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ABSTRACT Compositional and functional alterations to the gut microbiota during
aging are hypothesized to potentially impact our health. Thus, determining aging-spe-
cific gut microbiome alterations is critical for developing microbiome-based strategies
to improve health and promote longevity in the elderly. In this study, we performed a
meta-analysis of publicly available 16S rRNA gene sequencing data from studies inves-
tigating the effect of aging on the gut microbiome in mice. Aging reproducibly
increased gut microbial alpha diversity and shifted the microbial community structure
in mice. We applied the bioinformatic tool PICRUSt2 to predict microbial metagenome
function and established a random forest classifier to differentiate between microbial
communities from young and old hosts and to identify aging-specific metabolic fea-
tures. In independent validation data sets, this classifier achieved an area under the
receiver operating characteristic curve (AUC) of 0.75 to 0.97 in differentiating micro-
biomes from young and old hosts. We found that 50% of the most important pre-
dicted aging-specific metabolic features were involved in carbohydrate metabolism.
Furthermore, fecal short-chain fatty acid (SCFA) concentrations were significantly
decreased in old mice, and the expression of the SCFA receptor Gpr41 in the colon
was significantly correlated with the relative abundances of gut microbes and micro-
bial carbohydrate metabolic pathways. In conclusion, this study identified aging-
specific alterations in the composition and function of the gut microbiome and
revealed a potential relationship between aging, microbial carbohydrate metabolism,
fecal SCFA, and colonic Gpr41 expression.

IMPORTANCE Aging-associated microbial alteration is hypothesized to play an impor-
tant role in host health and longevity. However, investigations regarding specific gut
microbes or microbial functional alterations associated with aging have had inconsis-
tent results. We performed a meta-analysis across 5 independent studies to investi-
gate the effect of aging on the gut microbiome in mice. Our analysis revealed that
aging increased gut microbial alpha diversity and shifted the microbial community
structure. To determine if we could reliably differentiate the gut microbiomes from
young and old hosts, we established a random forest classifier based on predicted
metagenome function and validated its performance against independent data sets.
Alterations in microbial carbohydrate metabolism and decreased fecal short-chain
fatty acid (SCFA) concentrations were key features of aging and correlated with host
colonic expression of the SCFA receptor Gpr41. This study advances our understand-
ing of the impact of aging on the gut microbiome and proposes a hypothesis that
alterations in gut microbiota-derived SCFA-host GPR41 signaling are a feature of
aging.
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The human gut harbors a complex ecosystem of microorganisms, collectively referred
to as the gut microbiota. The initial colonization of the gut microbiota is generally

thought to be established at birth, developing toward a stable adult-like microbial com-
munity structure by the age of 3 years (1). The gut microbiota develops with human
hosts and has a variety of biological functions in human health and disease. Increasing
evidence suggests that the gut microbiota plays important roles in the development
and maturation of the immune system, food digestion and nutrient metabolism, gut en-
docrine regulation, neurological signaling, defense against pathogens, and elimination
of toxins (2).

Aging is a time-dependent multifactorial process characterized by functional declines
in a variety of biological and physiological systems and an increased risk for major human
chronic diseases (3). During the aging process, remarkable aging-related gut microbial
alterations have been observed in human studies across various populations (4, 5).
However, gut microbiome profiles across different elderly populations vary widely. A
number of studies have found that the aged human gut microbiome is characterized by
increased proportions of opportunistic pathogens (e.g., Clostridioides) and decreases in
health-promoting bacteria (e.g., bifidobacteria and lactobacilli) (4–8). Moreover, several
studies conducted on extreme-aged people (centenarians) show that the microbial pro-
files of extreme-aged people differ from those of old adults, potentially identifying a
healthy aging microbial pattern (9–11). This healthy aging microbiome is characterized by
the depletion of core microbial taxa (e.g., Bacteroides and Prevotella spp.) and becomes
increasingly unique to individuals (9). The heterogeneity of findings in human aging stud-
ies indicates that multiple gut microbiome patterns of aging exist.

As we age, our lifestyle and diet are likely to change due to a reduction in our physi-
ological systems. Aging is often accompanied by reduced food diversity, especially in
fiber-containing foods (e.g., fruits and vegetables), as well as an increased risk of mal-
nutrition. A healthy and diverse diet is positively related to a more diverse gut micro-
biota in old people (12). Dietary supplementation of prebiotics (e.g., inulin) leads to a
higher abundance of beneficial bacterial groups (e.g., Bifidobacterium) in old people
(13). On the other hand, malnutrition is associated with an increased abundance of
Clostridiales taxa, which has been associated with increased frailty in aged individuals
(12, 14). Thus, diet may account for at least a portion of the variation in microbial com-
position among different elderly populations. Moreover, aged populations are more
likely to experience hospitalization, infections, and exposure to antibiotics and other
medications (15), which would also significantly impact the gut microbiome composi-
tion. The gut microbiota profile of old people in long-term-care facilities differs from
those of community-dwelling subjects, with a decrease in microbial diversity and a loss
of community-associated taxa (e.g., Coprococcus and Roseburia) (12). Thus, the interpre-
tation of studies correlating age with changes in microbial communities is complex
due to the various factors that would potentially impact and confound our under-
standing of aging-associated gut microbiome alterations. Systemically investigating
and separating the effects of aging and exposures on gut microbiota composition and
function are difficult in humans but may be accomplished in experimental animal
models.

