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yperkalemia is a common and serious electrolyte

abnormality in advanced CKD patients.' Adaptive
increase in colonic potassium (K') excretion in patients
with end-stage renal disease (ESRD) partially compen-
sates for the loss of K excretion by the kidney.’
Patiromer is a nonabsorbed polymer that binds K™
throughout the gastrointestinal (GI) tract and leads to
lowering serum K levels.’ Interestingly, K is essen-
tial for the growth, colonization, and virulence of some
bacteria.”’> Thus, ambient K* could have a significant
effect on gut microbiota and their metabolic function.
Previously, we have examined the effect to K" binder
patiromer treatment on serum and stool electrolytes in
hemodialysis (HD) patients.” To our knowledge, there
have been no previous reports regarding the impact of
K" binder-induced changes in intestinal K* content on
the gut microbiota and microbiota-related metabolites
in HD patients. In this clinical trial, we investigated the
effect of lowering serum K™ by patiromer on the gut
microbial community composition, their functional
capacity, and host-cometabolism in HD patients.

RESULTS

Clinical Parameters

This is an ancillary to a parent study that examined the
effect to patiromer treatment on serum and stool elec-
trolytes in HD patients.” Characteristics of the study
participants (20 controls, 21 HD patients) are shown in
Table 1. Blood urea nitrogen, creatinine, and K were

significantly ~elevated in HD patients. Dialysis
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prescription was unchanged during the study and
dialysate K" was 2 mEq/l throughout the study period.
The dietary intake estimated by food frequency ques-
tionnaire showed that there was no significant change
in the dietary intake of K, protein, carbohydrate, or
fat intake during the study phases (Table S1). Patiromer
treatment resulted in a significant decrease in serum
K", which was accompanied increase in stool Kt
(Figure 1b and lc, Tables S2 and S3). Circulating level
of soluble CD14 (Scd14) was lower in control subjects
without kidney disease compared to HD patients. None
of the inflammatory markers were altered by patiromer
treatment (Table S4). The information about dialysis
and medication was summarized in Table S5.

Association of Gut Microbiota With K™

Alpha diversity estimated by Shannon index was
negatively correlated with K* in stool and positively
correlated with K* in serum (Figure 2a). A total of 18
sensitive bacterial species were identified, with 10 and
9 significantly correlated with stool and serum K,
respectively (Figure 2b). Nine microbial species posi-
tively associated with stool K, including Streptococcus
gordonii, Alistipes senegalensis, Alistipes finegoldii,
Clostridium  scindens, ~Ruminococcus obeum, Para-
bacteroides merdae, and Lachnospiraceae bacterium 2-1-
58FAA, 3-1-46FAA, and 1-1-57FAA (Figure 2c).
Escherichia coli was negatively associated with stool K™
but positively correlated with serum K (Figure 2d).
Three additional microbial species were positively
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Table 1. Subject characteristics at baseline

Association of Microbial Pathways With K*

A total of 132 microbial pathways were significantly
correlated with stool K', and 75 were correlated with
serum K (Figure 3a). Notably, 48 microbial pathways
were correlated with K* in both serum and stool
(Figure 3a). Among 48 microbial pathways, 17 micro-
bial pathways were positively associated with stool K*
and negatively associated with serum K'. They
belonged to 6 functional categories (Figure 3b and d).
The rest 31 microbial pathways were negatively asso-
ciated with stool K™ and positively associated with
serum K", which belonged to 11 functional categories

Association of Plasma Metabolome With Serum K"
A total of 66 plasma metabolites were significantly
associated with serum KT, chemical enrichment
analysis of which revealed that 5 compound clusters

Patient variable Control (n = 20)  ESRD/dialysis (n = 21) P value
Sex female, n (%) 11 (65) 14 (52) 0.99
Age 60 + 10 57 £ 11 0.22
Race, n (%) 0.12

Asian 3 (15) 0 (0

Black 11 (65) 20 (74)

Caucasian 5 (25) 4 (15)

Other 1(5) 3(1)
BMI 314 +£72 327 £6.7 0.53
DM, n (%) 8 (40) 11 (41) 0.99
HIV or Hep, n (%) 0 (0) 6 (22) 0.03
Glucose 131 + 82 123 + 65 0.68
BUN 12+5 61 + 16 <0.0001 .
Creatinine 0802 102 + 2.0 <0.0001 (Figure 3c and e).
Sodium 142 + 3 138 + 3 0.0013
Potassium 43 +0.4 56 + 0.6 <0.0001
Chloride 103 +£ 3 96 + 4 <0.0001
€O, 248 + 2.6 202 £29 <0.0001
Ca 95+ 0.4 89+0.7 0.004
SBP 140 + 20 145 + 23 0.58
DBP 79 + 10 77 £ 11 0.72

BMI, body mass index; BUN, blood urea nitrogen; DBP, diastolic blood pressure; DM,
diabetes mellitus; ESRD, end-stage renal disease; Hep, hepatitis; SBP, systolic blood
pressure.

Unless otherwise noted, values are mean + SD. We compared hemodialysis patients’
laboratory parameters at baseline (week 2) with controls. Values in bold indicate sta-
tistical significance.

associated with serum K7, including Parabacteroides
unclassified, Pyramidobacter piscolens, and Bacteroides
vulgatus. Five microbial species were negatively
correlated with serum K, including Bacteroides caccae,
Streptococcus salivarius, Streptococcus parasanguinis,
Eggerthella unclassified, and Granulicatella unclassified
(Figure 2c).

were enriched (Figure 4a). Pathway enrichment
analysis showed that 2 pathways were enriched,
aminoacyl-Trna biosynthesis and ascorbate and
aldarate metabolism (Figure 4b). Among 66 plasma
metabolites, 27 were negatively correlated with
serum K' (Figure 4c). Meanwhile, 39 of 66 plasma
metabolites were positively correlated with serum K"
(Figure 4d).

