
INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) is the most com-
mon liver disease representing over 75% of chronic liver dis-
ease cases (Younossi et al., 2011). The prevalence of NAFLD 
in the United States rose from 18% to 31% in the last three 
decades (Ruhl and Everhart, 2015). NAFLD is mainly associ-
ated with obesity, type 2 diabetes, dyslipidemia, and cardio-
vascular diseases (Lin et al., 2000; Cani et al., 2008; Hariri 
and Thibault, 2010; Panchal et al., 2011; Piao et al., 2017). 
NAFLD is characterized by the excessive accumulation of tri-
glycerides in the form of lipid droplets in more than 5-10% of 
hepatocytes in the absence of excessive alcohol consump-
tion. The disease spectrum ranges from simple fatty liver 
through nonalcoholic steatohepatitis (NASH), characterized 

by liver cell injury through inflammation, oxidative stress, and 
increased risk for liver fibrosis and cancer (Singh et al., 2015). 

Given the increasing prevalence of NAFLD, understanding 
the initiation and progression of NAFLD has become crucial 
for developing therapeutic options (Hassan et al., 2014). Sev-
eral mechanisms of NAFLD/NASH have been proposed but 
the exact mechanisms remain unknown. To understand the 
complex mechanisms of NAFLD in humans, efficient, inex-
pensive, and relevant animal models are needed. Although 
there are several diet-induced models of NAFLD/NASH in 
small animals, the most widely used diet to induce NAFLD/
NASH is a high fat diet (HFD) to create the accumulation of 
hepatic triglycerides (Machado et al., 2015). Furthermore, 
oxidative stress has been implicated in the pathogenesis of 
NAFLD. Catalase, one of the antioxidant enzymes, showed 
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its decreased activity in NAFLD (Videla et al., 2004). Recently, 
catalase in peroxisomes was shown to play a protective role 
in HFD induced liver injury in a CKO mouse model (Piao et al., 
2017). These studies suggested that oxidative stress occurs 
upon reduced catalase activity and plays an important role in 
NAFLD/NASH. 

Catalase is a common enzyme present in most aerobic 
cells. This enzyme protects cells from oxidative stress by cata-
lyzing the rapid decomposition of hydrogen peroxide (H2O2). In 
our previous study, we reported the importance of catalase in 
protecting against kidney injury under diabetic stress (Hwang 
et al., 2012). Further, we investigated the role of catalase in 
HFD induced liver injury (Piao et al., 2017). Our data demon-
strated that catalase deficiency accelerated liver injury through 
increased liver lipid accumulation, inflammation, and oxidative 
stress, which highlighted the beneficial effects of endogenous 
catalase in protecting against liver injury through maintaining 
liver redox balance. Therefore, we applied a metabolomics 
approach combined with transcriptomics to elucidate the met-
abolic alterations caused by catalase deficiency in order to 
understand the molecular mechanism by which endogenous 
catalase conferred a hepatoprotective effect. 

Metabolomics is one of several emerging fields of “omics” 
research, which focuses on a comprehensive qualitative and 
quantitative analysis of all small molecules present in a cell, a 
tissue, or an organism to understand the function of biological 
systems. Metabolomic analyses determine the slight changes 
of metabolic profiles related to diseases, disease progression, 
therapeutic intervention, environmental modification, and ge-
netic modification (Stewart and Bolt, 2011; Gao et al., 2014; 
Park et al., 2015, 2016). In addition, we extended our research 
by measuring transcriptomic alteration. Integrative omics, a 
combined study of more than one omics out of four (genom-
ics, transcriptomics, proteomics, metabolomics), has become 
a rising field because of this strategy’s remarkable accuracy 

and integrity (Horgan and Kenny, 2011; Gomez-Cabrero et al., 
2014; Cavill et al., 2016; Rajasundaram and Selbig, 2016). In 
this study, we aimed to identify alterations in metabolic and 
transcriptomic profiles involved in liver damage caused by 
HFD in mice and finally to verify if deleting the gene encoding 
catalase may worsen the liver injury caused by high fat diet by 
attenuating the level of identified metabolites and the levels 
of mRNAs. The results of this study suggested that an impor-
tant association among diet, oxidative stress and inflammation 
would increase the risk in the development of NAFLD/NASH.

MATERIALS AND METHODS

Mouse preparation and Sampling
CKO mice were supplied by Ewha Womans University. 