Research animals, such as mice (Mus musculus), are maintained under standardized
conditions, with uniform diet, bedding, dark-light cycles, and other environmental
exposures. Thus, experimental mice are a useful model system to study aging-specific
changes in the host-microbiome interaction. Aging-related gut microbial alterations
have been investigated in mice in several studies (16–20). A distinct gut microbial com-
position and a structure shift between young and old mice have been found, which
partially resemble the changes observed in human studies. However, when we exam-
ined changes in specific taxa or functional alterations, inconsistent or conflicting results
were common. For example, the Firmicutes-to-Bacteroidetes ratio (F/B ratio), an index
often used to describe gut microbiome profiles, was increased in aged mice in a study
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by Kim et al. (21), while it was decreased in a study by Zhang et al. (22) and unchanged
in a study by Langille et al. (23).

Inconsistent findings from different mouse studies make it difficult to come to a
consensus regarding aging-specific microbial alterations, a prerequisite to identifying
microbiome-based therapeutic targets for aging-related diseases. In this study, we per-
formed a meta-analysis of publicly available 16S rRNA gene sequencing data of studies
investigating the effect of aging on the gut microbiome in mice. By integrating aging-
related microbiome alterations across 5 independent studies, we hoped to identify
age-specific changes in community composition or function common to all studies
and then validate these in additional data sets. In brief, we reanalyzed raw sequencing
data from all studies using the same pipeline. We then applied the bioinformatic tool
PICRUSt2 (Phylogenetic Investigation of Communities by Reconstruction of Unobserved
States) to predict microbial metagenome function and established a random forest clas-
sifier to differentiate young and old age and identify aging-specific metabolic features.
We then validated our random forest classifier against one 16S rRNA gene sequencing
data set and one whole-genome metagenomic sequencing data set from young and old
mice generated by our laboratory. Our analysis identified an increase in gut microbial di-
versity with age and revealed aging-associated alterations in microbial carbohydrate me-
tabolism that significantly correlated with colonic Gpr41 expression, revealing how aging
affects one mechanism of host-microbe interactions, that is, gut microbiome-produced
short-chain fatty acids (SCFA) acting through their receptors.

RESULTS
Microbial alpha diversity increased with aging. The bioinformatic analysis pipe-

line used to process and analyze the raw sequencing data is shown in Fig. 1 and
described in detail in Materials and Methods. Common metrics for alpha diversity,
including Shannon, Simpson, Faith’s phylogenetic diversity (PD), and Chao1 indices,

FIG 1 Bioinformatic analysis pipeline. The raw 16S rRNA gene sequencing data were downloaded and imported into QIIME2 for data processing.
DADA2 was used to denoise reads. OTU picking was performed by the Vsearch closed-reference method. The resulting feature table and feature
data were then used for phylogenic tree construction and taxonomy annotation, followed by diversity analysis and taxon bar plot visualization.
Functional prediction was performed by PICRUSt2. A random forest classifier was established based on predicted functional pathways to
differentiate young- and old-age gut microbiomes and identify aging-specific metabolic features. The random forest classifier was then verified
by two external data sets generated by us. The CB6F1 16S rRNA gene sequencing data were analyzed according to the same analysis pipeline.
The whole-genome sequencing data were first filtered to remove low-quality and host genome contaminant reads, followed by SortMeRNA and
OTU picking for taxonomy characterization and HUMAnN3 for functional analysis.
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were calculated. Due to the heterogeneity of studies, including varied sample process-
ing, sequencing platforms, variable regions, study sizes, and sequencing depths across
data sets (detailed in Table 1 and Fig. S2 in the supplemental material), the data were
visualized by log2 fold changes (log2FCs) of old to young with 95% confidence intervals
(CIs) on a per-data-set basis (Fig. 2). With the exception of experiment 5 (Exp5), each
data set had one or more alpha diversity indices that were significantly increased in
the aged mice (Fig. 2). When considering all data sets together, all 4 alpha diversity
indices were significantly increased in the aged mice (Fig. 2) (Shannon 95% CI, 0.082,
0.200; Simpson 95% CI, 0.020, 0.070; Chao1 95% CI, 0.147, 0.389; Faith’s PD 95% CI,
0.097, 0.265 [linear mixed-effect model adjusted for study, P , 0.001 for each diversity
index]).

The human gut microbiota is mostly composed of two dominant bacterial phyla,
Firmicutes and Bacteroidetes (24). Contradictory results regarding the direction of F/B
ratio alterations in response to aging have been reported (21–23). Thus, we calculated
the relative abundance of taxa at the phylum level and the F/B ratio. As expected,

TABLE 1 Summary of study characteristics

Data
set Sex

Age (mo)
Sequencing
region

No. of samples
Database/accession
no. ReferenceYoung Old Young Old

Exp1 Female 2 26 V4 5 5 SRA/PRJNA311095 M. N. Conley et al. (16)
Exp2 Female 1.5–2 18.5 V4 6a 6a SRA/PRJNA588787 H. C. Barreto et al. (17)
Exp3 Female 3 22 V3-V4 5b 5b ENA/PRJEB31652 M. Stebegg et al. (18)
Exp4 Male 4 24 V3-V4 8 8c SRA/PRJNA450595 B. van der Lugt et al. (20)
Exp5 Male 5–6 18–20 V4-V5 38d 27d SRA/PRJNA400638 J. D. Hoffman et al. (19)
Exp6 Male 3 22 V3-V4 7b 14b ENA/PRJEB31652 M. Stebegg et al. (18)
CB6F1 Male 3 24 V4 8 8 SRA/PRJNA737742 TBDe

Metagenomics Male 3 26 Whole genome 10 10 SRA/PRJNA739153 This study
aOnly control young and old data were included.
bOnly control young and old C57BL/6 data were included.
cOnly fresh fecal samples were included.
dLow-sequencing-depth data were excluded.
eTBD, to be determined (You X, Yan J, Herzog J, Campbell R, Hoke A, Hammamieh R, Sartor RB, Kacena MA, Chakraborty N, Charles JF, manuscript in preparation).

