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SUMMARY

The mission of the California Institute of Regenerative Medicine (CIRM) is to accelerate treatments
to patients with unmet medical needs. In September 2016, CIRM sponsored a workshop held at
the University of California, Los Angeles, to discuss regenerative medicine approaches for treat-
ment of lung diseases and to identify the challenges remaining for advancing such treatments to
the clinic and market approval. Workshop participants discussed current preclinical and clinical
approaches to regenerative medicine in the lung, as well as the biology of lung stem cells and the
role of stem cells in the etiology of various lung diseases. The outcome of this effort was the recog-
nition that whereas transient cell delivery approaches are leading the way in the clinic, recent
advances in the understanding of lung stem cell biology, in vitro and in vivo disease modeling,
gene editing and replacement methods, and cell engraftment approaches raise the prospect of
developing cures for some lung diseases in the foreseeable future. In addition, advances in in vitro
modeling using lung organoids and “lung on a chip” technology are setting the stage for high qual-
ity small molecule drug screening to develop treatments for lung diseases with complex biology.
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INTRODUCTION

Although lung diseases remain a major source of
morbidity and mortality throughout the world,
progress has been slow, both in basic research for
understanding the biological basis for lung dis-
ease, as well as clinical research for diagnostics,
prevention, and treatment. The economic cost of
asthma, chronic obstructive pulmonary disease
(COPD), and pneumonia was $106 billion in the
U.S. in 2009, including $81 billion in direct health
expenditures and $25 billion in indirect costs of
mortality [1]. Although there have been incre-
mental improvements in the development of
therapies for symptoms of lung diseases such as
COPD and asthma, disease-modifying treatments
remain scarce. Stem cells and regenerative medi-
cine approaches hold great promise for the devel-
opment of new therapies and patient-specific
disease models to increase understanding of dis-
ease pathophysiology. Here we review the state
of the field and highlight next steps and chal-
lenges for the field.

LUNG STEM CELLS AND ASSOCIATED DISEASES

The lung is a structurally complex organ com-
prised of several spatial regions, each with its own
stem and progenitor cells and types of niches. Dis-
eases of the lung are complex in etiology, affecting

distinct regions and cell types, thus it is critical to
understand the repair processes in each area of
the lung (Fig. 1).

Dr. Mark Krasnow (Stanford University)
described lineage tracing experiments that identi-
fied a rare subset of mature surfactant-secreting
alveolar type 2 (AT2 cells) called AT2* cells. These
cells have the ability to either self-renew or to
give rise to alveolar type 1 (AT1) cells, thus fulfill-
ing a stem cell function in the distal lung.
Although normally quiescent, AT2* cells become
activated to proliferate and differentiate in
response to lung injury, providing a repair mecha-
nism. Experimental depletion of AT2* cells in mice
resulted in formation of fibrosis reminiscent of idi-
opathic pulmonary fibrosis (IPF), suggesting that
at least some cases of IPF may be due to stem cell
deficiency or exhaustion. If so, replacement of
AT2* stem cells could provide an avenue for IPF
treatment. In support of this hypothesis, telomer-
ase mutations have been found to be associated
with some hereditary forms of IPF, and telomer-
ase deficiency is known to lead to stem cell
exhaustion.

Dr. Hal Chapman (UCSF) discussed a mouse
stem cell population found in distal airways.
DNp631Krt51 cells are distal airway stem cells
that expand from lineage negative epithelial pro-
genitors (LNEPs) after influenza H1N1 infection in
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mice, and subsequently differentiate to mature epithelium upon
downregulation of Notch signaling [2]. Failure to downregulate
Notch signaling results in the formation of alveolar cysts. A cell
type similar to Krt51 exists in human lungs, and also proliferates
in response to H1N1 infection, thus may represent another cell
type ripe for exploitation.

APPROACHES TO MONOGENIC LUNG DISEASES

Cystic Fibrosis

Among the workshop presentations, cystic fibrosis (CF) was
viewed as a “shining example” of a monogenic respiratory disor-
der that may clearly benefit from stem cell therapeutics, as high-
lighted by Dr. William Skach (Cystic Fibrosis Foundation). CF is a
fatal respiratory disease caused by an autosomal recessive muta-
tion in the gene encoding the cystic fibrosis transmembrane con-
ductance regulator (CFTR), a chloride transporter that regulates
water transport in epithelial cells of multiple organs, including the
lung. Due to the development of effective clinical methods to
enhance mucociliary clearance, the median survival of CF patients
is now over 40 years, and is expected to increase due to recent
FDA approvals of several CFTR modulators [3]. However, drug
treatments are not necessarily curative and they are only effective
in a subset of patients bearing specific CFTR mutations. Lung
transplantation, while potentially curative, is only available for

some patients, and comes with the risks of lifelong immune sup-
pression and the potential for transplant rejection and infections.