Animal experiments were approved by the Institutional Animal 
Care and Use Committee (IACUC) at Ewha Womans Univer-
sity (No. 2010-30-3). Homozygous CKO male mice were bred 
with wild type (WT) C57BL/6J female mice to obtain heterozy-
gous CKO mice. Interbreeding of the heterozygous mice was 
performed to generate homozygous CKO mice. Homozygous 
CKO mice and WTC57BL/6J mice were fed with normal fat 
diet (NFD) or high fat diet (HFD). A total of 24 mice were di-
vided into four groups: wild type normal fat diet (WTNF), cat-
alase knockout normal fat diet (CKONF), wild type high fat 
diet (WTHF), and catalase knockout high fat diet (CKOHF) as 
shown in Fig. 1. NFD was composed of 24% protein-derived 
calories, 58% carbohydrate-derived calories, and 18% fat de-
rived calories while HFD had 18.4% protein-derived calories, 
21.3% carbohydrate-derived calories, and 60.3% fat derived 
calories (Harlan TD 06414). All mice were bred with NFD for 
29 weeks, following NFD or HFD for the next 11 weeks. Each 
diet was scheduled twice a week before collection of sam-
ples. Liver samples from mice were isolated, frozen in liquid 
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Fig. 1. Study design of the nonalcoholic fatty liver disease (NAFLD) model. Fig. 1 represents the overall flow of the study. A total of 24 mice 
were classified into 2 groups, normal fat diet (NFD, green-bordered) and high fat diet (HFD, yellow-bordered). Each group consisted of 6 
wild type mice (WTNF or WTHF, light blue-colored) and 6 catalase knockout mice (CKONF or CKOHF, light orange-colored). To observe 
the effect of HFD (liver fat accumulation) and CKO (oxidative stress and inflammation), statistical analysis and pathway analysis were em-
ployed. The comparison between WTNF vs. CKOHF was excluded after preanalysis.
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nitrogen, and stored at –80°C for further analysis. Blood was 
centrifuged at 3,000 rpm for 15 min at 4°C, serum in the super-
natant was collected, and alanine aminotransferase (ALT) was 
measured using EnzyChromTM assay kit (BioAssay Systems, 
Hayward, CA, USA) following manufacturer instructions. The 
experiments were performed in duplicate. Hepatic triglyceride 
concentration was measured as previously described (Nor-
ris et al., 2003). In brief, 50 mg of liver tissue was minced to 
small pieces and incubated in 0.3 ml of ethanolic KOH con-
taining EtOH-30% potassium hydroxide (KOH) (2:1) at 55°C 
for overnight. After saponification, 0.6 ml of 50% EtOH was 
added, and centrifuged to get supernatant. Supernatant was 
neutralized by the addition of 0.215 ml of 1M MgCl2. Hepatic 
triglyceride content was measured with Free Glycerol Reagent 
followed by manufacturer’s instruction (F6428, Sigma-Aldrich, 
MO, USA).

DNA Microarray
For transcriptomic analysis, microarray was performed as 

follows as recommended by E-Biogen (Seoul, Korea): Total 
RNA quality was controlled using an Agilent 2100 Bioanalyz-
er instrument (Agilent, CA, USA). Amplification and labeling 
of RNA was carried out with Agilent’s Low RNA Input linear 
amplification kit PLUS (Agilent). Microarray hybridization and 
sample washing were conducted using Agilent’s Gene Expres-
sion Hybridization Kit (Agilent) and Agilent’s Gene Expression 
Wash Buffer Kit (Agilent), respectively. Following this pre-pro-
cess, samples were analyzed with Agilent’s DNA microarray 

scanner and Feature Extraction software (Agilent).

Liquid chromatography with tandem mass spectrometry 
Samples were treated with 100 µL acetonitrile at a 1:2 v/v 

ratio and were centrifuged at 16,000 g for 10 min at 4°C to 
remove proteins (Want et al., 2006). An Agilent High Perfor-
mance LC-MS/MS 6530 Q-TOF system (Agilent) was run in 
positive-ion mode for metabolic profiling. The LC system was 
equipped with a TARGA (Higgins, Mountain View, CA, USA) 
C18 column (100 mm×2.1 mm i.d.; 5 µm particle size). The LC 
parameters were set using an autosampler at a temperature 
of 4°C, injection volume of 5 µL, column temperature of 40°C, 
and flow rate of 0.4 mL/min. The compositions of mobile phas-
es were as follows. A: 0.1% formic acid in water and B: 0.1% 
formic acid in ACN. The sample was injected in triplicate to en-
sure reliability though repetition. Total run time was 30 minutes 
with five minutes of post-run gap. Metabolites were identified 
with a mass/charge range of 50-1000 m/z, and nitrogen was 
chosen as the collision gas. Mass Hunter Acquisition software 
(Agilent) was used to collect data from LC-MS. 