FIG 2 Forest plots of alpha diversity metrics. Shannon (A), Simpson (B), Faith’s PD (C), and Chao1 (D) indices demonstrated an increase
in alpha diversity in response to aging. Analysis of the combined data sets was performed using a linear mixed-effects model using the
formula log2FC ; age 1 (1jstudy). A P value of ,0.05 was considered statistically significant.
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Firmicutes and Bacteroidetes dominated the microbial community in both young and
aged mice (Fig. 3A). However, no alteration of the F/B ratio was found in the aged mice
compared to the young mice when considering all the data in aggregate (Fig. 3B) (95%
CI, 20.49, 0.64 [linear mixed-effect model adjusted for study, P . 0.05]) or in 4 of the 6
data sets. Consistently, we found that the relative abundances of these two phyla were
not altered with aging (Table S3). Instead, the subdominant taxon Deferribacteres was
significantly enriched and the subdominant taxon Verrucomicrobia was significantly
decreased by old age (Table S3). At the genus level, we found a total of 15 taxa that
were significantly enriched by young or old age, including Mucispirillum (log2FC 95%
CI, 0.88, 2.73 [Benjamini-Hochberg {BH}-corrected P , 0.05) and Akkermansia (log2FC

FIG 3 Comparative compositions of the gut microbiomes of young and old mice. (A) Relative abundances of taxa at the phylum level show that Firmicutes
and Bacteroidetes dominate the microbial communities in both young and aged mice. (B) A forest plot of the ratio of the Firmicutes phylum to the
Bacteroidetes showed no significant alteration between young and old mice. (C) Taxa significantly enriched by age on combined data sets. For panels B
and C, the combined analysis was performed using a linear mixed-effects model using the formula log2FC ; age 1 (1jstudy). The Benjamini-Hochberg
method was used to correct for multiple comparisons. A P value of ,0.05 was considered statistically significant.

Aging Murine Gut Microbiome Meta-analysis mSystems

March/April 2022 Volume 7 Issue 2 10.1128/msystems.01248-21 5

https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.01248-21


95% CI, 23.41, 20.92 [BH-corrected P , 0.05]), which are the subgroups under the
phyla Deferribacteres and Verrucomicrobia (Fig. 3C).

Aging shifts gut microbiome structure. The beta diversity indices unweighted
and weighted UniFrac distances were calculated and visualized with principal-coordi-
nate analysis (PCoA) plots per data set and for all data sets in aggregation (Fig. 4 and
Fig. S3). Permutational multivariate analysis of variance (PERMANOVA) with 999 permu-
tations was used to test for significant differences between young and old mice. Based
on unweighted UniFrac distance matrices, all data sets demonstrated a significant shift
in the gut microbiome between the young and old mice (P , 0.05) (Fig. 4A). When all
the data sets were aggregated, a significant age-dependent alteration of the microbial
community structure was observed based on unweighted UniFrac distance matrices
(P = 0.001) (Fig. 4B). However, based on weighted UniFrac distance matrices, no signifi-
cant difference was observed in 2 of 6 data sets (Fig. S3) or in the aggregate data
(P = 0.259) (Fig. 4C). These results indicate that rare taxa rather than dominant taxa are
primarily responsible for the microbial structure differences between young and old
mice.

Altered gut microbial carbohydrate metabolism in response to aging. Random
forest was used to differentiate young and old age based on operational taxonomic
units (OTUs) and predicted metagenomic function by PICRUSt2 to identify aging-spe-
cific microbial signatures. An iterative random forest (iRF) algorithm was performed to
identify features that were stable across 10 iterations, of which the iteration with the
smallest out-of-bag (OOB) error rate was chosen as the final classifier for further
analysis.

FIG 4 Age-related shifts in microbial community structure. The effect of age on community structure for each study individually and for the combined
studies was assessed by principal-coordinate analysis (PCoA) of the beta diversity measures unweighted and weighted UniFrac distances. Significance was
determined by PERMANOVA with 999 permutations. (A and B) PCoA plots for unweighted UniFrac distances for each study (A) and the aggregate data (B)
show significant shifts in the gut microbiome between the young and old mice. (C) PCoA of weighted UniFrac distances for aggregated data did not reveal
a significant difference.
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We calculated the area under the receiver operating characteristic (ROC) curve
(AUC) to estimate the performance of the random forest classifier. The AUC values of
the model based on predicted metagenomic function for the test data set, the external
CB6F1 16S data set, and the external B6 metagenomics data set were 0.75, 0.97, and
0.79, respectively (Fig. 5A and B). Interestingly, the model based on OTUs did not per-
form as well as the one based on predicted metagenomic function, which achieved

FIG 5 Random forest classifier differentiates microbiomes of young and old mice. (A) Receiver operating characteristic (ROC)
curve for the random forest classifier showing performance against the test data set (green) and external data sets, CB6F1 16S
(blue) and B6 metagenomic (purple). (B) Area under the ROC curve (AUC). (C) The top 20 aging-specific features of the classifier
based on ranked mean decreases in Gini impurities. The color bar shows the log2 fold changes (logFC) of old versus young.
Features boxed in red are involved in carbohydrate metabolism.
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AUC values of between 0.46 and 0.73 (Fig. S5). This result could be explained by micro-
bial functional redundancy (25). That is, despite large variations in taxonomic composi-
tion across studies of mice from different vivariums, consistent changes in functional
capacity in response to aging can be observed. Thus, metagenomic functional features
selected by the random forest model might be more reliable than taxonomic features
to stratify young and old mice and exhibit similar alterations in response to aging
across studies.