The recent development of simple and efficient gene editing
or replacement methods has raised the prospect of gene correc-
tion of CFTR mutations in autologous lung airway epithelial pro-
genitor cells as a cure for CF [4]. Dr. Amy Firth (USC) described the
use of CRISPR/Cas9 gene editing to correct CF patient induced plu-
ripotent stem cells (iPSC), followed by ex vivo differentiation to
functionally corrected lung epithelial cells. A longer-term goal is to
differentiate such gene-corrected iPSCs to lung progenitor cells
that could be engrafted back into the lungs of CF patients. To
achieve this goal, some of the challenges to be addressed include
the identification and characterization of the human lung progeni-
tors that repopulate and restore normal airway epithelium, devel-
opment of methods to differentiate iPSC to that particular lung
progenitor, and identification of the appropriate stem cell niche
and ability to manipulate it to encourage engraftment. Alternative
approaches under development include methods for efficiently
gene editing lung progenitor cells in vivo (Table 1).

Pulmonary Alveolar Proteinosis

Dr. Bruce Trapnell (Cincinnati Children’s Hospital) presented
results of preclinical studies of the rare monogenic respiratory dis-
order, hereditary pulmonary alveolar proteinosis (hPAP). hPAP is
characterized by abnormal accumulation of surfactant in alveolar
macrophages and pulmonary alveoli. Alveolar macrophages

Figure 1. Regions of the lung, their potential stem cell niches and related lung diseases. Left: Regions of the bronchial tree are shown from
proximal (top) to distal (bottom). Middle: The normal histology of regions highlighted in the blue boxes are shown, indicating putative,
region-specific stem/progenitor cells and their niches. Right: Lung diseases shown are (a): cystic fibrosis with mucus plugging and abnormal
submucosal gland duct (arrow), (b): chronic obstructive pulmonary disease with squamous metaplasia (solid arrow) and mucus metaplasia
(dotted arrow), (c): pulmonary arterial hypertension with intimal thickening (arrow), (d): acute respiratory distress syndrome with hyaline
membranes (arrow), inflammation, and edema, (e): idiopathic pulmonary fibrosis with fibrotic foci (arrow) and extensive lung remodeling
and (f): bronchopulmonary dysplasia with alveolar simplification. Abbreviations: ARDS, acute respiratory distress syndrome; BASC, bronchioal-
veolar stem cell; BPD, bronchopulmonary dysplasia; CF, cystic fibrosis; COPD, chronic obstructive pulmonary disease; IPF, idiopathic pulmo-
nary fibrosis; LNEP, lineage-negative epithelial stem/progenitor cell; PAH, pulmonary arterial hypertension; T2*, type 2 alveolar cell*.
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normally require granulocyte-macrophage colony-stimulating fac-
tor (GM-CSF) signaling to stimulate surfactant clearance; however,
in hPAP this function is prevented by mutations in the genes
encoding the GM-CSF receptor (CSF2R) a or b chains. As a result,
alveoli and lung macrophages become filled with surfactant lipids,
causing restrictive lung impairment and respiratory failure.

Prompted by the dysfunctional status of hPAP macrophages,
Trapnell and his team developed a strategy for transplanting pul-
monary macrophages in mice [5]. A normal copy of the CSF2R

gene was introduced into bone marrow derived CD341 hemato-
poietic stem and progenitor cells by a viral vector. The corrected
stem cells were then differentiated to form macrophages that
were then transplanted into the lung of Csf2Rb–/– knockout mice,
which faithfully recapitulate human hPAP. In the transplanted mice,
the gene-marked macrophages remained localized in the alveoli
and did not migrate to other organs. Moreover, their lungs showed
improvements in surfactant homeostasis, alveolar stability, and
lung function. The overall survival of the mice improved, and no
side effects were observed [5]. Trapnell is now working toward
translating this proof of concept study to clinical trials (Table 1).

