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Abstract

Background

The key for successful stroke upper-limb rehabilitation includes the personalization of thera-

peutic interventions based on patients’ functional ability and performance level. However,

therapists often encounter challenges in supporting personalized rehabilitation due to the

lack of information about how stroke survivors use their stroke-affected arm outside the

clinic. Wearable technologies have been considered as an effective, objective solution to

monitor patients’ arm use patterns in their naturalistic environments. However, these tech-

nologies have remained a proof of concept and have not been adopted as mainstream ther-

apeutic products, and we lack understanding of how key stakeholders perceive the use of

wearable technologies in their practice.

Objective

We aim to understand how stroke survivors and therapists perceive and envision the use of

wearable sensors and arm activity data in practical settings and how we could design a

wearable-based performance monitoring system to better support the needs of the

stakeholders.

Methods

We conducted semi-structured interviews with four stroke survivors and 15 occupational

therapists (OTs) based on real-world arm use data that we collected for contextualization.

To situate our participants, we leveraged a pair of finger-worn accelerometers to collect

stroke survivors’ arm use data in real-world settings, which we used to create study probes

for stroke survivors and OTs, respectively. The interview data was analyzed using the the-

matic approach.
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Results

Our study unveiled a detailed account of (1) the receptiveness of stroke survivors and OTs

for using wearable sensors in clinical practice, (2) OTs’ envisioned strategies to utilize

patient-generated sensor data in the light of providing patients with personalized therapy

programs, and (3) practical challenges and design considerations to address for the acceler-

ated integration of wearable systems into their practice.

Conclusions

These findings offer promising directions for the design of a wearable solution that supports

OTs to develop individually-tailored therapy programs for stroke survivors to improve their

affected arm use.

Introduction

Motivation

Stroke is a major cause of permanent motor impairments, affecting 800,000 people every year

in the United States alone [1]. In the early stages of post-stroke—i.e., within a few months

since the onset of stroke, also termed as the acute or subacute stages—survivors stay hospital-

ized and receive various rehabilitation therapies based on the characteristics and severity of

their impairments [2]. Despite such efforts, approximately 65% of stroke survivors are dis-

charged from hospitals with permanent motor impairments [3, 4]. Post-stroke motor impair-

ments, particularly in the upper limbs, significantly deteriorate patients’ ability to execute

essential activities of daily living [5] and their quality of life [6]. Hence, stroke survivors often

need to continue rehabilitation therapies in the outpatient setting through their chronic stages

(e.g., months or even years after stroke) to maximize their ability to perform functional activi-

ties and achieve independence in living [2].

The key to successful rehabilitation lies in the personalization of therapeutic strategies

based on patients’ functional levels. In the conventional clinical setting, personalized treat-

ments are often achieved based on clinical assessments of motor impairments using tools like

the Fugl Meyer Assessment (FMA) [7] and Action Research Arm Test (ARAT) [8]. These tools

are obtained based on trained clinicians’ observation of patients’ motor behaviors during pre-

defined motor tasks within the clinic. However, prior studies have reported that improved

motor function achieved and observed within the clinic (i.e., what patients are capable of

doing, also termed as motor capacity) does not always lead to improvements in their func-

tional ability within home and community settings (i.e., what patients are actually doing, also

termed as motor performance) [9–12]. Considering that motor performance is what rehabili-

tation ultimately aims to improve, this gap between therapeutic goals vs. the lack of assessment

tools for motor performance has been identified as a major barrier to developing optimal, per-

sonalized rehabilitation intervention strategies [13].

Over the past few decades, wearable technologies have received tremendous attention from

clinical and research communities as an effective, objective tool to monitor patients’ motor

performance in their naturalistic environments and evaluate rehabilitation outcomes to facili-

tate personalized care [13–17]. While the most widely adopted wearable form factor is the

bilaterally-placed wrist-worn accelerometers, they also have been criticized for capturing pri-

marily gross arm movements but not fine hand movements, which are of critical relevance to
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stroke rehabilitation [13, 18]. To counteract this limitation, more recently, finger-worn accel-

erometers have been actively investigated for their ability to capture both gross arm and fine

hand movements [19–22]. With bilaterally-placed accelerometers (either wrist or finger-worn

devices), a variety of measures can be derived from bilaterally-placed accelerometers to portray

the comprehensive view of stroke survivors’ arm performance level [23]. The use ratio between

the two arms has been the most widely accepted measure of arm performance [17]. First, the

measure computes the use amount of each arm using different variables, such as use intensity

(i.e., mean accelerometer magnitude) [13, 18, 24–26], time duration of active arm use (i.e.,

time duration when the accelerometer magnitude is greater than a certain threshold) [19, 27–

29], and use variability (i.e., variation of accelerometer magnitude) [30, 31]. Then, a ratio

between the measures obtained from the two arms is computed to quantify the relative use

amount of the stroke-affected arm with respect to the unaffected arm. These ratio measures

are often complemented by other measures, such as the absolute intensity and duration of

active stroke-affected arm use, and whether and how often patients perform activities of daily

living using the two arms simultaneously (namely, bilateral arm use) or only with the unaf-

fected arm (namely, unilateral use) [23].

Yet, a wearable system capable of collecting a large volume of patient-generated data does

not mean that it could be readily accepted by patients and therapists [32]. Prior studies have

reported that sensing devices and patients’ arm movement data need to overcome a number

of barriers before being successfully adopted and used in contemporary rehabilitation prac-

tice [33, 34]. Stroke survivors found it cumbersome to properly don and operate wearable

sensors [33], and clinicians found that not all data support their therapy practice directly [17,

34]. In fact, despite decades of research, many—if not all—wearable solutions have remained

a proof of concept and have not made their way into mainstream therapeutic programs [13,

17]. Translating and incorporating patient-generated arm performance data into everyday

practice is not a trivial problem [19, 35–39]. Moreover, before all else, it is yet to be investi-

gated if stroke survivors and therapists are willing to adopt wearable systems. Therefore, it is

a critical prerequisite to bridge this gap through (1) understanding the receptiveness and use

scenarios of the wearable technology and (2) investigating important design specifications

to deliver practical values to its stakeholders: stroke survivors and therapists—particularly,

occupational therapists (OTs) for the context of monitoring motor performance in naturalis-

tic environments.

In this study, we elicit the perspectives of stroke patients and therapists on how sensor-based

arm use measures could support contemporary rehabilitation practice. To obtain situated data

representing stroke survivors’ real-world arm performance, we employed miniaturized finger-

worn sensors placed on the index fingers in four stroke survivors over two consecutive days.

We then used the collected arm use data to create study probes and performed semi-structured

interviews with the stroke survivors and 15 therapists to elicit their opinions. Both patients and

therapists perceived that accelerometer-based measures could support a unique opportunity to

objectively monitor patients’ real-world arm performance. Particularly, therapists believed that

wearable solutions could be seamlessly adopted in their contemporary service practice and sup-

port collaborative decision-making with patients to personalize therapy programs in and out-

side the clinical setting. Lastly, we further revealed design opportunities that can support the

wider adoption of wearable solutions in the rehabilitation practice.