Metabolic profiling with statistical analysis
Data extraction: The LC-MS data were processed using 

apLCMS, an R package, to retrieve features of the samples 
(Yu et al., 2009). The m/z of ions were detected from 50 to 
1,000 with a resolution of 20,000. A total of 5208 features were 
extracted. The triplicated data were then averaged to be used 
in further analysis. 

Table 1. Physiological characteristics of experimental mice after feeding

WTNF WTHF CKONF CKOHF

Body weight (g) 33.5 ± 0.9 45.4 ± 1.9* 39.0 ± 2.0* 46.9 ± 2.1*,†

Liver weight (g) 1.12 ± 0.20 1.26 ± 0.16 1.32 ± 0.26 1.74 ± 0.35
ALT (IU/L) 34 ± 4 86 ± 11* 60 ± 7* 193 ± 23*,†,#

Liver TG (mg/mg protein) 0.15 ± 0.02 2.97 ± 0.49* 2.10 ± 0.27* 4.46 ± 0.47*,†,#

Data are presented as means ± SE of 6 mice per group. *p<0.05 compared to WTNF. †p<0.05 compared to CKONF. #p<0.05 compared to 
WTHF. ALT represents Alanine aminotransferase. TG represents Triglyceride.

Fig. 2. PCA and HCA based on discrimination of HFD or NFD fed WT and CKO mice. Fig. 2 shows the result of PCA (A) and HCA (B) (http://
www.metaboanalyst.ca/). In Fig. 2A, each group showed a tendency to gather in their respective colored circle. Fig. 2B shows HCA a clear 
separation of clustering among all 4 groups (WTNF, WTHF, CKONF, and CKOHF) with color keys (upper clustering bar).
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Statistical analysis with PCA, HCA, and Manhattan plot: 
Bioinformatics using principal component analysis (PCA) and 
hierarchical cluster analysis (HCA) was conducted to deter-
mine if metabolic phenotypes were different among groups. 
The extracted features from apLCMS were filtered with inter-
quantile range (IQR), log-transformed and pareto scaled us-
ing Metaboanalyst (http://www.metaboanalyst.ca/). Then the 
pairwise analyses between WTNF vs WTHF and WTHF vs 
CKOHF were performed. Manhattan plots were applied with 
a threshold of false discovery rate (FDR), q=0.1 to determine 
the significant metabolites among total features in pairwise 
comparisons using Limma, an R package.

Metabolite database search using Metlin database: The 
significant features were further annotated by their m/z values 
using the Metlin database (https://metlin.scripps.edu/) to iden-
tify the compound names. The positive adducts were used 
with a confidence limit of 10 ppm (Wolf et al., 2010). KEGG 
IDs provided by Metlin database (http://metlin.scripps.edu/) 
were used further used to determine the affected metabolic 
pathways in the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) mouse metabolic pathway database (http://www.
genome.jp/KEGG/) between WTNF vs WTHF and WTHF vs 
CKOHF. 

Gene data extraction for transcriptomic study: To select al-
tered genes by fold change, the threshold of fold change (FC) 
was set as 1.5. In this way, a total of 1,038 out of 28,299 genes 
with FC>1.5 in WTNF vs WTHF, and 1,191 out of 28,299 
genes with FC>1.5 in WTHF vs CKOHF were chosen for fur-
ther pathway analysis using KEGG database.

Pathway analysis with KEGG by integrative omics
KEGG database can visualize interactions between mo-

lecular and biological networks, which enables user to link 
metabolite information with gene data. Significantly altered 
metabolites (q<0.1) and genes (FC>1.5) were inserted as a 
single input file in KEGG database. The affected pathways hits 
were constructed as cumulative bars with the number metabo-
lites and genes hits. Bar graphs of significant metabolites af-
fected in those pathways were analyzed using the GraphPad 
Prism v 5.03 software (GraphPad Software, Inc., CA, USA) to 
measure their relative intensities among groups.