MESENCHYMAL STROMAL CELL TREATMENT FOR INFLAMMATORY

LUNG DISEASE

Mesenchymal stromal cells (MSCs) have anti-inflammatory prop-
erties that have prompted their testing in clinical trials for a variety
of chronic inflammatory diseases. Since MSC-based approaches
generally do not require modification of specific genes or mole-
cules, they may provide a generalizable therapeutic intervention
for the many lung diseases caused by or secondary to inflamma-
tory responses. MSCs do not themselves engraft, and therefore

do not provide sustained benefits; nevertheless, high intensity
acute inflammatory conditions in the lung, such as acute respira-
tory distress syndrome (ARDS) or sepsis/septic shock, may benefit
from administration of MSCs, as we discuss below.

ARDS

ARDS is characterized by severe inflammation in the lungs, and
presents as severe hypoxemia and bilateral opacities on chest x-
ray that are not explained by heart failure. The usual causes are
pneumonia, sepsis, aspiration, and major trauma. There are
�200,000 cases in the U.S. per year, with a high mortality rate.

Dr. Michael Matthay (UCSF) described preclinical data in which
administration of bone marrow-derived MSCs reduced endotoxin-
induced lung injury in mouse and sheep models, improving survival
and lung function and markedly reducing inflammation and micro-
bial infections. No safety issues were raised in a phase I clinical trial
for allogeneic MSC treatment of ARDS patients, which prompted
initiation of a multi-center, randomized blinded placebo-controlled
phase II trial enrolling 60 patients, to further assess safety and
obtain preliminary efficacy data (Table 1) [6].

Idiopathic Pulmonary Fibrosis

IPF is an unpredictable and fatal chronic lung scarring disease. Dr.
Marilyn Glassberg (University of Miami) presented results of a
2014 randomized exploratory phase I clinical trial to evaluate
safety, tolerability, and potential efficacy of allogeneic human
bone marrow-derived MSC delivered via intravenous infusion for
patients with confirmed IPF [7]. Among the nine participants
enrolled in the trial, no treatment-emergent serious adverse
events were reported. Two non-treatment related deaths
occurred during the study in two subjects receiving the highest

Table 1. The current state of the field for lung stem cell therapies

Lung disease Approach for stem cell-based therapy Current stage of development Challenges/Next steps

CF � Gene corrected autologous iPSC, differenti-
ated to lung airway progenitor cells for
transplant to lung

� Research � Differentiation to appropriate cell type
� “Making space” in the niche for
engraftment
� Engraftment efficiency and durability

hPAP � Gene corrected autologous HSC, differenti-
ated to macrophages for transplant to lung

� Preclinical development � Translation of gene correction from
mouse to human HSC
� Using the best gene correction
technology
� IND for the gene corrected cell product

BPD � Cord-blood derived MSC delivered to lung
airway
�MSC (source of MSC not specified)

� NCT02381366 Phase I–II U.S.
� NCT01828957 Phase II Korea
� NCT02443961 Phase I Spain

� Safety of MSC treatment in pre-term
infants
� Efficacy in placebo controlled trials
� Understanding mechanism of action

ARDS � Allogeneic bone marrow derived MSC
administered intravenously
� Allogeneic MSC administered intravenously

� NCT02097641 Phase II U.S.
� NCT02804945 Phase II U.S.

� Optimal source of MSCs
� Evidence for efficacy
� Understanding mechanism of action

IPF � Allogeneic bone marrow-derived MSC
administered intravenously
� Placental MSC administered intravenously
� Autologous bone-marrow derived MSC
administered endobronchially

� NCT02013700 Phase I U.S.
� NCT01385644 Phase I Australia
� NCT01919827 Phase I Spain

� Safety of MSC treatment in IPF patients
� Better understanding of disease etiology
� Understanding mechanism of action
� Efficacy in placebo controlled trials

PAH � eNOS-transfected autologous endothelial
progenitor cells delivered to the pulmonary
artery
� Allogeneic cardiosphere derived cells (CDC)
administered via central intravenous delivery

� NCT00469027 Phase I Canada
� NCT03001414 Phase II Canada
� NCT03145298 Phase Ia/b U.S.