Related work

The emergence of patient-generated health data—including technology-based and patients’

self-reported data—has been reshaping how patients engage in the care practice and how
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clinicians provide care [40, 41]. These data collected outside the clinic setting could reveal pro-

found insights about patients’ day-to-day behaviors [42] and empower stakeholders in health

care: clinicians can use the data for diagnosis, treatment, and remote monitoring [43–45],

patients and clinicians can make data-driven decisions collaboratively [40, 46, 47], and patients

can take an active role in managing their health and well-being [48, 49].

Similarly, an increasing volume of research efforts is made to support stroke rehabilitation

in the outpatient setting using patient-generated health data. Many studies have proposed vari-

ous research prototypes to monitor if and how stroke survivors adhere to at-home therapeutic

exercises using different technologies, such as wearable sensors [36, 38, 50, 51], video cameras

[52], and rehabilitation games [53, 54]. These systems can potentially provide therapists with

valuable information, such as stroke survivors’ motor capacity (e.g., range of motion [52, 55]),

engagement with therapy (e.g., frequency and duration of participation in training) [56–58],

and their subjective experience during at-home therapeutic exercises [59]. This could, in turn,

be used to better personalize patients’ at-home exercise programs. However, survivors’ arm

capacity data during relatively short therapeutic exercise periods (e.g., ~30 minutes) does not

illustrate their general arm usage in daily living, a topic of research that remains relatively

underexplored. Ploderer et al. have investigated how stroke survivors’ arm use amount data

could be visualized (i.e., dashboard in the authors’ term) and reported that OTs found the

shared data useful [34]. However, the authors primarily focused on investigating the optimal

information visualization for therapists to understand the clinical insights from wearable data

rather than how the data could be situated and used in real-world practice and support person-

alized therapy programs.

While we share similar goals to these prior studies in understanding whether and how

patient-generated sensor data could facilitate data-driven decision-making through patient-

provider collaboration, we extend this line of work in two ways. First, we examine opportuni-

ties to utilize sensor data in outpatient occupational therapies, a novel context where sensor-

based, objective measures of arm performance could have great value for both patients and

therapists, as we demonstrate in this study. We investigate how patient-generated data should

be situated in a specific clinical context while minimally disrupting the current workflow for

both patients and therapists. Second, we introduce an unfamiliar stream of health data—a

stroke survivor’s everyday arm performance data collected from a pair of finger-worn ring sen-

sors—to stroke survivors and therapists. We examine stroke survivors’ and therapists’ recep-

tiveness toward the data and how they make sense and use of the data.

Methods

We conducted semi-structured interviews with four stroke survivors in their chronic stage and

15 OTs; all 19 participants completed the study. The goal of the interviews was to gain insights

into (1) stroke survivors’ and OTs’ willingness or barriers to accepting the concept of tracking

and using in-situ arm movement data, (2) how stroke survivors and OTs envision leveraging

patient-generated arm movement data to personalize therapy programs to increase the survi-

vors’ affected arm use, and (3) how a sensor-based system can be designed to meet the needs

of stakeholders and translated into practice. To this end, it was important to situate stroke sur-

vivors and OTs in a realistic and concrete scenario (e.g., type of data that can be collected)

while giving them enough room to envision new ideas. Hence, we first deployed a pair of fin-

ger-worn sensors to the stroke survivors in their routine daily living for two consecutive days

to collect arm use data (see Fig 1A). We then computed clinically validated measures of arm

use, created study probes for stroke survivors (Fig 2) and OTs (Fig 3), and conducted semi-

structured interviews to elicit their opinions. In the following, we describe study participants,
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study probes along with data collection, and analysis methods in detail. None of the partici-

pants had prior relationships with the authors. The study procedure was reviewed and

approved by the Institutional Review Board (IRB) of the University of Massachusetts Amherst.

All participants provided written consent that described the benefits and risks of this research

project prior to the interview. The study procedure was reviewed and approved by the Institu-

tional Review Board (IRB) of the University of Massachusetts Amherst. All participants

Fig 1. (a) The picture of our finger-worn sensors on the index fingers. (b) The patient profile was created using the

data we collected with an actual stroke survivor (i.e., P2) in his chronic stage. The full motor capability of a patient in

the clinical setting is assessed using the Fugl-Meyer Assessment, which is one of the most widely used tools in the

clinical setting worldwide [60]. The Fugl-Meyer Assessment contains the proximal portion (i.e., shoulder and elbow)

and the distal portion (i.e., hand and finger movements). The patient’s scores suggest that he has relatively limited

shoulder and elbow motor capacity (19 out of 42 points) while he has a decent distal motor capacity (nearly perfect

scores: 22 out of 24 points). The motor performance perceived by patients themselves during their daily living is

provided in the Motor Activity Log (MAL)the Motor Activity Log (MAL), which is another standardized assessment

tool based on patients’ self-reports [61]. The quality and the quantity of his perceived arm performance are scored

separately. His Motor Activity Log scores suggest that he does not use his stroke-affected arm when executing activities

of daily living (0.65 out of 5), and the quality of movement does not contribute to completing the activities (0.68). He

drives a shuttle for a living.

https://doi.org/10.1371/journal.pone.0274142.g001

Fig 2. One of the study probes—a basic bar chart—that we designed and presented to P1 based on her own data: daily

performance (left) and weekly performance trajectory (right). The patients’ response to the chart design is beyond the

scope of this study, and hence the rest charts are omitted in this paper.

https://doi.org/10.1371/journal.pone.0274142.g002
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provided written consent that described the benefits and risks of this research project prior to

the interview.

Participants

Stroke survivors. Stroke survivors were recruited from November 2019 until March 2020.

The recruitment was conducted through fliers in the stroke support groups, community-based

rehabilitation programs, and nursing homes. The inclusion criteria for stroke survivors

required that they were (1) 18 years old or older, (2) in their chronic stage (i.e., one year or lon-

ger since their latest stroke), had (3) mild upper-limb motor impairment (i.e., 40 points or

greater in FMA), and (4) close-to-normal or normal cognitive function (i.e., 24 points or

greater in Mini-Mental State Examination; MMSE). The cutoff for FMA was selected to screen

stroke survivors with small amount of movements that are deemed difficult to benefit from

using wearable sensor. The cutoff for MMSE was selected to ensure that the participating

Fig 3. Example bar charts that we presented to OTs: Ratio of Use (left) and Bilateral Arm Use Duration (right). The

data shown in the charts for Affected Arm Use Duration are similar to those in the Bilateral Arm Use Duration charts

and hence are omitted here due to space limitation. The day graphs, (a) and (e), presented the averaged value of the

measures for each hour, which were obtained from one of the two days (i.e., the second day) data that we collected with

James. We showed the average, minimum, and maximum values of the measure across the eight-hour period at the

bottom of the graph. The average value was also presented on the bar graph using a dotted gray horizontal line. The

solid line represented the goal that therapists could set for a particular patient to reach, although we arbitrarily set the

goal (e.g., 50% for the Ratio of Use that represents balanced bilateral arm use) for the presentation purpose. The

annotations shown above the bars (e.g., Driving and Home) were computed using the Google Maps Timeline data

obtained from the smartphone that was given to James. The week, month, and year graphs similarly presented the

three performance measures. Because we only collected data from James over two days, all data, except for the data

pertaining to the last two days of the week graph (i.e., data on 2/19 and 2/20 in Figure(b) and (f)), were synthesized to

represent some plausible trends of arm performance level (e.g., improvement or fluctuation).

https://doi.org/10.1371/journal.pone.0274142.g003
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stroke survivors can understand the study probes and explain their thoughts and opinions.