Association of Stool Metabolome With Stool K*
A total of 26 stool metabolites were associated with
stool K'; chemical enrichment analysis showed that 1
compound cluster was enriched (Figure 5a and b). One
of 26 metabolites, pipecolinic acid, was significantly

a ‘ Electrolytes in blood and stool; untargeted and targeted metabolomic studies in blood and stool; gut microbiome
profile by metagenomic sequencing
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Figure 1. Study design. (a) study design. (b) Serum K™ in hemodialysis patients.
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(c) Stool K™ in hemodialysis patients.
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Figure 2. Association of gut microbiota with serum and stool potassium. (a) Correlation between Shannon index and K™ in stool (left) and serum
(right). (b) Venn diagram of microbial species associated with stool and serum K*. (c) Correlation network of 18 sensitive microbial species.
Green: microbial species correlated with serum K*; blue: microbial species correlated with stool K*; and red: microbial species correlated with
both serum and stool K*. (d) Correlation between Escherichia coli and K* in stool (left) and serum (right).

associated with both serum and stool K* (Figure 5a).
Among 26 stool metabolites, 23 were positively corre-
lated with stool K'; meanwhile, 3 were negatively
correlated with stool K (Figure 5c).

Integrative Analysis

Further, we examined whether any microbial pathway
and its related metabolites were correlated with serum
and stool K'. Plasma level of methionine was

Kidney International Reports (2021) 6, 821-829

negatively correlated with serum K, as well as mi-
crobial pathways such as r-methionine biosynthesis I,
L-methionine biosynthesis III, 1-homoserine and r-
methionine biosynthesis, superpathway of r-methio-
nine biosynthesis transsulfuration, and superpathway
of S-adenosyl-L-methionine biosynthesis, which were
negatively correlated with serum K* and positively
correlated with stool K (Figure 6a and b). In addition,
plasma level of serine was also negatively correlated
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Figure 3. Association of microbial pathways with serum and stool potassium. (a) Venn diagram of microbial pathways associated with stool and
serum K. (b) Classification of microbial pathway positively associated with K* in stool and negatively associated with K* in serum. (c)
Classification of microbial pathway negatively associated with K™ in stool and positively associated with K™ in serum. (d) Microbial pathway
positively associated with K™ in stool and negatively associated with K™ in serum. (e) Microbial pathway negatively associated with K™ in stool
and positively associated with K™ in serum.
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Figure 4. Association of plasma metabolites with serum potassium. (a) Chemical enrichment analysis of plasma metabolites correlated with
serum K*. (b) Pathway enrichment analysis of plasma metabolites correlated with serum K*. (c) Plasma metabolites negatively correlated with
serum K*. (d) Plasma metabolites positively correlated with serum K*. * in heatmap: significantly altered between patients at week 2 and
control subjects. Text in red: significantly increased metabolites in patients at week 14 compared to week 2. Text in blue: significantly
decreased metabolites in patients at week 14 compared to week 2. Text with * on top right: significantly altered metabolites in patients at week

20 compared to week 14.

with serum K¥, as well as the microbial pathway, Comparison Host-Cometabolism in Controls
superpathway of i-serine and glycine biosynthesis I, Versus HD Patients

which was negatively correlated with serum K and We compared the microbiome and metabolome profile
positively correlated with stool K (Figure 6¢ and d). in HD patients to control subjects. Shannon index was
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increased in HD patients compared with controls
(Figure S1A). However, the 18 K -sensitive microbial
species were not significantly different in HD patients
at baseline compared with control subjects. Among the
48 K" -associated microbial pathways identified in HD
patients, Trna processing was significantly decreased in
HD patients at week 2 compared with controls. Among
the 27 plasma metabolites negatively associated with
serum K in HD patients, 16 were significantly

826

different between HD patients at week 2 and control
subjects (Figure 4c). We noted that 21 of the 39 plasma
metabolites positively associated with serum K* in HD
patients were significantly different control subjects
(Figure 4d). Among 26 stool metabolites that were
associated with stool K* in HD patients, 8 were
significantly different between the HD patients at week
2 and control subjects, with half increased and half
decreased (Figure 5c).
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Impact of K on the Growth of E coli and
Clostridium scindens In Vitro

Maximum density was lower in the culture supple-
mented with 3.5 and 6.0 mEq/l K compared with
control group (0 mEq/l K*) in 2 ollie coli strains, ollie

828

coli 11775, and ollie coli 25922 (Figure 7a and b).
Maximum density of C scindens was higher in the
culture supplemented with 6 mEq/l K* compared with
culture supplemented with 3.5 mEq/l K and the
control group without K supplementation (Figure 7c).
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DISCUSSION

This study has several strengths, including robust
study design with rigorous patient selection criteria;
controlling for diet, medication use, and dialysis
treatment; sequential measurements of K in stool and
serum; and integrated microbiome-metabolome anal-
ysis. Some of the potential limitations include the
control subjects were studied only at 1 time point and
the confounding effect of patiromer treatment on the
findings could not be totally excluded. There was no
controlling for phosphate binder use nor a reporting of
either of phosphate binders or the recipient of iron
dosing, both of which have the potential to change the
gut microbiome. The quality of nutrients can affect gut
microbiota variability; however, we have no informa-
tion on fiber intake and the ratio of animal-vegetal
protein intake. Patients using prebiotic or probiotic
agents were excluded in this patient cohort. But in real
life, this is a rather common occurrence so that the
results of this study could not apply to most patients.
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