Receiver operating characteristic (ROC) curves and 
prediction of the 5 metabolites

The prediction ability of the five significant metabolites was 
assessed using receiver operating characteristic (ROC) curve 
from Metaboanalyst. ROC curve showed the optimal num-
ber of variables, sensitivity, specificity and area under curve 
(AUC) of each metabolite that can differentiate between two 
group (Obuchowski and Bullen, 2018). Then, the samples 
were analyzed to investigate how those variables separate 
between groups using predicted class probabilities.

Correlation analysis based on metabolites and genes
To support our data, we employed correlation study among 

metabolites and genes. The correlation analysis was visual-
ized using heatmap with clustering based on pearson r cor-
relation method. Then, correlation coefficients of metabolites 
and genes were shown as bars.

RESULTS

Physiological characteristics after feeding NFD or HFD on 
wild type

In order to confirm the validity of the NAFLD animal mod-
el in mice fed NFD or HFD for 11 weeks, we first measured 
physiological changes like body weight among NFD or HFD 
fed WT and CKO mice. Both the WT and CKO mice fed with 
HFD exhibited increased body weight, as shown in Table 1. 
WTHF and CKOHF mice weighed 45.4 ± 1.9 and 46.9 ± 2.1 
g, respectively, while WTNF mice weighed 33.5 ± 0.9 g. The 
body weight, alanine aminotransferase (ALT) and liver triglyc-
eride (TG) of HFD mice were significantly elevated compared 
to NFD mice (p<0.05). Characteristics of WT or CKO mice fed 
with HFD are described in Table 1. In addition, the lipid ac-
cumulation in mice liver was observed by H&E staining (data 
not shown).

Metabolic alterations in NAFLD 
The validity of the established NAFLD mouse model was 

further ensured by analyzing the metabolic alterations caused 
by NFD and HFD between the WT or CKO mice. The study 
scheme was designed as shown in Fig. 2. The analysis was 
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Fig. 3. Manhattan plots of (A) WTNF vs WTHF and (B) WTHF vs CKOHF. Fig. 3 represents a Manhattan plot with the black dashed line 
corresponding to q=0.1. Dots above the dashed line represent 871 significant features (q<0.1) upon comparing WTNF and WTHF (A). Dots 
above the dashed line represent 1172 significant (q<0.1) upon comparing WTHF and CKOHF (B).
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performed by inserting the apLCMS feature table containing 
5,208 features in Metaboanalyst 3.0. Unsupervised multivari-
ate statistical PCA and HCA procedures using Metaboanalyst 
3.0. were employed to observe metabolic differences among 
the 4 groups. In Fig. 2A, the PCA score plot showed a tenden-
cy of gathering in individual circles: WTNF (sky blue); WTHF 
(blue); CKONF (green); and CKOHF (red). Additionally, to 
further define the differential metabolic phenotypes between 
NFD and HFD fed animals, a two-way HCA was performed 
among the WT and CKO mice. As shown in Fig. 2B, the upper 
clustering bar of HCA showed a clear separation among the 
4 groups, suggesting that the metabolites were significantly 
different among groups. These results ensured the metabolic-
associated alteration caused by NFD and HFD, as the WT 
mice fed with NFD or HFD were significantly distinguishable 
by either PCA or HCA. Similarly, a perturbed metabolic pheno-
type upon catalase gene knockout was also observed in the 
PCA and HCA analysis, as CKOHF mice were well-separated 
from WTHF mice (Fig. 2A, 2B). In order to specifically focus 
on HFD effect on WT or CKO mice, we excluded the CKONF 
group in further analysis.

Investigating significant metabolites
After observing distinct metabolomics-based profiles 

among HFD and NFD fed WT or CKO mice, we investigated 
the metabolic features that were responsible for these distinc-
tions. To identify the metabolites responsible for the alterations 

caused by HFD and CKO, we compared WTNF vs WTHF and 
WTHF vs CKOHF using Manhattan plots (Fig. 3). Manhattan 
plots portray metabolites as dots (Clarke et al., 2011), where 
the dashed line signifies FDR q=0.1 and dots above the black 
dashed line represent the significant features. As shown in 
Fig. 3, 871 features were significantly different between WTNF 
and WTHF (Fig. 3A), while 1172 features were significantly 
different in WTHF and CKOHF (Fig. 3B). The significant fea-
tures annotated with Metlin database were mapped to KEGG 
pathway analysis to find affected pathways in CKO mice fed 
with HFD. These pathways were further investigated for their 
up- or down-regulation by CKO mice fed with HFD.