The cutoff for FMA was selected to screen stroke survivors with small amount of movements

that are deemed difficult to benefit from using wearable sensor. The cutoff for MMSE was

selected to ensure that the participating stroke survivors can understand the study probes and

explain their thoughts and opinions. Participants were screened for eligibility via phone calls.

Table 1 shows the demographic and clinical information of the stroke survivor participants.

Occupational therapists. The recruitment process for OTs started in July 2020. The

recruitment was conducted through words of mouth, email fliers, and online advertisement

(i.e., www.aotf.org). The inclusion criteria for the OTs required that they (1) were 18 years old

or older and (2) had more than three years of experience as an OT at the time of recruitment.

Participants were screened for eligibility via emails. We completed the data collection with 15

OTs by September 2020, at which all the authors agreed that data saturation was established.

Table 2 shows the demographic information of the OT participants.

Study procedure

Stroke survivors. The goal of the study with stroke survivors was twofold: (1) to investi-

gate stroke survivors’ perspectives and experiences on wearing finger-worn sensors in their

daily living and (2) to collect sensor-generated data to create study probes for the stroke survi-

vors as well as OTs. The eligible study participants were assessed for their cognitive capacity

(measured by Mini-Mental State Examination), motor capacity (measured by Fugl-Meyer

Table 2. The demographic information of the OTs.

ID Gender Location (State) Practice years Current position Practice setting

T1 F MA 10 Graduate student Outpatient

T2 F MA 5 Graduate student Inpatient, Outpatient

T3 F GA 6 OT Outpatient

T4 F GA 4 Professor Inpatient, Outpatient

T5 F MA 11 OT Inpatient

T6 F MA 20 OT Inpatient, In-home care

T7 F IL 17 OT Outpatient

T8 F NJ 14 Professor Inpatient

T9 F TX 5 OT Inpatient

T10 F NJ 7.5 OT Inpatient, Outpatient

T11 F MA 24 OT In-home care, Inpatient, Outpatient

T12 F OH 11 OT Outpatient

T13 F TX 6 OT Outpatient, Inpatient

T14 M DC 8 Postdoctoral researcher Outpatient

T15 F MD 6.5 OT Outpatient

https://doi.org/10.1371/journal.pone.0274142.t002

Table 1. The demographic and clinical information of the stroke survivors.

ID Gender Age Chronicity FMA MAL Education Occupation

Quantity Quality

P1 F 63 4.1 58 3.16 2.83 Post Graduate Retired

P2 M 74 11.3 41 0.65 0.68 Some College Self-employed

P3 F 66 11.2 42 1.31 1.35 Some College Retired

P4 M 75 3.3 63 5 3.9 High School Graduate Full time

https://doi.org/10.1371/journal.pone.0274142.t001
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Assessment), and motor performance level (measured by Motor Activity Log) by trained

research staff. After completion of the assessments, we deployed finger-worn sensors to the

four recruited chronic stroke survivors on their index fingers bilaterally, as shown in Fig 1A.

Participants wore the sensors for eight hours a day over two consecutive days, starting and

ending at their convenience, mostly depending on the beginning time of their waking hours.

We provided a GPS-enabled smartphone (Samsung Galaxy A20) pre-installed with Google

Maps app to derive contextual information related to their locations (e.g., whether stroke sur-

vivors were at home or driving). Upon completion of the sensor data collection and before the

interview, the research team created study probes based on the ratio measure (Fig 2), which

summarized the amount of the affected arm use with respect to the contralateral arm (denoted

as Ratio of Use hereafter)(denoted as Ratio of Use hereafter) [26, 28]. Given the stroke survi-

vors’ cognitive impairment, albeit mild, we only presented the Ratio of Use measure among

other sensor-based measures because it would be the easiest to comprehend. We conducted an

hour-long in-person interview the next day of the data collection at their preferred time and

location (i.e., three at their home and one in the meeting room on campus). The research team

first explained the goal of the study, presented them with the visualized study probe, explained

how to interpret the information, and asked about their willingness to wear the sensors in

their routine daily living and how to utilize the sensor-generated data to induce a greater level

of affected arm use during their daily living.

Occupational therapists. To investigate OTs’ perspectives on how to use patient-gener-

ated sensor data to personalize therapy programs, we prepared the study probe based on the

arm performance data that were collected from the stroke survivors. Although our initial

intention was to share all four stroke survivors’ data with OTs during the interview, in the

interest of time, we selected one of the four stroke survivors after a careful review of the data

and clinical information; P2 demonstrated a significantly low performance level (measured by

the Motor Activity Log [25]) despite a relatively high capacity level (measured by the Fugl-

Meyer Assessment [7]), as shown in Table 1 and Fig 1. We selected this stroke survivor to elicit

OTs’ perspectives on how patient-generated sensor data could complement their practice

towards maximizing stroke survivor’s performance. Based on a pilot study with two therapist

volunteers, we designed the study probe to include two components: (1) the clinical and demo-

graphic profile of the pseudonymized stroke survivor, James (see Fig 1B), and (2) study probes

for the three types of performance measures derived from the collected sensor data (see Fig 3).

We expected that this information, along with a fabricated image of James, could provide OTs

with a realistic and concrete therapeutic scenario to help them envision how to leverage sensor

data as part of their real-world clinical practice.

We introduced three representative measures of arm performance that were derived from

James’ sensor data as we believed OTs would be capable of interpreting detailed sensor-based

information. The measures include (1) Ratio of UseThe measures include (1) Ratio of Use [26,

28], (2) the duration of affected arm use, denoted as Affected Arm Use Duration, (2) the dura-

tion of affected arm use, denoted as Affected Arm Use Duration [18, 29], and (3) the duration

of bilateral arm use, denoted as Bilateral Arm Use Duration, and (3) the duration of bilateral

arm use, denoted as Bilateral Arm Use Duration [19]. For each measure, we provided bar

graphs with four different time granularities (i.e., day, week, month, year), as shown in Fig 3.

The study probe was iteratively revised through the pilot interviews with two therapist volun-

teers. The data that we collected from the pilot interviews were not included for further

analysis.

Interviews were conducted via an online conferencing platform (i.e., Zoom) at their pre-

ferred time for approximately one and half hours. The research team first explained the goal of

the study and asked participants about their routine clinical workflow and how they evaluate
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stroke survivors’ capacity and/or performance. Then, the research team presented the clinical

and demographic information of the representative stroke survivor (Fig 1), followed by the

study probes and detailed explanations of the three sensor-based measures of arm use (Fig 3).