� Patient recruitment
�Manufacturing costs (eNOS-EPC)
� Understanding mechanism of action
� Safety in PAH patients (CDC)
� Efficacy in placebo controlled trials

Abbreviations: ARDS, acute respiratory distress syndrome; BPD, bronchopulmonary dysplasia; CF, cystic fibrosis; eNOS, endothelial nitric oxide syn-
thase; hPAP, hereditary pulmonary alveolar proteinosis; HSC, hematopoietic stem cells; IPF, idiopathic pulmonary fibrosis; iPSC, induced pluripotent
stem cells; MSC, mesenchymal stem cells; PAH, pulmonary arterial hypertension.
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dosage of cells (200 million) due to progression of IPF (i.e., disease
worsening and/or acute exacerbation). At 60 weeks post-infusion,
improvements in lung function parameters were observed,
although they were not statistically significant due to the small
number of participants. Specifically, a 3.0% mean decline in per-
cent predicted forced vital capacity and 5.4% mean decline in per-
cent predicted carbon monoxide diffusing capacity (DLCO) was
reported [7].

Bronchopulmonary Dysplasia

Bronchopulmonary dysplasia (BPD) is a multifactorial disease of
prematurity that causes impaired lung development. Dr. Bernard
Th�ebaud (Ottawa Hospital Research Institute, OHRI) presented an
experimental stem cell-based approach to treat BPD with umbili-
cal cord-derived mesenchymal stem cells, which as a “young” pop-
ulation of cells, may have superior therapeutic benefit as
compared to “old” cells available for autologous stem cell trans-
plants, as shown in parabiosis experiments [8]. Th�ebaud’s pre-
clinical studies of US-MSCs showed feasibility, safety, and struc-
tural and functional short-term and long-term benefit in neonatal
rodents [9]. The group is now conducting pre-clinical testing in a
baboon model in collaboration with Dr. Seidner. Ventilation deliv-
ered to the lungs of preterm baboons for two weeks induces radi-
ological and histological features reminiscent of human BPD,
establishing a unique large animal model for acquiring critical pre-
clinical safety and efficacy data (Table 1).

ENDOTHELIAL PROGENITOR CELLS 1 ENOS FOR PULMONARY

ARTERIAL HYPERTENSION

Dr. Duncan Stewart (OHRI) presented a transient gene overexpres-
sion strategy for treating pulmonary arterial hypertension (PAH), a
disease characterized by massive microvascular loss that causes
increased blood pressure in the lungs. Endothelial nitric oxide syn-
thetase (eNOS) is an enzyme that produces nitric oxide, a vascular
relaxation factor that also plays an important role in vascular
repair and regeneration, thus could potentially alleviate the high
pulmonary arterial pressure in PAH. In a phase I trial to test safety
and preliminary efficacy, autologous endothelial progenitor cells
were transiently transfected with a plasmid expressing eNOS, and
introduced into the pulmonary artery of PAH patients. Stewart
reported difficulty in recruiting patients due to rarity of PAH,
restrictive eligibility criteria, and the need for ICU admission and
special instrumentation. However, the treatment was well toler-
ated, and patients showed significant improvements in long-term
6-minute walk distance, though no significant effect on hemody-
namic scores [10]. A phase II trial using an improved “minicircle”
DNA vector and multiple cell dosing is planned to start in early-
2017. The trial will entail up to eight monthly cell injections and
use minicircle DNA vectors to avoid innate immune responses
caused by bacterial sequences of plasmids (Table 1).

IN VITRO MODELING

IPSCs have become an established tool for performing drug
screening and studies of disease mechanisms.The use of iPSC lines
made from hundreds or even thousands of individuals is a power-
ful tool for studying disease heterogeneity, whereas single iPSC
lines can be used to study the potential effectiveness of therapeu-
tics on individual patient in a cell-based assay. Moreover, “disease

in a dish” models can identify critical cellular and molecular con-
tributors to disease and provide a means to vary them independ-
ently. They can be useful in situations where animal models fail to
adequately recapitulate human pathologies, and immortalized cell
lines fail to mimic tissue dysfunction central to the disease.

iPSC-Derived Cells for Studying Disease Mechanisms

Of the monogenic lung diseases, CF, ciliopathies, and Alpha 1 anti-
trypsin deficiency have all been successfully modeled with iPSC.
However, complex lung disease models using iPSC have not yet
been reported. Recapitulating a complex disease in culture can be
challenging, and may require certain environmental conditions or
screening for disruptions of pathways by gene expression analysis
to detect the disease phenotype. For diseases with a high degree
of heterogeneity, establishing patient specific cell lines may be
needed to cost-effectively represent disease variation.