Identification of affected genes by transcriptomic analysis
Determining the genes affected due to HFD or catalase 

deficiency might have an important correlation with our sig-
nificant features among the top affected metabolic pathways. 
Therefore, we performed univariate analysis on gene altera-
tion based on their fold change (FC). As mentioned in method 
section, we observed that 1,038 out of 28,299 genes with 
threshold of FC 1.5 were affected between WTNF and WTHF 
possibly due to high fat diet as shown in Fig. 4A. While 1191 
out of 28299 genes with threshold of 1.5 between WTHF and 
CKOHF as shown in Fig. 4B were possibly altered due to cata-
lase deficiency, since both groups were HFD fed. These up- 
or down-regulated genes based on fold changes were further 
analyzed for the metabolite–gene integrative analysis. The 

Fig. 4. Fold change analysis of WTNF vs WTHF and WTHF vs CKOHF. This figure represents log2 transformed fold change of each gene. (A) 
Total 1,038 out of 28,299 genes altered with fold change threshold of 1.5 shown as purple dots. (B) Total 1191 out of 28,299 genes altered 
with fold change threshold of 1.5 shown as purple dots.
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Fig. 5. Integrative pathway analysis of top 10 affected pathways. Fig. 5 represents top 10 affected pathways by both metabolites and 
genes. (A) The top 10 pathways affected by high fat diet was shown as bar graphs using the number of hit metabolites (red bar) and genes 
(blue bar) for each pathways. (B) The top 10 pathways affected by catalase knockout was shown as bar graphs using the number of hit me-
tabolites (red bar) and genes (blue bar) for each pathways.
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genes which showed up in gene-metabolite integrated altered 
pathways were considered important.

Integrative pathway analysis with KEGG
As the major aim of this study was to observe metabolic 

and transcriptomic alterations caused by HFD and/or catalase 
deficiency, we first investigated HFD effect between WTNF 
and WTHF. To do so, based on the 871 significant metabolites 
from the manhattan plot (Fig. 3A) and the 1,038 altered genes 
(Fig. 4A), we performed integrative pathway analysis between 
WTNF and WTHF. The integrative pathway analysis showed 
highly affected pathways and top 10 pathways were listed with 
the number of metabolites and genes as shown in Fig. 5A. 
While, to understand the metabolic and transcriptomic chang-
es induced by catalase deficiency, 1,172 significant metabo-
lites from manhattan plot (Fig. 3B) and 1,191 altered genes 
(Fig. 4B) among WTHF and CKOHF groups were chosen for 
KEGG input. The resulting top ten highly affected pathways 
are shown in Fig. 5B. 

Among top 10 pathways from WTNF vs WTHF, primary 
bile acid biosynthesis which is related to liver was chosen. As 
shown in Fig. 6, significant metabolites annotated as cholic 
acid (391.28 m/z [M+H-H2O]+, q=0.091) and 3β, 7α-dihydroxy-
5-cholestenoate (433.3327 m/z [M+H]+, q=0.047) and the 
gene named cyp7b1 (FC=0.5040) in primary bile acid biosyn-
thesis were highly affected by HFD among WT mice. In ad-
dition to cyp7b1, cyp27a1 (FC=0.7754) and hsd3b7 (0.8893) 
were also affected in primary bile acid biosynthesis but the 