We asked the study participants about their perceived usefulness of the presented data. We

also asked about specific ways that participants would use the data to set therapy goals and per-

sonalize therapy programs for individual patients (e.g., How would you use the sensor data

when setting arm use goals for individual patients?). Last, we asked study participants about

the potential effects of using sensor-based patients’ performance data on the quality of their

therapy practice (e.g., How would the sensor data affect your therapy practice?). The first

author participated in all fifteen interviews, and the rest of the authors participated in inter-

views based on their availability. For each interview, no more than three authors participated

to avoid overwhelming the study participants with many interviewers and to construct an ami-

cable and engaging online interview environment.

Analysis

All interviews were audio-recorded, which were then transcribed and analyzed using the the-

matic approach [62], using ATLAS.ti Cloud. At first, three authors (HJ, JL, YK) individually

analyzed the transcriptions using open coding. Then, all authors contributed to the affinity ses-

sions to build a coding scheme (i.e., axial coding). After iterative processes of open coding and

discussion, all authors reached the saturation of codes and agreed on the coding scheme. The

final coding scheme included three main codes and 11 sub-codes (see S2 File). Three authors

coded the rest of the interview data according to the coding scheme. Then, all the authors

reviewed the codes and developed the themes in an iterative manner until all authors came to

an agreement on the themes. The detailed background of the authors is provided in S1 File.

Results

In this section, we present our findings focusing on (1) the receptiveness of using wearable

(i.e., finger-worn) sensors and the in-situ arm movement data by stroke survivors and OTs, (2)

opportunities of using the patient-generated sensor data to personalize therapy programs, and

(3) potential ways to improve the remote monitoring system to further support its translation

into the contemporary therapy practice.

Receptiveness of the ring sensors and arm movement data

Both stroke survivors and OTs were generally positive toward the use of sensor-generated arm

movement data in their routine practice to enhance the quantity and quality of rehabilitation

service. They shared the situations in which the sensor data would be helpful or not and the

rationale.

Willingness to wear the ring sensor by stroke survivors. Three out of four interviewed

stroke survivors (P1, P2, P3) expressed their willingness to wear the proposed ring sensors in

their daily living for a prolonged time conditioned on the endorsement by their clinicians and

the perceived therapeutic benefit of using the sensors. When they were asked how long they

would be willing to wear the sensors, for instance, P1 answered “I would be willing to wear it

if I needed to. Three weeks or in front of the appointment or whatever.” Stroke survivors

explained that they would want to use the sensor data to monitor their own performance,

receive social support from people in close relationships (e.g., family members), and share the

data with OTs for rehabilitation therapies of greater quality. On the other hand, P4 reported

that he would not use the proposed finger-worn sensors because he did not believe that accel-

erometer-based sensors could address the needs he felt—reducing pain. Despite his close-to-
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normal motor capacity (63 out of 66 points in FMA) and performance (5 out of 5 points in

MAL Quantity) as shown in Table 1, P4 was suffering from chronic pain on his affected arm.

He stated that he would not wear the sensor unless it can address the pain he suffered.

P3 was particularly interested in using the sensor data to justify financial subsidy from

third-party payers to receive more rehabilitation therapy sessions. Because rehabilitation ther-

apy is particularly costly in the US, they were not able to receive as much therapy as they

wanted unless the therapy-related expenses were supported by third-party payers. For

instance, P3 explained that she was experiencing challenges incorporating fine-hand move-

ments (i.e., using her fingers) in her daily living and wanted to receive more therapy. However,

due to the lack of objective means to monitor her progress in fine-hand movements, she was

not able to receive enough subsidy from the third-party payers for rehabilitation therapies. P3

stated “You always had to prove that you can make progress [to receive third-party support].”She

stated that the sensor data could serve as objective evidence, demonstrating the progress she

could make in her daily living.

Stroke survivors did not feel ashamed of or discouraged from wearing the sensors in public.

Unlike consumer-grade ring sensors such as Oura ring [63] or Amazon Echo Loop [64], the

deployed finger-worn sensors were unwieldy (Fig 1A) and were easily noticeable by other peo-

ple. During the data collection, stroke survivors engaged in their natural daily activities, such

as going to public libraries (P1), banks (P2), and restaurants (P3), and were asked by others

about the sensors they were wearing. For instance, P2 shared his experience:

I went to the bank to cash a check, . . . the woman says, “What is that?” So I had an opportu-
nity to explain briefly what it was.

When we asked him if such attention made him feel awkward and discouraged him from

wearing the sensors, “I couldn’t care less”

Incorporation of the sensor data in the rehabilitation practice by OTs. OTs were will-

ing to adopt the sensor data in their routine rehabilitation practice because they found using

the sensor data would be minimally burdensome while useful to provide more patient-specific

rehabilitation therapies. OTs believed that collecting and reviewing the patient-generated

movement data impose a negligible extra workload compared to the conventional capacity-

based assessment tools where OTs must spend 30–45 minutes to administer. T8 stated:

I think it’s information [. . .] is not burdensome to collect. It’s automated information that
comes in, that can be populated. So, I feel like the burden of collection is low.

OTs explained that, given the collected data, they would first review the data “in the morning
or right before seeing the patient” (T5) for a few minutes to get an overall sense of patients’ daily

performance patterns. Then, OTs would spend more time “reviewing [the data] with the
patient during the session” (T1) and have more in-depth discussions with their patients during

in-person therapy sessions to construct therapy goals around patients’ daily performance and

personalize therapy programs. We asked OTs if the collaborative decision-making process

informed by the patients’ sensor data would cause additional challenges, such as more confined

time management during in-person therapy sessions. OTs answered that obtaining detailed

contextual information about patients’ daily living and their arm use is already an essential

part of their workflow and thus would not disrupt their clinical routines. T10 explained:

I don’t really see how [using the sensor data] would be extra work because [. . . the sensors]
are giving us more information. We’re already asking those questions like, [. . .] “How long
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did you use [your affected arm] for? Why was [using your affected arm] difficult? Why didn’t
you use [your affected arm] during this [time]” And a lot of times we’re getting the collateral
information from the caregivers and the family members. So, I don’t think that it’s creating
any extra work.

Our analysis suggests that OTs’ positive attitude towards using the sensor data is, in part,

due to the easy access to computers and their significant exposure to digital monitoring devices

in their contemporary rehabilitation practice. All the OTs we interviewed explained that they

have access to computing devices, such as desktop or laptop computers, in their current work

environments. Many of them said they carry laptop computers when they see patients during

in-person therapy sessions. Some OTs stated that, in addition to computers, they were actively

using other digital devices in their in-person sessions. For instance, five OTs (T5–T7, T12,

T13) stated that they routinely use a digital dynamometer (i.e., a device that measures patients’

grip strength). T13 reported that, in her routine practice, she used a touchscreen-based solu-

tion that supports in-person motor assessment and rehabilitation exercises, namely Bioness

Integrated Therapy System. In addition, when we first introduced the ring sensors during the

interview, OTs were able to relate the ring sensor to Fitbit and, more broadly, accelerometer

sensors. Thanks to such exposures, OTs felt comfortable adopting a new sensor-based solution

in their practice and accessing the data using computing devices. When asked for the preferred

form of computing devices, many answered that they would want to use either a laptop or a

tablet computer for portability and familiarity.