Differentiating lung tissue from iPSCs is a complex multistep
process, requiring passage through definitive endoderm, anterior
foregut endoderm, and lung progenitors, to finally obtain mature
polarized airway epithelium. Efficiency of differentiation to lung
tissue can be variable due to differences in iPSC quality, differen-
tiation protocols, reagents, and criteria for defining mature cells
[11]. Workshop participants recommended that lung researchers
develop a standard lung differentiation protocol to facilitate data
comparisons from lab to lab.

iPSC-Derived Cells for Drug Development

iPSCs provide an opportunity for phenotypic drug screening that
requires no knowledge of the molecular pathways involved in the
disease phenotype. Compounds are screened using high through-
put automated robotic platforms with the objective of identifying
hits that correct the cellular disease phenotype. Discovering phar-
macological targets, pharmacologically profiling a cellular or bio-
chemical pathway of interest, and assessing the effects of
compounds on phenotypes are all possible with iPSC screening.
For example, Dr. Brigitte Gomperts (UCLA) presented a phenotypic
model of scarring using iPSC derived from IPF patients that her lab-
oratory used to screen for compounds to prevent the phenotype.

NEW TECHNICAL ADVANCES TO AID THE FIELD

Tissue Engineering

Another promising area for stem cells in treating lung disease is
tissue engineering, where stem cells provide a source of proliferat-
ing, multi-potent cells used to seed scaffolds. Major challenges
include generating adequate surface area for gas exchange and
maintaining barrier function between blood and air. Engineered
tissue must possess proper mechanical characteristics, and not be
emphysematous or fibrotic, for example.

Dr. Laura Niklason (Yale University) reviewed first generation
efforts in which decellularized lung matrices were repopulated
with human lung cells differentiated from adult lung tissue or
iPSCs.When implanted into rodents, such tissue engineered lungs
were capable of exchanging gas for 4–5 hours before alveolar bar-
riers failed, leading to bleeding into the airways [12]. Similar
results have been reported by others [13]. While these initial
results are exciting, lung tissue engineering efforts are still at the
research stage, and will require further work before they can be
considered for preclinical development.
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Organoid models of various lung tissues have the potential to
advance technologies such as patient-specific precision screens,
3D confocal drug screening, and microfluidics [14]. Dr. Jennifer
Sucre (Vanderbilt University) emphasized that structure is itself a
biological signal; therefore, lung models must retain structural fea-
tures unique to the human lung [15]. Dr. Brigitte Gomperts
(UCLA), reviewed the diverse lung tissues that have been differen-
tiated from cell lines, including tracheospheres, bronchiolar orga-
noids, bronchioalveolar spheres, alveolospheres, proximal and
distal airway, and distal airway scaffolds onto which many cell
types can be patterned. To date, organoid-based disease models
have been developed for CF, lung fibrosis [16], and BPD [17]. Tar-
geted correction of the CFTR gene in organoids derived from CF
patients has also been reported [18–20].

Combining organoids with microfluidics devices has created
the “lung on a chip,” consisting of epithelial and endothelial cham-
bers in which breathing motions simulate cyclic stretch [16, 21].
Multiple pathologic states have been modeled this way, including
asthma, COPD, airway response to injury, sepsis, and pulmonary
edema [22]. The chips can be used as a platform for drug/toxin
screen, and linked in series with other organs.

Vector Development

Because lung diseases can involve so many different lung regions
and cell types, including multiple types of stem/progenitor cells,
the appropriate choice of gene therapy vectors to modify cells is
critical to the success of stem cell therapies for lung diseases. Dr.
John Engelhardt (University of Iowa) reviewed several diverse
gene therapy vectors suitable for cell-based strategies for treating
respiratory disorders, focusing on CF.

Among potential gene therapy vectors, parvovirus vectors,
which include adeno-associated virus and human bocavirus
(HBoV1), may be closest to the clinic [23, 24]. RNA viral vectors,
which include integrating and non-integrating lentiviral vectors
with a packaging capacity up to 8 kb transgene cassettes, repre-
sent another promising class of gene therapy vectors [25]. Differ-
ent viral vectors offer different risks, such as viral-elicited immune
response, and benefits, such as the ability to deliver homologous
DNA fragments. Moreover, each animal model species may
require its own vector toolbox and serotype to efficiently test in
vivo gene correction strategies.

Animal Models

Improved animal models for lung diseases are needed for pre-
clinical testing of stem cell and drug therapies. In particular,
attempting to emulate human biology in small animals for testing
cell transplantation presents particular challenges in terms of cell
dosing, biodistribution, and durability. Hence many researchers
are developing larger animal models for preclinical testing.

