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Conifers (softwoods) naturally lack syringyl units in their lignins, ren-
dering lignocellulosic materials from such species more difficult to
process than syringyl-rich hardwood species. Using a transformable
Pinus radiata tracheary element (TE) system as an experimental plat-
form, we investigated whether metabolic engineering can be used to
create syringyl lignin in conifers. Pyrolysis-GC/MS and 2D-NMR anal-
ysis of P. radiata TE cultures transformed to express ferulate
5-hydroxylase (F5H) and caffeic acid O-methyltransferase (COMT)
from Liquidambar styraciflua confirmed the production and incor-
poration of sinapyl alcohol into the lignin polymer. Transforma-
tion with F5Hwas sufficient for the production of syringyl lignin in
TEs, but cotransformation with COMT improved its formation. In
addition, lower levels of the pathway intermediate 5-hydroxyco-
niferyl alcohol were evidenced in cotransformation experiments,
indicating that the introduction of the COMT overcame the ineffi-
ciency of the native pine methyltransferases for supporting
sinapyl alcohol production.Our results provide the proof of con-
cept that it is possible to generate a lignin polymer that contains
syringyl units in softwood species such as P. radiata, suggesting
that it might be possible to retain the outstanding fiber properties
of softwoods while imbuing them with the lignin characteristics of
hardwoods that are more favorable for industrial processing.
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Lignin is one of the most abundant terrestrial biopolymers
and a major component of both softwoods and hardwoods.

It is a heterogeneous cell wall polymer derived primarily from
hydroxycinnamyl alcohols via combinatorial radical coupling re-
actions (1). Importantly, lignin content, composition, and struc-
ture affect the processability of woody biomass and have conse-
quently been studied in great detail.
Conifers such as pine, spruce, and fir dominate vast areas of

land and are consequently of significant ecological and economic
value. Conifer wood, often referred to as softwood, has tradi-
tionally been used for the production of timber as well as su-
perior strength pulp and paper, but can also serve as a feedstock
for bioenergy and biofuels, where its high proportions of hemi-
cellulosic 6-carbon sugars is a significant benefit. Hardwoods are
angiosperm trees that differ physically and chemically from
softwoods, and have the advantage that the wood is generally
easier to pulp or to pretreat to enhance the enzymatic sacchar-
ification of the wood polysaccharides to produce sugars for fer-
mentation to liquid fuels, for example.
Conifers have, compared with most hardwoods, a high lignin

content that can reach levels of more than 35% (wt/wt) in
compression wood, a specialized “reaction wood” made by co-
nifers on the underside of leaning branches or stems for righting
growth (2). Conifer lignin consists primarily of guaiacyl (G) units
derived from coniferyl alcohol (CA) and lacks hardwoods’
syringyl (S) units derived from sinapyl alcohol (SA) (2). Coniferyl
alcohol polymerization generates a more condensed polymer
containing higher levels of carbon–carbon linkages between
monomer-derived units (SI Appendix, Fig. S1), which, combined
with the high lignin content, negatively impacts efforts to refine
lignocellulosic materials. Gymnosperms are evolutionarily more

primitive than angiosperms, but plants, such as Selaginella, a
lycophyte, predating both, has S/G lignins in its stem cortex (3).
Although some special lineages of gymnosperms also contain
S/G lignins (4), the common softwoods do not, and nor to they
possess the genes presumed to be required for the biosynthesis
of SA.
Reducing the lignin content in conifers is unlikely to be a vi-

able option to improve the processing of softwoods, as it can
compromise plant fitness by causing the collapse of tracheids, the
principal building block structures of conifer wood (5). Changing
the monomeric lignin composition, however, is seen as a prom-
ising alternative (6). Recombinant experiments in pine have al-
ready shown that nontraditional monolignols such as caffeyl
alcohol and ferulate can be incorporated into the lignin polymer
(7, 8), demonstrating a similar metabolic malleability of lignifi-
cation to that noted previously in dicots (1, 9–12). Based on these
results, we speculated that it might also be possible to in-
corporate the nonnative, additionally methoxylated, monolignol
sinapyl alcohol (Fig. 1) into pine lignin, imbuing softwoods with
biomass processability similar to that of hardwoods.
S-rich lignins in angiosperm species facilitate processing of