Opportunities to support performance-driven therapy personalization

OTs regarded that patient-generated daily performance data have great potential to support

patients’ self-management and motivate patients to use their affected arm use in their daily liv-

ing more frequently by devising patient-centered rehabilitation therapies. More specifically,

OTs envisioned (1) setting goals around daily performance, (2) enabling collaborative custom-

ization of therapy programs for individual patients, and (3) personalizing the frequency and

the form of therapy sessions.

Personalized therapy goals around daily performance. Our analysis supports that the

sensor data can help OTs define quantifiable goals throughout the therapeutic programs in the

context of patients’ real-world performance, which better reflects patients’ ultimate goals for

therapy that are often related to daily functioning. As such patient-centered therapy goals

could motivate patients to use their affected arm more in their daily living, OTs were willing to

incorporate the sensor data in their clinical practice. For instance, T15 stated:

So, say James were to come to me tomorrow, and I could look at this data and review it with
him. [. . . and] use this information to write goals and to motivate patients.

When setting therapy goals, OTs would use the sensor data of different granularity and

duration to reflect various factors, such as patients’ living patterns, health conditions, and

impairment level, that may collectively affect their daily performance. For example, T13 exem-

plified a scenario in which the sensor-based measures could be used to set therapy goals on a

daily or weekly basis while specifically considering the patient’s unique living and health

conditions:

[If a patient says] I’m tired in the afternoons. [I would write a therapy goal as] the patient will
demonstrate increased use of the right upper extremity during functional activities from the
hours of 9:00 AM to 12:00 PM as measured by [. . . the] ring sensor. [For example,] an
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improvement from 22% average to 30% average on five or seven days out of the week. I think
that would absolutely be a measurable therapeutic goal.

OTs would selectively or collectively use different sensor-based measures (i.e., Ratio of Use,

Affected Arm Use Duration, and Bilateral Arm Use Duration) to write more personalized

therapy goals to accommodate stroke survivors’ different impairment levels. For instance, for

patients with mild motor impairments, OTs would use the Affected Arm Use Duration mea-

sure to induce a greater level of the affected arm use, as T1 explained: “for someone who [. . .]
are considered mild, [. . .] the goal is . . . they use the affected arm . . . [for] 90% of the waking
hours.” On the other hand, for patients with more severe motor impairments and poor motiva-

tion to use their affected arm, OTs would use Bilateral Arm Use Duration to write goals to

encourage patients to start using their affected arm by assisting with their unaffected arm, as

T10 explained:

For some patients, the bimanual stuff is really important, especially if they’re inattentive.
“Don’t just use the single hand, make sure you’re using the other hand together.” Sometimes
that’s an easier place to start than just forcing them to use the affected side.

When setting personalized therapy goals, OTs would primarily reference patients’ own per-

formance levels as a benchmark. More specifically, OTs would review patients’ prior perfor-

mance and define short-term and long-term goals to make sure that patients stay motivated

and continue to use their affected arm, as T14 stated:

Because part of setting a goal in therapy is not to make it too difficult [. . .] if he can only do
24% right now and you ask him to do 70%, [then] it may seem too difficult, too unobtainable.
So perhaps 50% could be a short-term goal, with 70% being a long-term goal.

Then, during follow-up visits, OTs would review patients’ performance level since the last

clinical visit—collaboratively with patients—and incrementally adjust the performance goal.

T13 suggested an example scenario while reviewing Fig 3(b):

Together with the patient, you could collaboratively identify, [while referencing the example
in Fig 3] “Okay, on average, you’re using your right upper extremity [. . .] approximately 22%,
[. . .] do you think it would be reasonable this next week to try to shoot for 30%?” [. . .] You
collaborate with the patient [to] make that goal together.

OTs envisioned that such collaborative efforts to set realistic, measurable goals based on

patient-generated sensor data could induce a greater level of arm use in patients’ daily living.

While OTs generally found the performance data presented in Fig 3 useful and relevant,

some expressed the need for additional information to set therapy goals more effectively.

Three OTs (T7, T11, T13) wanted to have access to normative data—for example, from a larger

population of stroke survivors with similar motor impairments or age-matched healthy indi-

viduals—when setting therapy goals. Due to the lack of normative data, despite the usefulness

of the wearable sensor as a performance assessment tool, one therapist was cautious about

defining therapy goals based on the sensor data as it may counter the principle of evidence-

based practice (T8). Furthermore, OTs identified that the presented sensor-based performance

measures primarily capture the amount of arm use without necessarily reflecting the quality of

the performed movements (e.g., the presence of compensatory movements, such as leaning

forward with the body to reach for a target rather than using the arm muscles). Consequently,
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OTs would concurrently reference some existing measures related to movement quality, such

as patients’ range of motion or severity of muscle spasticity, to get a more comprehensive view

of the patient’s motor condition when setting therapy goals.

Collaborative personalization of therapy programs. All the OT participants supported

that sensor-based performance measures could enable OTs to better collaborate with their

patients to devise more personalized strategies for individual patients to engage the affected

arm in their daily context. More specifically, the sensor data could help OTs obtain an in-

depth understanding of their patients’ living patterns and daily motor performance, which

would lead to better personalization of therapy programs. T11 explained:

This [sensor data] prompts a whole bunch of different questions. You can learn more about
what they’re doing, when they use their arm, and when they don’t use their arm, and it can
lead to much deeper conversations about ‘why is it hard to use your arm when you’re doing
that particular task?’ I mean, it could lead your interview [with your patient] to a much
deeper level.

During the interviews, OTs showed interest in portions of the sensor data with distinctive

patterns, such as the peaks and troughs (e.g., at 3 PM and 11 AM in Fig 3(e), respectively).

Those data points may offer opportunities to learn the underlying factors that have resulted in

different levels of the affected arm use. For instance, OTs would ask patients about the activi-

ties that patients were engaged in at the peaks and encourage the patients to perform such

activities more frequently, as T11 said while looking at Fig 3(a):

I would want to know what [the patient] was doing at 12 o’clock, 2 PM, and 3 PM [. . .]
because that’s when [the patient] used his arm the most. [. . .] Then I would try to tap into
whatever [activity] that was happening, to see if we could do more of that [activity].