FC of these genes didn’t meet the threshold 1.5. All metab-
olites and genes shown in Fig. 6 were found to be consis-
tently down-regulated. Among top 10 pathways from WTHF 
vs CKOHF, retinol metabolism and linolenic acid metabolism 
were considered as important because these pathways were 
related to oxidative stress and immune system, respectively. 
As shown in Fig. 7, the following significant metabolites; all-
trans-5,6-epoxy-retinoic acid or all-trans-4-hydroxy-retinoic 
acid (334.23 m/z [M+NH4]+, q=0.071), and all-trans-4-oxo-
retinoic acid (332.22 m/z [M+NH4]+, q=0.027) between WTHF 
and CKOHF belonged to retinol metabolism. all-trans-Retinoic 
acid (318.24 m/z [M+NH4]+, q=0.124) was not significantly dif-
ferent but was slightly up-regulated in CKOHF (Fig. 7). The 
gene named cyp3a41b was found to be highly up-regulated 
(FC>1.5) in retinol metabolism. cyp26a1 (FC=1.2385) in reti-
nol metabolism was up-regulated but not within the criteria of 
FC>1.5, however the associated metabolites were significant-
ly increased in CKOHF. While, we previously showed that cat-
alase deficiency elevated macrophage infiltration and acceler-
ated HFD-induced liver inflammation in CKO mice (Piao et al., 
2017). Here, in support of our previous results, we found lino-
lenic acid metabolism among the top 10 affected pathways in 
KEGG analysis between WTHF and CKOHF. Significant me-
tabolites and altered genes that can contribute in liver inflam-
matory response in NAFLD were as following; α-linolenic acid 
or γ-linolenic acid (296.25 m/z [M+NH4]+, p=0.006, q=0.039), 
eicosapentaenoic acid (320.25 m/z [M+NH4]+, q=0.076), and 
thromboxane A2 (335.22 m/z [M+H-H2O]+, q=0.089), ptgs1 
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(FC=1.5893) and tbxas1 (FC=2.0721) as shown in Fig. 8. Ad-
ditionally, fads2 (FC=1.1801) was also increased in CKOHF 
compared to WTHF but not within the selection threshold 1.5. 
All significant metabolites and altered genes shown in Fig. 8 
were consistently up-regulated. The fold change of all signifi-
cant metabolites and altered genes shown in each pathway 
are summarized in Table 2. Further, as shown in Fig. 9A, we 
separately analyzed the overall tendency of increase or de-
crease of selected metabolites among 4 groups. In addition, 
cholic acid was quantified and showed decreased concentra-
tion (nM) in WTHF, CKONF and CKOHF compared to WTNF 
(Fig. 9B). This result concretes our previous analysis that 
metabolic alteration in retinol metabolism and linolenic acid 
metabolism were induced not only by single factor but the 
HFD combined with catalase deficiency. Five out of seven me-
tabolites from our study were further validated with authentic 

standards as shown in Supplementary Fig. 1-5.

Receiver operating characteristic (ROC) curve of 
significant metabolites

The receiver operating characteristic (ROC) curve with five 
significant metabolites from retinol metabolism and linolenic 
acid metabolism between WTHF and CKOHF was performed 
to investigate AUC, as well as sensitivity and specificity, in or-
der to support our hypothesis of these effects caused by cata-
lase knockout. All metabolites were predicted with AUC>0.78, 
and showed a good sensitivity (>0.8) and specificity (>0.7) in 
discrimination of the WTHF and CKOHF (Table 3). With five 
metabolites, ROC curve showed the highest AUC value in 
two variable model (AUC=0.905) as shown in Fig. 10A. In ad-
dition, the samples were analyzed using two variable model 
and showed separated by predicted class probability values 
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Fig. 8. Linolenic acid metabolism pathway affected in CKOHF compared to WTHF. The bar graphs represent that α/γ-linolenic acid, eicosa-
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Table 2. Fold change of metabolites and genes for each pathway and group, respectively

Pathway (Group) Phenotype Name Fold Change

Primary bile acid biosynthesis
   (WTNF vs WTHF)

Metabolite (m/z) Cholic acid (391.28) 0.3071
3β, 7α-Dihydroxy-5-cholestenoate (433.33) 0.1501

Gene cyp7b1 0.5040
Retinoic acid metabolism
   (WTHF vs CKOHF)

Metabolite (m/z) all-trans-4-Hydroxy-retinoic acid (334.23) 2.4388
all-trans-4-Oxo-retinoic acid (332.22) 2.8720

Gene cyp3a41b 1.5344
Linolenic acid metabolism
   (WTHF vs CKOHF)

Metabolite (m/z) α/γ-Linolenic acid (296.25) 2.1972
Eicosapentaenoic acid (320.25) 2.0151
Thromboxane A2 (335.22) 3.3668

Gene ptgs1 1.5893
tbxas1 2.0721
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except one samples from each group (Fig. 10B). The two vari-
able model including all-trans-4-oxo-retinoic acid and throm-
boxane A2 showed predict accuracy of 84.5% and this value 
was the highest among the other values from models.