lignocellulosic biomass and thereby provide a key advantage
over the G-rich lignins typical of conifers. Lignins rich in S units
have a lower degree of condensation, are less complex in struc-
ture (1), have a smaller polymer size, and contain higher levels of
β-ethers, the easiest of the interunit linkages to cleave using alk-
aline pulping or acidolytic methods. Such lignins are consequently
more easily removed from cell wall polysaccharides (13–15).
These structural features of S lignins also explain why increasing
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their proportion in angiosperms significantly improves pulping and
biofuel production (13–15).
In angiosperms, wood fibers are naturally rich in S units

whereas vessel elements contain predominantly G lignin (16). Im-
portantly, recombinant lignin studies in arabidopsis (Arabidopsis
thaliana), tobacco (Nicotiana tabacum), and poplar (Populus
tremula × alba in this case) have proven that it is possible to in-
crease S-type units to over 90% without compromising plant fit-
ness or performance (13, 14, 17–19). These observations
indicate that water-conducting vessel elements with lignin rich
in S units are not compromised in their function. We therefore
speculated that pine tracheids might also tolerate the incorporation
of S units without their function being compromised.
Production of S units in conifer lignins requires at a minimum

the introduction of two enzymes (Fig. 1): ferulate 5-hydroxylase
(F5H) [also known as coniferaldehyde 5-hydroxylase (CAld5H)
to better reflect the now-accepted substrate (20, 21)] and caffeic
acid O-methyl transferase (COMT) [also known as 5-hydroxy-
coniferaldehyde O-methyltransferase (AldOMT) (22)]. Neither
protein exists in conifers (23), but both are essential for SA
biosynthesis in angiosperms (20). However, these might not be
the only enzymes involved in the formation of S units in angio-
sperm lignins. A cinnamyl alcohol dehydrogenase (CAD) asso-
ciated with SA biosynthesis has been identified in arabidopsis
(24), and a lignin-related sinapyl alcohol dehydrogenase (SAD)
that converts sinapaldehyde to sinapyl alcohol was isolated from
Populus tremuloides (25). S-specific peroxidases have been iden-
tified in a number of angiosperm species (26). These observa-
tions, in addition to the fact that monolignol transporters, if they
are required, have only been tentatively identified (see below),
could add complexity to metabolic engineering experiments de-
signed to introduce S units into conifer lignins.
Transformable callus cultures capable of producing significant

levels of differentiating tracheary elements (TEs, SI Appendix,
Fig. S4) provide an excellent model system for functional ge-
nomics studies targeting secondary cell wall biosynthesis (6). We
have developed such a system for radiata pine (Pinus radiata)
that produces differentiated TEs with secondary cell walls similar
in chemical composition to those of wood tracheids (27). The
usefulness of this system for the investigation of lignin bio-
synthesis in conifers has already been established (6–8, 28, 29).
In this study, we used the transformable P. radiata TE platform

to explore the possibility of establishing the production of S
lignin units in conifers by metabolic engineering of the phenyl-
propanoid pathway. Our results provide the proof of principle
that it is possible to generate a hardwood-like lignin by imbuing
softwoods with the ability to biosynthesize the S monomer, SA.

Results
Generation and Screening of Transgenic Lines. Nondifferentiated
P. radiata callus cultures were transformed with vector(s) for F5H
with a ubiquitin universal promoter, COMT with a 4CL pro-
moter, and also the SAD gene from Populus tremuloides driven
by the ubiquitin promoter, as detailed in Table 1 and SI Ap-
pendix, Fig. S2, and as described earlier (28). A minimum of 26
transgenic lines was generated in all three transformation ex-
periments (Table 1). All transgenic lines were transferred to
differentiation medium (27) to stimulate the generation of TEs.
Differentiated TEs were enriched according to a protocol de-
scribed earlier (29) and screened by pyrolysis-GC/MS for the
signatures of S lignin (30).
Analysis of the resulting pyrograms revealed the transgenic

lines that had signatures for S lignin units. The most abundant
S-specific pyrolysis products identified were syringol (m/z 154),
4-vinyl-syringol (m/z 180), and 4-propenyl-syringol (m/z 194) (SI
Appendix, Fig. S5), pyrolysis products also prominent in pyro-
grams from angiosperms (30). The pyrolysis-derived S/G ratios in
transgenic lines containing S units varied between 0.01 and 0.18
(Table 1 and SI Appendix, Table S2). Transformation with F5H
resulted in lower S/G ratios than in the cotransformation ex-
periments that included COMT and/or SAD (Table 1), indicating
that the expressed enzymes from these two genes contributed to
the generation of S units in pine lignin.