Similarly, OTs would investigate the activities that patients were engaged in at troughs and

collaboratively devise strategies to increase the affected arm use at those times. T8 explained,

“What was specific to that activity that he, for whatever reason, didn’t use the affected arm as
much? Is there something else we can figure out, like a role for the affected arm [in the activity]”
Some suggested that troughs could indicate the time when patients were sedentary during the

day and potentially be a good time to perform the prescribed at-home exercises. For instance,

when T13 spotted that James did not actively use his affected arm at 11AM in Fig 3(a), she con-

jectured if James was demonstrating a habitual sedentary behavior (e.g., watching his favorite

TV show) and wondered if she could prescribe home exercises at that time:

Well, to help him achieve his goal of getting more active, maybe we work on like 1–2 minutes
of exercises he could do [during] every commercial break. He’s going to do one of these three
exercises.

While OTs appreciated seeing the auto-generated annotations from smartphone-based

GPS data (Fig 3(a) and 3(e)), some expressed the need for more fine-grained contextual infor-

mation that can better explain the activities patients were engaged in at different times. Such

annotations, along with the sensor data, could provide a more in-depth understanding of the

kind of activities to promote or discourage. As one of the means to obtain such information,

some suggested the idea of providing patients with a mobile app to self-annotate their activi-

ties, as T12 suggested:
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They could go to their little tablet during the day [. . .] and can choose from a cleaning task or
a feeding task or whatever. That way, we can see exactly what they were doing at those times.

Personalization of the frequency and form of therapy sessions. OTs envisioned having

in-person therapy sessions flexibly based on the patient-generated sensor data. In the current

rehabilitation practice in the U.S., the number of rehabilitation therapies is mostly dictated by

the amount of financial subsidy patients can receive from third-party payers. More specifically,

most third-party payers have a limit for the rehabilitation services that patients can have per

year, either in terms of the number of in-person therapy sessions or monetary support that

covers the in-person sessions. For instance, T12 explained that “[Medicare] gives us up to a
rough $3,700 for therapy services [in a single year], and we could maybe get 40 sessions out of
that.” Subsequently, the number of therapy sessions and the total duration of the overall reha-

bilitation service that stroke survivors can receive are limited. As OTs would be able to moni-

tor patients’ daily performance using the sensor data, OTs anticipated having in-person

therapy sessions less frequently than what they would do in the conventional rehabilitation

practice. OTs explained that they could extend the total duration of the overall rehabilitation

service by either reducing the frequency of in-person therapy sessions or opportunistically

determine when patients should come in for an in-person session, which in turn will maximize

patients’ benefits from third-party coverage. For instance, T7 explained:

I might see [the patient] two times a week for the first two weeks to get [the patient] set up on
this [. . .] then I might drop [the frequency of in-person sessions] to every other week, [. . .]
because I am going to have a bigger chunk of data coming in still.

Furthermore, some stated that they might consider having more remote therapy sessions or

brief follow-up sessions via videoconferencing, which may further reduce the associated medi-

cal costs. Since a great portion of rehabilitation therapies focuses on “making modifications to
the exercise plan” or “educating them about the exercise plan they’re supposed to be doing”,

some OTs stated that they would “opt to do more virtual sessions” (T14). OTs believed that vir-

tual therapy sessions, in combination with in-person therapy sessions, would “prolong [. . .]
patients’ insurance benefits [. . .] that actually maximizes the efficiency of the system and pro-
vides continued care” (T8).

From promise to delivery: Practical challenges and design considerations

Our analysis surfaced substantive issues that need to be reflected in the wearable system to

accelerate its adoption in real-world settings, which are centered around (1) the sensors’ form

factor, (2) variability in stroke survivors’ technology proficiency and preference, and (3) OTs’

important roles to incorporate sensor data in clinical practice.

Sensor-wearing experience. Both stroke survivors and OTs reported issues related to the

sensor form factor, but their focus was different. The four stroke survivor participants shared

their sensor-wearing experience based on the two-day data collection; hence their comments

were related to day-to-day affairs and comfort. On the other hand, OTs considered how a

broader range of impairments (e.g., limited motor skills and edema) might affect the sensor-

wearing experience.

According to stroke survivors, the point of discomfort was mainly caused by the size and

texture of the ring sensor. They said that the current size of the finger-worn sensors made it

difficult to don and doff clothes or gloves (P3, P4) and put their hands into the pocket (P3).

Furthermore, P2 reported that friction caused by the material of the ring sensor hindered his

PLOS ONE Envisioning the use of in-situ arm movement data in stroke rehabilitation

PLOS ONE | https://doi.org/10.1371/journal.pone.0274142 October 20, 2022 14 / 25

https://doi.org/10.1371/journal.pone.0274142


arm from moving against the object as he pointed out, “I didn’t like that when I put my hand
[with the ring sensor] on something it just stopped dead. It’s sticky.” P2 and P3 further explained

that such experience could make them uncomfortable when using their hands in daily activi-

ties. For instance, P2 stated that “Now if I had to do a lot of fine motor skill things, like working
on a car engine or something like that, it would be a limiting factor.”

OTs’ primary concerns were related to the stroke-induced physical constraints that may

hinder patients from wearing the sensors. Some patients may have severe impairments in fine-

hand motor skills in the early stage of the rehabilitation process. In this case, instrumenting

the ring sensor on the unaffected finger would require a certain level of dexterity on the

affected arm. T11 explained, “Stroke survivors have to have one [ring sensor] on each hand.
They probably aren’t capable of, depending on their limitations, picking it up and putting it on
the other hand.” In addition to lack of motor skills, sensory deficits might make it challenging

to don and doff the ring sensors. T11 described “They could have perceptual problems, so some-
times people don’t recognize a half of their body. Their sensation might be impaired, so they
might not be able to feel that it’s on there and not recognize, ‘I need to take this off now.’” Hence,

some stroke survivors with severe fine motor impairments may encounter difficulty instru-

menting the finger-worn sensors without the help of caregivers.

Another long-term issue that can affect patients’ adherence to wearing finger-worn sensors

is their physiological symptoms. OTs explained that some stroke survivors experience edema

(i.e., swelling caused by excessive fluid trapped in body tissues), which results in fluctuation in

the patients’ finger size over time. T11 said, “A lot of people who’ve had cerebral vascular acci-
dents have edema, so they have some swelling in their hands, so being able to fit a ring over the
swelling might be a bit of an issue.” Hence, the ring sensors may not always appropriately fit

their fingers. OTs pointed out that stroke survivors should be given options to choose from

among different form factors and the body locations they wear the sensors to enhance their

adherence to continued and longitudinal use. For instance, T8 stated, “You should have the
capacity for them to use it [for instance] as a wristwatch. There should be other ways in which
you can wear a half-glove, and your sensor can go at the back of a half-glove.”

Different preferences in technology. Our analysis suggests that stroke survivors have dif-

ferent but strong preferences for the computing devices to review sensor data. Three stroke

survivors (P1, P2, P3) showed positive receptiveness to wearing the ring sensors and self-moni-

toring the data, but when we asked how they wanted to check the sensor data feedback, they

had different opinions. P2 preferred to use his smartphone to review the sensor data. As P2

drives a shuttle for a living, he envisioned reviewing the sensor data frequently during breaks

outside. P2 stated that “I am on the road every day. . . . I would like to have [the sensor data]
available anytime I would like to look at it.” He did not have difficulty reading materials on his

smartphone and routinely used his smartphone for every task as he explained “So when I have
a few free moments, I’m always looking at my phone for emails and text messages and so forth.”