For CF, larger animal models such as the pig mimic the human
disease well, although accessibility to this model is limited by its
expense. Dr. Engelhardt has developed a ferret model of CF as a
more tractable alternative, which also has the advantage of having
mucous-producing goblet cells and submucosal glands, like
humans [26]. Dr. Firth has established ferret iPSCs to evaluate the
ability of autologous cells to repair the proximal and distal airway
epithelium following controlled experimental injury. The ferret
model also can be used to test the differentiation capacity of fer-
ret iPSCs in vitro and in vivo, as well as the engraftment potential
of their derivatives.

Creating a Niche

For effective engraftment of transplanted cells to take place, it
may be necessary to deplete resident stem cells in order to gener-
ate physical space for the transplanted cells. In addition, a permis-
sive milieu that includes appropriate matrices, cytokines, and
growth factors must be established without exacerbating underly-
ing disease or damaging lung tissue. Dr. Barry Stripp (Cedars Sinai
Medical Center) discussed several examples from the recent liter-
ature showing that preconditioning with naphthalene or other cell
damaging treatments stimulates regeneration of clonally derived
patches of cells at the site of injection [2, 27, 28]. Dr. Yair Reisner
(Weizmann Institute of Science) commented that the lung stem
cell niche is similar to the bone marrow stem cell niche in that it
can be opened for stem cell engraftment by first damaging the tis-
sue to stimulate stem cell proliferation, then irradiating to kill the
endogenous stem cells [28]. These and other studies indicate that
stem cell ablation may be needed for robust repopulation by
newly introduced cells. However, since the ablation method itself
can be damaging to the tissue, the ideal method for opening the
lung stem cell niche remains to be determined.

Tracking Cells In Vivo in Clinical Trials

For cell replacement to succeed in patients, it will be important
to monitor the biodistribution of cell products after they are
introduced into patients. Improved cell imaging technologies will
accelerate clinical trials by improving cell delivery and dosing, illu-
minating mechanisms of actions, and providing improved surveil-
lance of inflammation. To this end, Eric Ahrens (UCSD) has
developed a non-invasive, highly sensitive technology for detect-
ing and quantifying cell therapy products in vivo using 19F MRI
[29]. MRI is suitable for use in humans because it does not
require radionuclides or ionizing radiation. However unlike cur-
rent 1H labeling technologies, 19F MRI requires only one scanning
session, saving money and time. Proof of concept studies in
rodents and pigs have demonstrated its capacity to monitor bio-
distribution of dendritic cell, T cells, and stem cells in various
organs and tissues [30]. This approach has been used in human
clinical trials, is agnostic to the cell type or disease, and can be
broadly applied to monitor cellular biodistribution [31].

CONCLUSION AND NEXT STEPS

Early clinical trials using cell therapies for lung disease have used
nonengrafting adult stem and progenitor cells (MSC and EPC) to
provide transient paracrine benefits. These cells have been shown
to be safe when administered to critically ill patients. The next
step will be to determine if they are unambiguously efficacious in
treating or curing lung diseases and, if so, to demonstrate their
mechanism of action for different diseases.

The next generation of stem cell-based lung therapies will
likely entail repair or replacement of damaged lung tissue by per-
manently engrafting lung stem cells, which if successful, could
provide cures for some lung diseases. For the lung, the “low-
hanging fruit” for such next generation therapies are likely to be
monogenic lung diseases such as CF and hPAP, in which
approaches to correct or replace a defective gene in a stem cell
are feasible, either ex vivo followed by transplantation and
engraftment, or by gene modification of stem cells in vivo. The
recent emergence of a new generation of gene editing and gene
replacement methods promises to accelerate the development of
therapies for monogenic disorders in particular.
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A pressing challenge for developing cell therapeutics aimed at
lung diseases will be achieving a better understanding of those
with complex etiologies, such as PF, BPD, COPD, and PAH (Table
1). Of these, if any are found to have defective lung stem cells, as
was hypothesized to be the case for pulmonary fibrosis, then
methods to replace or reactivate such stem cells may prove to be
effective treatments. In addition, diseases in which tissue is absent
or damaged would theoretically be amenable to regenerative
repair. Another challenge will be to gain a better understanding of
the lung stem cell niche(s), and to develop engraftment strategies
that will create space for stem cells without severely damaging
the lung. Finally, standardizing sources of cells and protocols will
help accelerate and improve the rigor of clinical testing.
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