Correlation analysis among metabolites and genes
To consolidate our data, we performed correlation analysis 

with all affected of metabolites with genes from selected path-
ways. Interestingly, our result showed that metabolites and 
genes belonging to primary bile acid biosynthesis were clus-
tered together and while those belonging to retinol metabolism 
and linolenic acid metabolism except cyp3a41b, were clus-
tered together as well (Fig. 11A). Further, we investigated cor-
relation coefficient value of each metabolite or gene against 
the others. Among them, all-trans-4-oxo-retinoic acid showed 
positive correlation with others except cyp3a41b and cyp7b1 
(Fig. 11B). The other correlation coefficient bar graphs were 
not shown in this manuscript.

DISCUSSION 

NAFLD is rapidly growing as one of the most prevalent 
liver diseases linked to metabolic, cardiovascular, and hepa-
tocellular carcinoma without approved treatment. Since the 
prevalence of NAFLD in the United States is over 75% of the 
chronic liver disease cases, this disease represents a major 
burden to both morbidity and mortality in the US (Hassan et 
al., 2014). However, NAFLD diagnosis in population studies 
is usually obtained by ultrasonography, which is known to un-
derestimate the prevalence of fatty liver. NAFLD refers to a 

spectrum ranging from noninflammatory isolated steatosis to 
NASH, which is characterized by steatosis, necroinflamma-
tory changes, and varying degrees of liver fibrosis (Arguello 
et al., 2015). In addition, the pathogenesis of NAFLD remains 
unknown. In this study, we applied integrative omics to investi-
gate the combined effect of HFD and oxidative stress through 
catalase deficiency compared to WT in a mouse model to 
study NAFLD/NASH.

For this study, NAFLD animal model in mice fed NFD or 
HFD was established. Before investigating metabolic al-
terations, we measured physiological changes such as body 
weight, liver weight, ALT and liver TG among NFD or HFD fed 
WT and CKO mice. Interestingly, CKONF group, although less 
than WTHF and CKOHF, showed significantly elevated body 
weight compared to WTNF. CKO affected the body weight of 
mice, however, it is apparent that HFD combined with CKO 
significantly contributed to increase in body weight of mice 
compared to CKONF. Apart from significant elevations in body 
weight, ALT and TG showed significant increase in CKOHF 
compared to other groups, indicating that a good NAFLD 
model was created among the WT or CKO mice fed with HFD. 

Based on integrative pathway analysis, we focused on path-
way named primary bile acid biosynthesis. The main function 
of bile acids is not only to emulsify and digest dietary fats and 
oils into micelles, but also to regulate cholesterol homeosta-
sis (Li et al., 2013). Bile acids are synthesized exclusively in 
the liver from cholesterol through two major pathways, namely 
the classic pathway and acidic pathway (Staels and Fonseca, 
2009). The enzyme, cyp7b1, is known to catalyze the reaction 
in the cholesterol catabolic pathway, which converts choles-
terol to bile acids (Stiles et al., 2009). The acidic bile acid syn-
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thesis pathway is initiated by sterol 27-hydroxylase (cyp27a1) 
and produces oxysterols, notably 25-hydroxycholesterol and 
27-hydroxycholesterol, which are important ligands in regulat-
ing inflammation, lipid metabolism, and cell proliferation (Yuan 
and Bambha, 2015). In our previous study, plasma TG and TC 
levels were found to be significantly increased only in CKOHF 
mice compared to those in WTHF mice. However, no differ-
ence in body weight, systemic glucose tolerance, and liver in-
sulin signaling was detected between the WTHF and CKOHF 
mice (Piao et al., 2017). Interestingly, using a metabolomics 
approach in association with transcriptomics, this study de-
termined that 3 genes (cyp27a1, cyp7b1, and hsd3b7) were 
down-regulated in WT mice fed with a HFD. Such decreased 
expression of rate-limiting genes may have caused the de-
creased production of downstream metabolites. This may im-
ply that an exogenous HFD may have terminated the endog-
enous bile acid biosynthesis pathway to obstruct excessive fat 
intake from the intestine affected by bile acids (Yamato et al., 
2012). In a recently published study by Mouzaki et al. (2016), 
it was demonstrated that the level of fecal bile acid including 
cholic acid was higher in patients with NAFLD/NASH com-
pared to healthy control. Though the median value of BA was 
increased in feces of NAFL and NASH patients, the maximum 
values of each group were decreased. On the other hand, 
our study was performed using mice liver sample and we ob-
served integrative metabolomic and transcriptomic alterations. 
In comparison to our previous study showing the negligible 
effect of HFD on WT animals’ TG and TC levels, our result 
observing altered bile acid biosynthesis among WT mice fed 
with HFD or NFD, highlights the importance of metabolomics-

transcriptomics approaches in investigating a pathological 
condition at the level of metabolic regulation or variation.