Expression Pattern of Recombinant Genes During TE Differentiation.
The expression patterns of F5H, COMT, and SAD were analyzed
by quantitative RT-PCR at various stages of the TE differenti-
ation process in two of the F5H/COMT/SAD lines (Line 6 and
Line 19) that had the highest S/G ratios in pyrolysis-GC/MS
experiments. The expression levels of endogenous P. radiata
constitutive (Ubq) and lignin-related genes (C4H, 4CL, HCT,
CCoAOMT, CCR, and CAD, Fig. 1) were assessed in parallel for
reference. These experiments revealed good expression levels for
F5H throughout the differentiation process in both lines, mir-
roring the expression of the Ubq gene (SI Appendix, Fig. S3).
Expression levels for SAD were, despite using the same promoter
as for F5H, several orders of magnitude lower (SI Appendix, Fig.
S3). COMT expression followed the trend of the endogenous
lignin-related genes in both lines, reflecting the value of using of
the Pt4CL-promoter (19) in this construct (SI Appendix, Fig. S3).

Chemical Analysis of TE Cultures.
Pyrolysis-GC/MS. The potential to sample callus cultures at differ-
ent stages of TE differentiation combined with the ability of
pyrolysis-GC/MS to analyze minute amounts of lignin was used
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Fig. 1. Monolignol biosynthesis in angiosperm spe-
cies starting from L-phenylalanine. CAD, cinnamyl
alcohol dehydrogenase; CCoAOMT, caffeoyl-CoA
O-methyl transferase; CCR, cinnamoyl-CoA reductase;
C4H, cinnamate 4-hydroxylase; COMT, caffeic acid
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to investigate whether S/G ratios changed during TE differenti-
ation in transgenic lines 6 and 19. Analysis of material from each
line collected at two-day intervals revealed high S/G ratios at the
beginning of the differentiation process that declined during TE
differentiation (Fig. 2 and SI Appendix, Table S3).
Pyrograms of purified TEs from all transgenic lines containing

S lignin were also analyzed for the presence of diagnostic
products from pathway intermediates (Fig. 1) such as 5-hydroxy-
vinyl-guaiacol (5OH-VG; m/z 166, SI Appendix, Fig. S5); 5OH-
VG was released only from transgenics containing S lignin and
not from wild-type controls. The ratio of 5OH-VG to the cor-
responding S lignin product, vinyl-syringol (VS), ranged between
0.8 and 4.0 in lines transformed with F5H only, and between 0.1
and 0.4 in cotransformed lines. The most obvious interpretation
for this result is that COMT contributed to the biosynthesis of S
lignin and that O-methylation was otherwise limited, as is logical
from the biosynthetic pathway depicted in Fig. 1.
Two-dimensional-NMR spectroscopy. NMR experiments are capable
of identifying S-containing units in structures that unambiguously
establish SA’s role as a monomer in the lignification. More detail
on the cell wall structures in the transgenic F5H/COMT/SAD
lines 6 and 19 and a wild-type control were deduced from 2D-
NMR. For in-depth analysis of lignins, enzyme lignins (ELs)
were isolated from TEs via digestion with crude cellulases,
leaving all of the lignin and residual polysaccharides (7, 8). The
ELs were swelled in dimethyl sulfoxide-d6/pyridine-d5 (4:1, vol/
vol) (31, 32) and subjected to 2D short-range 1H–

13C correlation
(HSQC) experiments. In the aromatic regions of the HSQC
spectra of ELs from the transgenic lines (Fig. 3 A and B), S ar-
omatic signals (S2/6) were clearly observed along with pre-
dominant G aromatic signals (G2 and G5,6) whereas, as expected,
no S aromatic signals were observed from the wild-type control
(Fig. 3C). Volume integrations estimated that S units accounted
for 8% and 6% of the total lignin aromatics detected in these
lines. Production of S units via radical coupling of SA in the
transformed lines was further evident from the new signals
arising from S-type β-aryl ethers (i.e., β-syringyl ethers, I′) in the
aliphatic side-chain regions in which the diagnostic correlations
for the various lignin interunit linkage types are resolved. Close
comparison of these spectra indicated that incorporation of
sinapyl alcohol into the lignin polymers also impacted their in-
terunit linkage patterns, as clearly shown in the difference
spectra between the control and line 6 (Fig. 3D). These analyses
revealed that resinol III and β-aryl ether I units were notably
augmented in both lines compared with the wild-type control,
whereas phenylcoumaran II and dibenzodioxocin IV units were
relatively depleted, the latter only being observable at lower
contour levels; integrals are given on the Fig. 3 plots and in SI
Appendix, Table S1. The observed shifts in the lignin linkage
patterns reflect the preferential radical coupling modes of SA vs.
CA (as discussed below), and thus provide further supporting
evidence for the production of S units via radical coupling of SA
into the lignins in the transgenic lines.
To determine whether SA synthesized in the transgenic lines is