We asked if he would use other devices to review the data using a different device at home

(e.g., digital album in his kitchen), he responded that “[I] probably would see it once or twice a
day because [I am] never home.”

On the other hand, P1 preferred using her laptop because it was easier to see the visual

materials—e.g., video streaming as she stated that she watched YouTube videos substantially—

and she liked to interact with the physical keyboard. As she continued her explanation, she

stressed that she would not use devices other than her laptop. For instance, when it comes to a

smartphone, she said “Well, some things are in other realms, but it’s not a habit I have to do
things on the cell phone.” Similarly, P3 wanted to use her desktop computer when reviewing

the sensor data although she was lenient to using her smartphone, “It’d be nice to have [the sen-
sor data] on my Android cell phone. Actually and mostly on my computer. . . . My desktop.” She
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further explained that she could review the sensor data on her phone, but she emphasized that

the data should be presented in a large enough font so that she could see. Given their different

preferences in the choice of technology to view their data, the sensor data feedback should ide-

ally be delivered in a cross-platform app, accommodating stroke survivors’ varying degrees of

sensory and physical challenges (e.g., vision and fine-hand movements).

Comprehensive roles of OTs in using the sensor data. As mentioned earlier, our OT

participants showed high interest in engaging with the sensor data. We found two particular

roles that OTs were willing to play in interacting with the data: (1) a commentator who identi-

fies meaningful data points and insights from the dataset and explain them to patients and (2)

a curator who picks out favorable data segments that could adequately represent patients’

progress in order to maximize benefits from insurance companies.

OTs’ role as a commentator to help stroke survivors understand the data was deemed

important because not all performance measures could be relevant for individual patients with

unique impairments, and patients may experience difficulty comprehending multi-dimen-

sional information due to their impaired cognitive ability. T14 commented, “For 90% or 95%
[of patients], I would probably just highlight something for them because I think if you give
[patients] too much data, they may miss the [therapeutically important] points.” Similarly,

stroke survivors anticipated that OTs would interpret the data and provide better therapy pro-

grams. P2 stated, “If the therapist is receiving that information, and seeing [it], I think they prob-
ably would be the ones this information would be most useful to. They would be very good at
supplying suggestions of specific exercises to do to enhance better muscular mobilization [based
on the sensor data].”

Our interview with OTs suggests that they also perceived themselves as a data curator. Each

patient’s impairment and recovery patterns are unique. Thus, OTs currently employ the con-

ventional clinical assessment tools that best represent each patient’s therapy-induced improve-

ments in their motor function. OTs explained that, in a similar vein, they would carefully

examine various sensor measures, pick the measures that best represent patients’ motor per-

formance and progress, and share it with third-party payers to demonstrate patients’ therapy-

induced progress and justify the financial subsidy for patients’ therapy sessions. T2 stated:

I do not think it [patient’s arm use sensor data] is something that should automatically go to
insurances. [I will] use our judgment of ‘Okay, this could be something that could help justify.’
. . . Same thing with a lot of standardized assessments, like the standardized assessments that I
choose to use oftentimes will be the ones that I’m like, ‘Hey, it will show an improvement, and
I won’t choose to use this one because it will not show an improvement.’

Discussion

Data as justification

Our study showed that both stroke survivors and OTs envisioned using the sensor data to self-

advocate and justify therapy-induced progress in patients’ daily arm performance and receive

the financial subsidy from third-party payers for their therapy sessions. Such envisioning is

strongly associated with the financial burden of stroke rehabilitation and care in the US. While

this finding could be subject to the US-specific context, the cost of stroke-induced care is

among the most expensive chronic conditions and a cause of significant financial burden for

patients worldwide [65–67]. Such a high-cost burden serves as a major barrier that prohibits

stroke survivors from receiving longitudinal rehabilitation therapies. OTs perceived that con-

ventional assessment tools are inappropriate to frequently and objectively track changes in the
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arm performance level and therapeutic outcomes [68, 69]. Our findings suggest that the sensor

data could support these unmet needs. At the same time, further research seems inevitable to

establish more clinical references so that patients, OTs, and third-party payers can implement

evidence-based rehabilitation [70], which the interviewed OTs also emphasized in our study.

One promising direction of future research would be to establish normative data as well as

minimum clinically important differences (MCID) for sensor-based measures, similarly to

conventional assessment tools such as the Fugl-Meyer Assessment [71, 72]. Therapists could

use the normative data and MCID to gauge patients’ relative ability (i.e., severe, moderate,

mild, normal) with respect to that of a healthy population and determine if observed changes

in assessment scores represent therapeutically meaningful improvements, respectively. The

establishment of these data could help improve the credibility of sensor measures on patients’

performance improvements, which in turn will accelerate the translation of sensor-based per-

formance measures into routine rehabilitation therapy.

Despite the anticipated therapeutic benefits of sensor-based performance measures, a

chance of intentional data misuse cannot be ruled out. For instance, stroke survivors and reha-

bilitation facilities (e.g., nursing homes) may purposefully misuse the measures to claim finan-

cial subsidies from third-party payers. As reported in prior studies, sensor users may cheat by

exaggerating movements on their affected arm by shaking the sensor periodically [73], and

nursing homes may make false medical claims to increase their revenue [74]. One solution

would be to develop an intelligent algorithm to detect such undesirable use scenarios [75],

which will help third-party payers to trust and adopt the patient-generated performance

measures.

Misrepresenting daily performance

In the real-world context where the finger-worn sensor system is deployed, stroke survivors—

potentially with the help of caregivers—are expected to properly operate the sensors and col-

lect data without close supervision of clinicians. In uncontrolled settings, there exists a chance

that sensors are inappropriately operated, resulting in the misrepresented patients’ daily per-

formance. For instance, as many stroke survivors experience cognitive (e.g., memory and

attention) [76] and sensory disorders (e.g., visual and tactile) [77], stroke survivors may acci-

dentally don the sensors on the opposite sides (e.g., the left ring on the right finger and the

right ring on the left finger). This may lead to an incorrect representation of patients’ arm per-

formance. One solution would be to design the appearance of sensors in a way that stroke sur-

vivors can easily discern the sides (e.g., coloring or shaping the left and right sensors

distinctively). Another approach would be to implement anomaly detection algorithms to

detect if the measured sensor data show notably different patterns compared to the past [78].

Furthermore, the detected patterns could provide opportunities for OTs to examine reasons

for anomalies observed in the data and share clinical interpretations with colleague therapists

or other clinicians (e.g., MD) [34]. Providing local archives, notes, and data export can be use-

ful for OTs to manage such data patterns and cases.