Next, aging-specific metagenomic features were selected based on the ranked mean
decrease in Gini impurities (mean decrease Gini) (Fig. 5C), which measures the importance
of a feature for classification in the random forest model. Interestingly, we found that 50%
of the 20 most important features are involved in carbohydrate metabolism, including
mannan degradation, gluconeogenesis I, and glucose and glucose-1-phosphate degrada-
tion. We also performed an enrichment analysis on predicted metagenomic function path-
ways across the studies (linear mixed-effect model adjusted for study). Despite the differ-
ent methods performed, we found that 13 out of 25 significantly enriched pathways were
involved in carbohydrate metabolism (Fig. S6) (BH-corrected P , 0.05). Taken together,
alterations in the carbohydrate metabolism potential of the gut microbial metagenome
are a key distinguishing feature of aging.

Decreased fecal SCFA in response to aging. Given the altered microbial carbohy-
drate metabolism metagenome with aging described above, we investigated whether
fecal short-chain fatty acids (SCFA), the major end products of microbial carbohydrate
fermentation, were changed with aging as well. We measured three primary SCFA con-
centrations in fecal samples from young and old mice used to generate the metage-
nomic data set. Fecal acetate (P , 0.001), propionate (P , 0.01), butyrate (P , 0.001),
and total SCFA (P , 0.001) concentrations were significantly decreased with age
(Fig. 6A). The decreased SCFA concentrations with aging in our cohort are consistent
with previous studies in humans, mice, and rats (26–29).

FIG 6 Fecal SCFA decrease with aging. (A) Fecal acetate, propionate, butyrate, and total SCFA in young and old mice. (B) Taxa at the genus level correlated
with fecal SCFA concentrations. The Benjamini-Hochberg method was used to correct for multiple comparisons. *, P , 0.05; **, P , 0.01; ***, P , 0.001.
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Additionally, Spearman correlation analysis was performed between fecal SCFA and
taxa at the genus level (Fig. 6B). We found several taxa considered to be SCFA pro-
ducers or beneficial microbes (30–33) that were positively correlated with one or more
fecal SCFA, including Dorea (BH-corrected P , 0.05 for acetate, propionate, butyrate,
and total SCFA), Oscillibacter (BH-corrected P , 0.05 for acetate, butyrate, and total
SCFA), Mucispirillum (BH-corrected P , 0.05 for butyrate), Acetatifactor (BH-corrected
P , 0.05 for butyrate and total SCFA), and Anaerotruncus (BH-corrected P , 0.05 for
butyrate and total SCFA). Additionally, several taxa were significantly anticorrelated
with one or more fecal SCFA, including Bifidobacterium, Alistipes, Parabacteroides, Prevotella,
Dubosiella, Turicimonas, Bacteroides, Blautia, Erysipelatoclostridium, and Romboutsia (BH-
corrected P , 0.05 for one or more metabolites). The negative correlation between
Bifidobacterium and fecal SCFA is unexpected as Bifidobacterium is well known as a bene-
ficial microbe that metabolizes dietary fibers to acetate and lactate via the bifid shunt
(34). Bifidobacterium may alter metabolic pathways in response to environmental condi-
tions (e.g., the availability of carbohydrates) (35). For example, Bifidobacterium could shift
toward formate production at the expense of lactate when there is an increased need
for ATP (35, 36). Furthermore, a correlation does not necessarily indicate a direct relation-
ship between a given microbe and SCFA generation. Further studies are needed to
investigate the direct contribution of particular microbes to fecal SCFA via in vitromicro-
bial community fermentation or investigations in vivo utilizing gnotobiotic mice.

Correlation of SCFA receptorGpr41 gene expression with carbohydrate metabolism
pathways.G-protein-coupled receptor 41 (GPR41) and GPR43 are the primary receptors
that sense SCFA and mediate the biological effect of SCFA on host health (37). To
assess whether the decreased fecal SCFA with aging would impact the expression level
of SCFA receptors, we measured Gpr41 and Gpr43 gene expression in the colons of
young and aged mice. Gpr41 expression was significantly decreased while Gpr43
expression was significantly increased in the aged mice compared to young mice
(P , 0.05) (Fig. 7A). Gpr41 expression was significantly correlated with carbohydrate
degradation and fermentation pathways, including the Bifidobacterium shunt, glycoly-
sis, and homolactic fermentation (Spearman rank correlation, BH-corrected P value of
,0.05) (Fig. 7B). Interestingly, these pathways were identified as aging-specific meta-
bolic features by our random forest classifier. Additionally, Gpr41 expression trended
toward correlation with fecal acetate (BH-corrected P = 0.085) (Table S4) and propio-
nate (BH-corrected P = 0.058) (Table S4) and was negatively correlated with two taxa at
the genus level (Alistipes and Parabacteroides) (BH-corrected P , 0.05) (Table S4).
Interestingly, these two taxa were also negatively correlated with fecal SCFA (BH-cor-
rected P , 0.05) (Fig. 6B), indicating a cooccurrence of alterations in the gut microbial
community, microbial SCFA, and host GPR41 with aging. Thus, we propose that the
gut microbiome shifts as the host ages, resulting in altered microbial carbohydrate me-
tabolism that could in turn impact colon SCFA concentrations, which could feed for-
ward to impact Gpr41/43 expression and host physiology.

