Fig. 2(b) 
and Supplementary Figure 1), with a more prominent contribution in the classification from electrodes placed 
contralateral to the imagined direction as already described elsewhere31. We computed then the correlation coeffi-
cient between the first CSP (right hand MI) and the mirrored-imaged of the last CSP (left hand MI): if the lateral-
ized pattern would be present in both CSP, it would result in a higher correlation coefficient. Then, we statistically 
investigated (independent samples t-test, two-tailed) differences in the correlation coefficient between high and 
low-aptitude BMI users.

Prediction of BMI-control abilities.  Moreover, we were interested in investigating whether the two behav-
ioral indices related to MI abilities could also be exploited to predict if a subject would belong to the high- or 
low-aptitude group. Behavioral, rather than the neurophysiological data are investigated as predictors for two 
reasons. First, we wanted to avoid any possible circularity which could be caused by using as predictors, variables 
extracted from EEG data, being the division between high and low-aptitude users based on the BMI-control 
performance.

Secondly, behavioral predictors offer the great advantage of avoiding setting up an EEG recording, thus nota-
bly decreasing the acquisition time.

Thus, we used two behavioral variables extrapolated from the kinesthetic ratings to MIQ-RS questionnaire 
and from mental chronometry task (deviation from isochrony) as predictors for a linear classifier based on a 
logistic regression algorithm62. The training and testing of the classifier were performed using a 8-out cross vali-
dation procedure, in which the training set was chosen by leaving out, for the test set, the data from 4 subjects per 
group. Thus, since our pool included 24 participants, the training set was composed by 16 subjects. This division 
and the corresponding classification was iterated several times to account for all the possible combinations of 
training and test set (exhaustive cross-validation). The empirical accuracy was computed by averaging the single 
accuracy from every cross validation loop.

We tested the statistical significance of our accuracy by considering the binomial cumulative distribution. The 
binomial distribution give us an analytical threshold of the statistical significance for a two-class classification 
problem: only in case of an infinite sample size, the statistical significant threshold corresponds to the theoretical 
chance level at 50%, otherwise the real chance level depends on the sample size (see for a discussion about this 
topic32).

To provide a further evidence for the relevance of our behavioral variable in predicting BMI proficiency, we 
performed the same analysis using two control variables: ratings of the visual subscale of the MIQ-RS and the 
duration of executed clasping movements acquired during the mental chronometry task (computed as the aver-
age duration of the executed movement with the right and left hand). These parameters were chosen since statis-
tical tests comparing these variables between the high- and low-aptitude groups showed no statistical difference.
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