incorporated into lignins via integral copolymerization with the
predominant CA to produce G/S lignin copolymers, we performed
2D 1H–

13C long-range correlation (HMBC) NMR experiments.

We used the cell wall dissolution/acetylation method (32, 33) to
prepare acetylated ELs that were completely soluble in deutero-
chloroform and displayed better relaxation characteristics. HSQC
spectra (SI Appendix, Fig. S6) confirmed similar distributions of
lignin aromatic and side-chain signals as observed in the spectra of
unacetylated EL samples (Fig. 3). HMBC spectra diagnostically
revealed expected long-range correlations between the major lig-
nin side-chains and S aromatic rings in the transgenics, as shown,
for example, with Line 6 in Fig. 4. Both S and G β-ethers I are
evidenced. The correlations between phenylcoumaran II side-
chains and S aromatic rings, in particular, provide compelling
evidence for direct connections between S and G units, as this
structure only derives from cross-coupling of SA with a G phenolic
end-unit. Finally, as noted in most dicots, the resinol units III that
were obviously solely G in the control were almost entirely S in the
transgenic. The evidence that SA is copolymerized with CA and
integrally cross-coupled with G units into the G/S lignin co-
polymer, much like in hardwoods, is therefore compelling.

Discussion
Genes Contributing to Syringyl Lignin Formation in P. radiata. The
generation of S lignin units in P. radiata callus cultures transformed
with F5H (Table 1) provided clear evidence that F5H is sufficient to
enable SA production. This result can only be explained by the
presence of O-methyltransferases in pine that are capable of
methylating 5-hydroxyguaiacyl pathway intermediates (Fig. 1).
Cotransformation with F5H and COMT resulted in lines with up to
2–3 times higher S/G ratios than those transformed with F5H alone,
and lower levels of pathway intermediates. This strongly suggests
that the endogenous O-methyltransferases are unable to accom-
modate the flux of 5-hydroxyguaiacyl precursors, and that the in-
troduced COMT contributes to the biosynthesis of S lignin (Fig. 1).
Quantitative RT-PCR experiments showed good levels of expres-
sion for F5H and COMT in transgenic lines with high S lignin levels
(SI Appendix, Fig. S3). High levels of 5OH-VG were seen in

Table 1. Overview of transgenic lines generated in this study

S/G ratio (from pyrolysis-GC/MS)*

Gene(s) No. of lines† No of. lines‡ ≤0.03 ≤0.06 ≤0.09 ≤0.12 ≤0.15 ≤0.18

F5H 27 11 (41%) 7 3 1 0 0 0
F5H/COMT 52 27 (52%) 6 12 3 4 2 0
F5H/COMT/SAD 26 7 (27%) 1 0 4 0 1 1

*The raw data, Student’s t test, and analysis of variance is given in SI Appendix, Table S2.
†Number of transgenic lines generated.
‡Number of transgenic lines imbued with an S-type lignin.
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Fig. 2. Pyrolysis-GC/MS based S/G ratios in transgenic lines F5H/COMT/SAD
Lines 6 and 19 during different stages of the TE differentiation process. S/G
ratios display the average and SD for three S lignin-specific pyrolysis products
(syringol, 4-vinyl-syringol, and 4-propenyl-syringol) and their corresponding
G lignin analogs (guaiacol, 4-vinyl-guaiacol, and 4-propenyl-guaiacol). The
raw data are given in SI Appendix, Table S3.
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pyrolysis products from the F5H-only transformation experiment.
The ability of COMT to prevent build-up of pathway in-
termediates in pine TEs is important from a biotechnological
perspective as 5-hydroxyconiferyl alcohol incorporation into lignins
would result in benzodioxane-unit production in lignin (34) that has
been shown to have a negative impact on pulping efficiency (35).
SAD, a dehydrogenase conjectured to be involved in the bio-