As SCFA have been reported to influence multiple facets of inflammation, through
their actions both as G-protein-coupled receptor ligands and as inhibitors of histone
deacetylases (38), we measured colon gene expression and serum levels of interleukin-
6 (IL-6) and tumor necrosis factor alpha (TNF-a) (Fig. 7C and D). A trend of increased Il-
6 colon gene expression (P = 0.051) and serum TNF-a levels (P = 0.087) was found in
the aged mice, indicating increased inflammation in the aged mice, which is consistent
with the general observation of low-grade chronic inflammation status in the elderly
(inflammaging) (39).

DISCUSSION

Cooperation between the gut microbiome and the host is finely tuned, with the gut
microbiome constantly integrating signals from the host and responding throughout the
lifetime of the host (40, 41). Host factors such as nutrient metabolism and immune status
can impact gut microbiome homeostasis significantly (42). During the aging process, biologi-
cal and physiological functions systemically decline, leading to a loss of immune and
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metabolic homeostasis (3). Thus, we might predict that the gut microbiota would undergo
both compositional and functional alterations. Considering the important roles described for
the gut microbiome in numerous disease processes, many of which are related to aging (43,
44), determining how the composition and function of the gut microbiome change in
response to aging, and how these may differ in individuals with healthy versus unhealthy
aging, is of great interest. Robust characterization of age-related changes is critical for devel-
oping microbiome-based antiaging strategies (e.g., dietary intervention) and identifying ther-
apeutic targets to promote health and longevity in the elderly.

FIG 7 Correlation of Gpr41 and microbial carbohydrate metabolism. (A) Relative expression of Gpr41 and Gpr43 in the colons of young versus old mice. (B)
Correlation of colonic Gpr41 expression with carbohydrate degradation and fermentation pathways. Significantly correlated pathways are highlighted in red
text. (C and D) Comparison of IL-6 and TNF-a in young versus old mice. (C) Colonic Il-6 and Tnfa expression; (D) serum IL-6 and TNF-a. ns, not significant;
*, P , 0.05; **, P , 0.01.

Aging Murine Gut Microbiome Meta-analysis mSystems

March/April 2022 Volume 7 Issue 2 10.1128/msystems.01248-21 10

https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.01248-21


In this meta-analysis, we aimed to define aging-related gut microbiome alterations
shared across a number of independent mouse studies. Our study found that the aged
murine gut microbiome is characterized by increased alpha diversities. Microbial diver-
sity was reported to be decreased with aging in a few human studies (4, 5), but this
decrease is not consistently observed. Odamaki et al. reported increased diversity in
the elderly Japanese population compared to young adults (45), while no difference in
alpha diversity was observed between young and elderly Italian populations (11). The
variability across human studies might be due to the different patterns of aged gut
microbiomes between healthy and relatively less healthy populations as well as between-
population differences in external aging-associated factors impacting the gut microbiome.
For example, diet, medication, disease status, and duration of stay in a care facility may all
impact the aging microbiome, yet data on these factors are frequently lacking in human
aging microbiome research (15, 46). Although decreased microbial diversity is associated
with several diseases (47), higher diversity does not necessarily imply a healthier micro-
bial community. Additional metrics to describe microbial stability, functional diversity,
and components that benefit the host need to be taken into account in aging microbiome
research. Thus, the biological meaning of the increased diversity in response to aging
requires further investigation.

We further characterized differences in young and old microbial communities.
Interestingly, we found a significant age-dependent shift of the microbial community
based on unweighted UniFrac distance but not weighted UniFrac distance. As unweighted
UniFrac distance takes only absence/presence information into account regardless of the
relative abundance (48), the results suggest that rare taxa rather than dominant taxa drove
the microbial structure differences between young and old mice. This is consistent with
the finding of unaltered F/B ratios between young and aged mice. Instead, we found that
a group of rare or subdominant taxa was differentially enriched (e.g., Odoribacter and
Mucispirillum) or depleted (e.g., Akkermansia) in response to aging. It is interesting that
these taxa are also commonly observed to be altered with aging in human studies (10, 11,
49, 50) and have been implied to be beneficial microbes or pathobionts. Odoribacter has
been previously reported as an unfavorable species for metabolism, associated with abnor-
mal lipid and glucose metabolism in the host (51, 52). Both Mucispirillum and Akkermansia
degrade mucin, yet while Akkermansia is regarded as a beneficial microbe (53), the health
relevance of Mucispirillum is still controversial (54). Akkermansia supports gut barrier integ-
rity and contributes to anti-inflammation and antioxidation in aging (55, 56). Mucispirillum
has been associated with intestinal inflammation in a few studies (57–59), while a protec-
tive role ofMucispirillum has been studied in Salmonella colitis in mice (60).