Data analytics and feedback tools for OTs and patients

Our findings revealed the necessity of more sophisticated data analytics tools for OTs and visu-

alization feedback for stroke survivors. All the OTs we interviewed perceived themselves as a

data curator and expressed intention to navigate a set of performance measures of different

duration (e.g., a day, week, month or year) and scale (e.g., minutes, hours, days), identify thera-

peutically meaningful measures and subsets of data, and share them with their patients and

third-party payers. Furthermore, they envisioned using the identified data points to customize
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patient visits and therapy programs. However, without proper tools that assist OTs in investi-

gating the data, it will be time-consuming to navigate a large volume of data and identify thera-

peutically meaningful measures and data points. Prior studies reported that clinicians felt

overwhelmed when patient-generated data of a sheer size were presented, which would make

it difficult for clinicians to extract relevant information and even discourage them from adopt-

ing the sensor system at all [45, 79]. Hence, the next logical step is to devise a data analytics

tool that goes beyond a mere visualization tool [45, 80] that can automatically analyze the sen-

sor data. Then, the system could present a list of measures and data segments that may convey

therapeutically important information, from which OTs can utilize to personalize therapy pro-

grams or to share with individual patients.

Similar to a recent study on experiential information [59], our OT participants stated the

importance of knowing stroke survivors’ contextual information when interpreting their sen-

sor data. Specifically, the arm use data do not provide activity semantics—for example, what

they were doing during peaks and troughs—which may be important cues in devising a per-

sonalized therapy program. To obtain rich and accurate contextual information, stroke survi-

vors may be involved in providing activity labels (i.e., annotating their sensor data) [45, 46, 80,

81]. As many stroke survivors are older adults and have some degree of cognitive and motor

impairments, an application can send individually-tailored, data-driven notifications to

remind patients of logging contextual information [82, 83], to which stroke survivors can

respond via multimodal interactions (e.g., touchscreen or speech-based data capture).

Stroke survivors are the other major users of the sensor data. Our findings suggest that easy-

to-understand, adaptable feedback needs to be provided to stroke survivors. In addition to the

summary of arm use performance, the feedback could also convey personalized therapy goals,

programs (i.e., strategies to incorporate the affected arm in daily living), and specific data points

that OTs deemed therapeutically meaningful for patients to review. Furthermore, various fea-

tures to support self-management can be integrated into the patient-facing system. For instance,

positive feedback can compliment patients when they meet the set therapy goals, and reminders

can alert patients to use their affected arm more when they under-use it. However, prior studies

stop short at investigating simple visualization tools or reminders [35, 36, 52, 53] and do not

take account of comprehensive information that is revealed in this study. While implementing

tools with the above-mentioned functionality, the unique characteristics of stroke survivors

should be considered (e.g., age and impairments). A recent study by Wu et al. suggests that a

new set of design guidelines for visualization should be devised for a population with develop-

mental disabilities [84]. Similarly, substantial research efforts seem necessary to implement a

feedback system that can present comprehensive information to stroke survivors with cognitive

and motor impairments in a manner that can be easily browsed and understood.

Promoting the use of sensor for self-monitoring

Our stroke participants’ willingness to wear the ring sensors was largely conditioned on exter-

nal motivation (e.g., therapists’ endorsement and justifying the financial subsidy of third-party

payers). In other words, it is not clear if stroke survivors will be willing to continue to wear the

sensors to self-monitor their own performance in the absence of external motivation (e.g.,

when the financial subsidy from third-party payers is depleted and their subsidized therapies

are discontinued). According to Nieboer et al., nearly 40% of stroke survivors in their study

did not adhere to the use of the gait monitoring sensor system at all although they acknowl-

edged the therapeutic benefits of self-monitoring [85]. Similarly, stroke survivors may

discontinue the voluntary use of the ring sensors, which may hinder the improvement and

maintenance of the therapy-induced motor performance.
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Given the importance of continuous engagement with self-monitoring, we may need to

incorporate nudging strategies to motivate stroke survivors to continue self-management (e.g.,

ambient feedback, just-in-time prompts, and social comparison) [86]. For instance, a prior

study with older adults demonstrated that an ambient self-monitoring display in the home set-

ting could reinforce older adults’ adherence to longitudinal medication for ten months [87]. In

our context, stroke survivors’ performance measures can be displayed in various mediums in

the home setting (e.g., digital frame) so that their exposure to arm activity information could

reinforce their adherence to self-monitoring. Another approach would be to use social com-

parisons. In our study, P2 stated that he would want to share his performance data with “some
of [his] stroke survivor friends that [he] go[es] to a stroke support group with” as they often share

“their lifestyle, . . . what [they] do.” Hence, a smartphone app can support stroke survivors to

share their performance data with whom they choose, which may help stroke survivors engage

in self-monitoring.

Limitations and future work

Our study has several limitations worth discussing. First, the positive receptiveness of stroke

survivors towards using the proposed ring sensors could be subject to the participated stroke

survivors. Three out of four patients received some level of higher education and used comput-

ing devices daily. Considering that only about 50% of older adults receive higher education

[88] and only 38%–44% of older adults use computing devices (e.g., laptop and smartphones)

on a daily basis [89], stroke survivors with less educational level and experience of using digital

devices may show responses that are different from what is reported in this study. Second, the

stroke survivors’ responses are based on their experience for a short duration (i.e., two days of

daily living). A longer duration use may surface new positive or negative experiences with the

sensors that were not reported in this study. Hence, a future study should consider a longer

deployment that matches the duration of the actual rehabilitation service. Third, while stroke

survivors in our study expressed their willingness to wear the sensors, they asked for a smaller

form factor. For example, the embedded system design could further optimize the form factor

(e.g., embedding a battery that is shaped like a ring). Fourth, OTs’ responses are based on the

two days of data from a single stroke survivor. As we deployed the sensors to stroke survivors

for two days, a subset of the study probes, especially for the week, month, and year data (Fig

3(b)–3(h)), were fabricated. While the findings in this study provide valuable insights into how

the patient-generated data could be used in routine practice, a real-world study involving a

larger number of patients with various types and severity of impairments can further reveal

more diverse strategies of OTs that we may not have found in this study. Hence, it warrants a

future study to deploy the fully-functioning, interactive data visualization system in the actual

rehabilitation setting for a prolonged period and investigate how patients’ and OTs’ perspec-

tives on the usefulness of the patient-generated data evolve over time.

Conclusion

In this work, we reported how stroke survivors and OTs envisioned the use of in-situ arm

movement data in achieving patient-centered rehabilitation therapies in the outpatient setting.

To situate our participants, we leveraged a pair of finger-worn accelerometers to collect stroke

survivors’ actual data, which we used to create design probes for stroke survivors and OTs,

respectively. Based on the semi-structured interviews we facilitated with the design probes, we

unveiled a detailed account of (1) the receptiveness of stroke survivors and OTs in the light of

overcoming their practical challenges in the conventional outpatient rehabilitation setting, (2)

OTs’ strategies to utilize patient-generated sensor data to provide patients with personalized
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therapy programs of greater quality, and (3) practical challenges to be considered to accelerate

the integration of wearable system into their practice. These findings offer promising directions

for the design of wearable solutions that can assist the essential goal of helping stroke survivors

—and more broadly, individuals suffering from hemiparesis—achieve independent living.
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