synthesis of S units in aspen lignin, is capable of converting sinap-
aldehyde to SA in vitro (25). Sinapaldehyde is, however, a relatively
poor substrate for pine CAD (36), providing the impetus for in-
cluding SAD in this study. Cotransformation experiments with
F5H, COMT and SAD focused on investigating whether SAD can
further improve S levels in pine. SAD expression levels in lines 6
and 19 were extremely low (SI Appendix, Fig. S3). The fact that
screening for high S/G ratios did not select for high levels of SAD
expression (contrary to that for F5H and COMT) suggested that
this gene did not play a role in promoting SA biosynthesis in pine.
In addition, a Student’s t test (SI Appendix, Table S2) showed a
statistically significant difference in the S/G ratios (P < 0.05) be-
tween the F5H lines and the F5H/COMT and F5H/COMT/SAD

lines, but no significant difference between the F5H/COMT and
F5H/COMT/SAD, suggesting that SAD does not significantly
contribute to S-lignin creation in this system. Nevertheless, the two
lines, Line 6 and Line 19, with the highest S/G were F5H/COMT/
SAD lines, i.e., with all three constructs. From these results, it is
difficult to draw conclusions about the importance of SAD in pine,
even though recent evidence shows that the functional ortholog for
SAD in N. tabacum is unlikely to be a lignin-related gene and that
its Vmax/Km for sinapaldehyde is very low compared with CAD (37).

Appearance of Syringyl Lignin in Pine TEs. Incorporation of SA into
pine lignin, resulting in production of new S units in the lignins, in
the transgenic lines was clearly demonstrated by both pyrolysis-GC/
MS and 2D-NMR. Pyrolysis-GC/MS revealed approximately two-
fold higher S/G ratios (0.15–0.18) compared with those determined
by 2D-NMR (0.06–0.09). Such differences are not surprising as
NMR measures the S/G of the entire lignin polymer whereas py-
rolysis-GC/MS preferentially cleaves and analyzes monomers re-
leased from noncondensed interunit linkages in the lignin polymer
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that are more abundant in S than G lignin units, resulting in an
overestimation (38).
Production of S lignin in the F5H/COMT/SAD transgenic lines

substantially impacted the overall lignin structure as revealed by
NMR (Figs. 3 and 4 and SI Appendix, Fig. S6). The observed shift
in lignin linkage distributions – augmented resinol (III, β–β) and
β-aryl ether (I, β–O–4) units, and depleted phenylcoumaran (II,
β–5) and dibenzodioxocin (IV, 5–5/β–O–4) units – is a logical and
diagnostic consequence of the partial monomer replacement of
CA with SA in these lines.
Polymer chains in softwood and dicot lignins start from dimers

produced from monolignols. Dimerization of SA predominantly
produces β–β-linked dimers, whereas dimerization of CA typi-
cally produces comparable levels of β–β-, β–5-, and β–O–4-
coupled dimers (39). Although dimerization reactions typically
represent minor components in G-only softwood lignins (be-
cause the major reactions involve end-wise extension of the
growing polymer), their contributions are more substantial in
S-rich angiosperm lignins, possibly due to the relative stability of
SA-derived radicals (14). Consequently, introduction of SA mono-
mers results in substantially higher levels of β–β-coupled units III.
It has been noted that β–β-coupled entities in typical angio-
sperm G/S lignins are primarily S-type, i.e., are syringaresinol
units derived from sinapyl alcohol dimerization (10, 14). Our
HMBC experiments likewise detected primarily S-derived resinols
in the transgenics even though the relative S levels were quite
low (Fig. 4). The logical implication is that, already in these S-
augmented polymers, many of the lignin chains are initiated by
SA dimerization whereas they can only be initiated by CA di-
merization in the control.
After dimerization reactions, chain propagation via cross-

coupling of a monomer with SA-derived S end-units occurs es-
sentially only via β–O–4 coupling simply because S units are

blocked (methoxylated) at the 5-position, whereas cross-couplings
with CA-derived G end-units occurs additionally via β–5
coupling. In addition to such linear chain propagation modes,
CA-derived G units also contribute to increasing the chain de-
gree of polymerization by fusing two polymer chains, via 5–5- or
5–O–4 coupling. Consequently, replacement of G units with S
units results in reductions in β–5- and 5–5-coupled entities II and
IV, and their reduced levels are somewhat compensated by in-
creased relative proportions of β–β- and β–O–4-linked units I
and III, as previously observed in any (S-containing) angiosperm
lignin (10, 14).
Another key finding, from the observation of long-range NMR

correlations between S and G lignin units (Fig. 4), in resinol units
II, for example, is that SA copolymerized with CA to produce
heterogeneous G/S copolymers in the same cell walls, just as they
do in angiosperm plants (10). Therefore, S lignin synthesis occurs
concurrently with G lignin synthesis, and newly produced SA
monomers are transported to the lignification sites where they
are oxidized together with CA by the polymerization machinery
already present in pine TE cell walls.