Alterations in rare taxa alone would not necessarily drive significant changes in mi-
crobial function. To examine whether aging alters the functional capacity of the gut
microbiome, we next examined community-level microbial function using the bioinfor-
matic tool PICRUSt2 to predict microbial metagenome function. We then established a
random forest classifier to differentiate microbiomes from young and old animals and
to identify aging-specific metabolic features. A random forest classifier is an ensemble
of decision trees that uses random selection of different subsets of the features in the
training data for constructing the different base classifiers (61). Unlike a single-decision
tree, a random forest averages weak learners and avoids putting too much weight on
outlier decisions (62). Random forest is thus one of the most robust classification algo-
rithms developed to date and is used extensively in biomedical domains (63). However,
when there is a large number of features and the proportion of truly informative features
is small, the performance of a random forest classifier is likely to decline due to the low
probabilities of choosing truly informative features by random sampling. Therefore, we
applied an iterative random forest algorithm to construct the random forest classifier
(64). The algorithm starts with the entire set of metabolic features in the training data
set and stores the importance (mean decrease in Gini impurity) of the metabolic fea-
tures. In the next iteration, a new weighted random forest is grown with weights set to
the feature importance from the previous iteration. Ten iterations were performed in our
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study. Considering the limitations of using predicted metagenomic function rather than
direct metagenome sequencing to construct the random forest classifiers, we included
one 16S rRNA gene sequencing and one whole-genome sequencing data set generated
by our laboratory as external data sets to validate the final random forest model. The
performance of our random forest classifier in differentiating between microbiomes
from young and old mice was good, with obtained AUC values of between 0.75 and 0.97
for the test data set and the two external data sets. Thus, the features selected by the
random forest classifier appear to be informative and reliable aging-specific metabolic
features.

Interestingly, we found that 50% of the 20 most important features identified by
the random forest classifier are involved in carbohydrate metabolism. Bacterial carbo-
hydrate metabolism is a basic biological process providing energy and precursors for
biosynthetic pathways. Additionally, metabolites derived from microbial carbohydrate
metabolism, primarily short-chain fatty acids (SCFA), exert biological effects on the
host (38). The altered carbohydrate metabolism potential that we observed in aged
mice potentially affects the production of SCFA. In fact, we found that fecal acetate,
propionate, and butyrate were significantly decreased in the aged mice, which is con-
sistent with data from other published mouse studies (26, 27).

GPR41 and GPR43 are the primary receptors that sense SCFA and mediate the bio-
logical effect of SCFA on host health (37). GPR41 prefers the longer SCFA (butyrate $

propionate . acetate), while GPR43 responds more strongly to the shorter SCFA (ace-
tate $ propionate . butyrate) (37). The decreased Gpr41 expression and increased
Gpr43 expression in aged mice suggest that host-microbiome communication could
be altered with aging both by changes in the abundance of SCFA and by the
decreased ability to sense longer SCFA (e.g., butyrate and propionate). The correlation
of colonic Gpr41 expression in the host with the abundance of gut microbes, microbial
carbohydrate degradation and fermentation metagenomic potential, and fecal SCFA
suggests that changes in the gut microbiome-SCFA with aging may in turn impact
GPR41 and downstream host pathways. One potential downstream effect of altered
SCFA-GPR41/43 signaling is inflammation, and thus, we examined two cytokines
reported to be increased with aging. Despite a relatively small data set, we detected a
trend toward increased Il-6 gene expression in the colon as well as increased serum
TNF-a in aged mice, suggesting an increased inflammatory state in aged mice.
However, the extent to which changes in the gut microbiome-SCFA-GPR41 axis with
aging impact host physiology and health remains to be elucidated.

There are several limitations of our study. To generate comparable data sets, a
closed-reference OTU-picking process was chosen. This method restricts OTUs identi-
fied within the reference database (Greengenes V13-8), which excludes OTUs that are
not present in the database and biases toward lower microbial diversity. Moreover, tax-
onomic assignments between studies may be influenced by the differences in
sequencing lengths and regions between studies, which potentially introduce noise
across the data sets (65). In addition to these technical issues, host-related covariates
could also contribute to variations across the studies, which we were not able to con-
trol due to the missing individual-level metadata of aging-associated biological factors
(e.g. metabolic and inflammation status [16, 66]). Furthermore, aging is a gradual pro-
cess, and gut microbiome alteration with aging is likely to also be a gradual process in
mice. However, due to the limited data available from published studies, we were able
to include samples at only two ages bookending the spectrum of aging (young versus
old). Additionally, we defined a relatively wide range for old (18 to 26 months of age).
Thus, we lacked the ability to detect differences between moderately and extremely
old mice and potentially introduced variability in our aged cohort that could decrease
our ability to detect true differences between young and old mice. Finally, we cannot
exclude the possibility that the observed correlation of host Gpr41 expression with the
gut microbiome is driven by age-related changes in both. Due to the limited age varia-
tion of our samples, we were unable to effectively control for age as a covariate in our
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Spearman correlation analysis. In the future, we hope to expand this work to include a
variety of ages across the life span, which would facilitate investigations of whether
correlations between changes in gut microbiome features and alterations in host phys-
iology are independently correlated.

Despite these limitations, our study revealed both compositional and functional
alterations in the gut microbiome with aging. Altered carbohydrate metabolism was a
key feature of aging-related changes in the gut microbiome and was accompanied by
decreased fecal SCFA. On the host side, colonic Gpr41 expression was significantly cor-
related with microbial carbohydrate degradation and fermentation pathways. These
findings show that compositional changes in the gut microbiome with aging correlate
with functional changes, leading to measurable effects on key metabolites, as well as
age-related changes in host receptors for those metabolites and imply cross talk
between the gut microbiome, microbial SCFA, and host GPR41-dependent pathways in
response to aging. We hope that the results from this meta-analysis across 5 independ-
ent studies will be a foundation for future work to further advance our understanding
of the aging microbiome and host interaction from a putative correlation to a causa-
tive relationship and, ultimately, translation to clinical applications such as microbial
manipulation to improve healthy aging and prevent age-related diseases.