Our previous study confirmed a variety of phenotypes rep-
resenting the induction of liver injury caused by HFD in CKO 
mice (Piao et al., 2017). An elevated liver injury phenom-
enon was promoted by increased levels of hepatic nitrotyro-
sine (Piao et al., 2017), which was previously shown to be a 
marker of oxidative stress (Darwish et al., 2007). In this study, 
we further investigated the metabolic effects caused by oxida-
tive stress in HFD fed CKO mice. Furthermore, Pasquali et al. 
(Pasquali et al., 2008) previously reported the toxic effects of 
retinol and its major biologically active metabolite, all-trans ret-
inoic acid (RA), related to pro-oxidant properties. Interestingly, 
in support of results from Pasquali et al. (2008) and our previ-
ous study of oxidative stress in CKO mice, we detected altera-
tions in the retinoic acid pathway of CKO mice. Retinol and 
retinoic acid enhance intracellular reactive species production 
and increase catalase activity, which is a major mechanism 
of defense against cytotoxic effects of H2O2 (Pasquali et al., 
2008). Our study observed that the levels of retinoic acids be-
longing to the pathway was increased significantly in CKOHF 
compared to that in WTHF mice. In addition, previous studies 
observed that the mRNA expression levels of monocyte che-
moattractant protein-1 (MCP-1) and cyclooxygenase (COX2) 
was significantly increased in CKOHF compared to those in 
WTHF mice, as determined in the immunohistochemically 
stained F4/80 liver homogenate. In accordance, this study 
showed significantly altered effects of CKO on linolenic acid 
metabolism. Metabolites in this pathway, such as arachidonic 
acid and thromboxane A2, are well-known important media-

Table 3. ROC details of retinoic acid and linolenic acid metabolism’s significant metabolites

m/z Annotation AUC Sensitivity Specificity

334.23 all-trans-4-Hydroxy-retinoic acid 0.89 1 0.7
332.22 all-trans-4-Oxo-retinoic acid 0.94 0.8 1
296.25 α/γ-Linolenic acid 0.92 0.8 1
320.25 Eicosapentaenoic acid 0.89 0.8 1
335.22 Thromboxane A2 0.78 0.8 0.8
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tors during the inflammatory response (Kuehl and Egan, 1980; 
Nakahata, 2008). Our results suggest that a severe inflamma-
tory response occurred due to catalase deficiency in mice fed 
a HFD.

In essence of unmatched pathways between transcrip-
tomics and metabolomics, we observed retinol metabolism 
affected by genes among WTNF vs WTHF. This may indicate 
that retinol metabolism was affected by catalase knockout 
with high fat diet. While, cancer related pathways showed 
increased number of genes in WTHF vs CKOHF compared 
to WTNF vs WTHF as following pathway name and changes 
of hit genes: cytokine-cytokine receptor interaction (18→31), 
PI3K-Akt signaling pathway (13→30) and MAPK signaling 
pathway (15→27). This is interesting, as it imply that transcrip-
tomic alterations caused by catalase knockout with high fat 
diet does not only propose the hepatic disorder but also con-
tributes in the occurrence of cancer. However, further studies 
should confirm these relationships. 

In spite of such findings, our study has some limitations. 
First, the number of mice used in this study was six per group, 
hence, the performance of our statistical analysis needs to be 
validated in a large scale of in vivo/in vitro study. Second, for 
the investigation of metabolic alteration induced by nonalco-
holic fatty liver disease, extracted liver samples were used in 
this study. The result from this study further need to be vali-
dated in serum or plasma so that liver biopsy accompanied 
with histological observation can be replaced with serological 
test for identification of nonalcoholic fatty liver disease. 

In summary, our study highlights the explanation of un-
known mechanism of NAFLD induced by HFD and CKO us-

ing integrative omics combined with physiological changes 
in body weight, liver weight, ALT and liver triglyceride. Our 
results provide a better understanding of the mechanisms of 
NAFLD and a basis of further research or treatment strategy 
by considering catalase deficiency as an important factor of 
liver injury and modification of high fat diet to normal fat diet to 
prevent the NAFLD prevalence. 
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