Factors Limiting Syringyl–Lignin Formation in Pine TEs. Although we
have successfully engineered syringyl units into pine TE lignins, S
unit levels were lower than those in most hardwood species.
There are a number of possible explanations. S/G ratios in pine
callus cultures were high early in the TE differentiation process,
but dropped significantly during the later stages (Fig. 2 and SI
Appendix, Table S3). Decreasing S/G ratios were not a conse-
quence of declining F5H or COMT expression levels, but more
likely the consequence of increased expression of the endoge-
nous lignin-related genes during TE differentiation (SI Appendix,
Fig. S3). TE formation, and its associated lignification, occurs
very rapidly in this system; TE’s develop and fully differentiate
within a few days. This accelerated lignin production and the
perhaps limited F5H activity may have been insufficient to cope
with an increased flux of phenylpropanoids. The more pro-
longed, slower differentiation and lignification process in plant
tracheids might be anticipated to generate more S-lignin in
planta. Proteins associated with the phenylpropanoid pathway
are also likely to be organized in the form of metabolons (40–42).
The coordinated expression pattern of lignin-related genes (SI
Appendix, Fig. S3) and the membrane-association of their pro-
teins in pine (43) imply that this might also be true for conifers.
Metabolons not designed to support SA production could, via
substrate channeling, limit access to pathway intermediates such
as coniferaldehyde and could thereby restrict F5H activity. SA
formation could as a consequence primarily occur at the alcohol
rather than the aldehyde level in pine, but this is purely specu-
lative at this point. Substantial reductions in CAD activity levels
can raise coniferaldehyde (the substrate for F5H) levels in pine
more than 30-fold (44). Experiments to test the impact of CAD
suppression on S biosynthesis in pine TEs might be useful.
High F5H and COMT expression levels in pine TE cultures do

not necessarily equate to high levels of enzymatic activity. F5H
for example depends on other protein factors (e.g., P450 re-
ductase), and cofactors such as S-adenosylmethionine (SAM) are
required for COMT activity. It is currently unknown how effi-
ciently pine P450 reductases can support F5H activity or whether
SAM levels are more limiting in pine compared with hardwoods.
F5H activity levels may therefore have been limiting here. It is
also possible for the transport of SA to the apoplast to be in-
efficient in pine. Recent experimental data suggest that ABC
transporters involved in monolignol transport can be mono-
lignol-specific (45), which makes it possible that angiosperms
have transporters specific for SA (46). The introduction of a SA-
specific ABC transporter might further promote S lignin for-
mation in pine. Peroxidases specific for the one-electron oxida-
tion of SA have been identified in angiosperms (26, 47), but are
unlikely to exist in conifers. The absence of such peroxidases in
pine could compromise the incorporation of SA into the lignin
polymer. Finally, suppression studies in Medicago sativa indicated
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that biosynthesis of SA might involve methyltransferases other
than CCoAOMT (48). Metabolite profiling in future real S-lig-
nin–generating pine transgenic lines may help in delineating the
most important bottlenecks (49).

Conclusions
We have provided proof of the principle that softwood systems
can be augmented with the genes/enzymes necessary to bio-
synthesize the monolignol sinapyl alcohol (SA), thereby pro-
ducing syringyl-guaiacyl (S/G) lignins. The potential to develop
commercially important softwoods that contain more readily
extractable S/G lignins for chemical pulping and in the ligno-
cellulosics-to-biofuels enterprises could be groundbreaking, es-
pecially if alteration of the lignin retains the desirable long-fiber
characteristics so valuable in softwood pulps.

Materials and Methods
Detailed information on the generation of recombinant constructs, tissue
culture procedures, transformation protocols for tracheary element cultures,
as well as monitoring, screening and chemical analysis of transgenic lines
using quantitative RT-PCR, Pyrolysis-GC/MS, and 2D-NMR are provided in the
SI Appendix, Materials and Methods and referenced in Results.
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