MATERIALS ANDMETHODS
Data sets. Literature searches of PubMed and Google Scholar were executed in July 2020 using the fol-

lowing keyword terms: “aging microbiome” OR “aging microbiota” OR “aged microbiome” OR “aged micro-
biota” OR “old microbiome” OR “old microbiota” AND “murine” OR “mice” OR “mouse.” The search yielded 35
potential studies for inclusion. We excluded studies where raw sequencing data were not publicly available,
the sample number was,3 per age group, the average sequencing depth was,10,000 reads per sample, or
the study groups did not meet our definition of young (1 to 6 months old) or old (18 to 26 months old). We
also excluded studies of genetically modified or diseased animals (see Fig. S1 in the supplemental material).

After filtering, 5 studies that fulfilled our criteria were included in the meta-analysis. One study
included data from both female and male C57BL/6 mice (18), and these were analyzed separately for a
total of 6 data sets: 3 from female (16–18) and 3 from male (18–20) C57BL/6 mice. Within each data set,
we further filtered out individual samples from animals that had a low sequencing depth (,2,000 reads)
or were manipulated in any way (i.e., dietary intervention). The raw sequencing data were downloaded
from the SRA and ENA databases by accession number, as listed in Table S1. As external data sets for val-
idation of the random forest classifier, we included one fecal whole-genome metagenomics data set
from male C57BL/6 mice sequenced as described below (NCBI SRA accession number PRJNA739153)
and one 16S rRNA gene data set from male CB6F1 mice previously sequenced by our laboratory (You X,
Yan J, Herzog J, Campbell R, Hoke A, Hammamieh R, Sartor RB, Kacena MA, Chakraborty N, Charles JF,
manuscript in preparation) (NCBI SRA accession number PRJNA737742).

Thus, in total, 3 female C57BL/6 data sets (n = 32) and 3 male C57BL/6 data sets (n = 102) were
included in the meta-analysis and the generation of the random forest classifier. External data sets for
validation of the random forest classifier included one male CB6F1 16S rRNA gene sequencing data set
(n = 16) and 1 male C57BL/6 whole-genome metagenomics data set (n = 20).

OTU picking. Due to the variant amplicons of the 16S region that were sequenced across studies,
we chose a closed-reference OTU-picking process to ensure concordance between studies. The raw
sequencing data were imported into QIIME2/2018.11 for data processing (67). DADA2 was used to
denoise reads (68). The reads were trimmed such that the mean quality score was ,30 for four consecu-
tive reads or the minimal sequencing length. For paired reads, reads were merged if the overlapped
reads were .20 bp after truncation. Otherwise, only forward reads were used for the following analysis.
Due to the potentially insufficient removal of the adapter/index/primer in the raw sequencing data,
which would interfere with DADA2’s error model, we also trimmed 16 nucleotides from the 59 end of
each read. The quality-controlled, dereplicated reads were then subjected to OTU picking by q2-vsearch
against the Greengenes V13-8 database at 97% identity.

Diversity analysis. Six OTU tables generated from the q2-vsearch clustering process were com-
bined. OTUs with fewer than 5 total reads or that presented in only one sample were filtered out.
Samples were rarefied to 10,000 reads by the rrarefy function in the R package Vegan (2.5-6) (69).
Shannon, Simpson, and Chao1 indices were calculated by the diversity and estimateR functions in
Vegan. Faith’s phylogenetic distance was calculated by the R package Picante (1.8.2) (70). Welch’s t test
was performed per study analysis using the function t.test (stats, R package). The combined studies
were analyzed using a linear mixed-effects model by the lmer function in the R package LmerTest (3.1-3)
(71) using the formula log2FC ; age 1 (1jstudy). The same formula was also applied to the enrichment
analysis of centered log-ratio normalization of OTUs and predicted PICRUSt2 metagenomic functional
pathways (PICRUSt2 method [see below]). Weighted UniFrac and unweighted UniFrac distances were
calculated by the R package Phyloseq (1.32.0) (72). PERMANOVA with 999 permutations (vegan::adonis)
was performed for the differences in beta diversities. For combined studies, PERMANOVA was performed
with the option strata to control for study.
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Fecal DNA extraction and whole-genome microbial sequencing. Individual fecal samples were
collected from 10 young (2-month-old) and 10 old (26-month-old) C57BL/6 male mice (NIA Aged Rodent
Colony, USA), under IACUC approval 20110 (Indiana University). Genomic DNA was isolated from fecal
samples using a QIAamp PowerFecal Pro DNA kit (Qiagen, MD, US) according to the manufacturer’s pro-
tocol. Fecal DNA was diluted to 10 ng/mL and submitted to the Broad Institute (MA, US) for high-output
whole-genome microbial 150-bp paired-end sequencing. After sample DNA quality assessment,
sequencing libraries were prepared using the Illumina Nextera XT DNA library prep kit. Two positive con-
trols and one negative control were included in the sequencing run. In total, 1126.04 million reads
(56.30 million 6 12.42 million reads per sample) were generated (Fig. S4).

Whole-genome OTU picking and metagenomic functional analysis. Unmapped BAM files were
received from the Broad Institute Genomics Center. Picard (2.6.0) was used to convert BAM files to fastq
files. Sequencing quality was checked by FastQC (0.11.8). Raw reads were adapter trimmed by
Trimmomatic (0.39) (73) and decontaminated of the host genome (mouse GRCm38.p6) mapped by
Bowtie2 (2.4.2) (74) as part of the Kneadata (0.7.4) pipeline using the default parameters (https://github
.com/biobakery/kneaddata). To consistently apply the analysis pipeline to 16S data sets, we used an
OTU-picking process to generate the OTU table. Filtered reads were selected by alignment against the
Greengenes V13-8 database via SortMeRNA (v.4.3.4) (75). OTU picking on the resulting reads was then
performed by q2-vsearch against the Greengenes V13-8 database at 97% identity. For metagenomic
functional analysis, filtered reads were processed by the HUMAnN3 (3.0.0.alpha.3) pipeline for the meta-
genomic functional analysis, including the following steps: (i) taxonomic profiling by MetaPhlAn3 (3.0.7)
(76), (ii) indexing of the identified species pangenomes in the ChocoPhlAn database and alignment of
reads to the reference pangenomes by Bowtie2, (iii) translated searching of unmapped reads against the
UniRef90 protein reference database using DIAMOND (2.0.6) (77), and (iv) mapping of the resulting gene
lists to the MetaCyc pathways. The normalized relative abundances of OTUs and MetaCyc pathways
were then used as an external data set for the validation of random forest classifiers as described below.
Moreover, the taxon table obtained by MetaPhlAn3, which has a better taxon resolution than OTU pick-
ing, was used to perform Spearman correlation analysis.

Random forest classifier. PICRUSt2 (Phylogenetic Investigation of Communities by Reconstruction
of Unobserved States) (78) was used to predict metagenomic functions based on the six 16S rRNA gene
data sets described above in “Data sets.” The data sets of MetaCyc pathways and OTUs were used as pre-
dictor variables for the random forest classifier. The data set was randomly divided into training (n = 89)
and testing (n = 45) data sets. The iterative random forest (iRF) algorithm was performed using the R
package iRF (64). Ten iterations were performed, of which the random forest with the smallest out-of-
bag (OOB) error rate was chosen.

The receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC) were cal-
culated for the testing data set by the prediction and performance functions in the R package ROCR
(79). We then applied the same functions to the two external data sets generated in our laboratory and
as described above in “Data sets” to validate the performance of the random forest classifier.

LC-MS measurement of fecal SCFA. Fecal SCFA quantification was performed by liquid chromatog-
raphy-mass spectrometry (LC-MS) at the Georgetown University Medical Center. A 20 mM standard solu-
tion of acetic acid (C2), propionic acid (C3), and butyric acid (C4) was prepared in water. For derivatization,
100 mL each of 4-acetoamido-7-mercapto-2,1,3-benzoxadiazole (AABD-SH) (20 mM), triphenylphosphine
(TPP) (20 mM), and 2,29-dipyridyl disulfide (DPDS) (20 mM) were added to 100 mL of C2, C3, and C4, sepa-
rately. The reaction mixture was vortexed for 5 min at room temperature, followed by drying under
nitrogen. The dry concentrate was dissolved in 100 mL of methanol and serially diluted to generate
standard curves.

Fecal samples were homogenized in 400 mL of water for 2 min on ice and centrifuged, and the su-
pernatant was collected. For derivatization purposes, 20 mL each of AABD-SH, TPP, and DPDS were
added to the supernatant and vortexed at room temperature for 5 min. The reaction mixture was dried
under a vacuum and reconstituted with 150 mL of methanol containing lactic acid-13C3 as an internal
standard. The samples were centrifuged, and the supernatant was diluted 10-fold.

Three microliters of the prepared sample was injected onto a Kinetex 2.6-mm, 100-Å, 100- by 3.0-mm
polar C18 column (Phenomenex, CA, USA) using a SIL-30 AC autosampler (Shimadzu) connected to a
high-flow LC-30AD solvent delivery unit (Shimadzu) and a CBM-20A communication bus module
(Shimadzu) online with a Qtrap 5500 instrument (Sciex, MA, USA) operating in positive-ion mode. A bi-
nary solvent comprising water with 0.1% formic acid (solvent A) and acetonitrile with 0.1% formic acid
(solvent B) was used. The extracted metabolites were resolved at a 0.4-mL/min flow rate. MS was con-
ducted in positive-ion mode with a turbo ion spray voltage of 5,500 V, using 20 lb/in2 of curtain gas, 50
lb/in2 of nebulizer gas, and 50 lb/in2 of drying gas at a temperature of 400°C. LC separation was per-
formed using mobile phase A (0.1% formic acid in water) and mobile phase B (0.1% formic acid in aceto-
nitrile) at a flow rate of 400 mL/min and a temperature of 40°C. The separation gradient was as follows:
0% B at 0 min, 0 to 100% B in 8 min, 100 to 0% B in 1 min, and 0% B in 1 min. A collision energy of 15 V
was used for multiple-reaction monitoring (MRM), and LC-tandem MS (LC-MS/MS) data were analyzed
by Analyst 1.5.2 software (AB Sciex). The peak area of the lactic acid-13C3 isotope-labeled internal stand-
ard was used to normalize SCFA and processed using MultiQuant 3.0.3 software. The column was condi-
tioned using the pooled quality control (QC) samples initially and after every 6 sample injections to
monitor shifts in signal intensities and retention times. A blank solvent was run before and after the
pooled QC samples to minimize carryover effects. The concentration data were calculated from standard
curves performed by QC-based locally estimated scatter plot smoothing (LOESS) signal correction (QC-
RLSC) followed by normalization to the input fecal weight.
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Colon RNA extraction, cDNA synthesis, and qRT-PCR. Colon tissues were snap-frozen in liquid nitro-
gen and stored at280°C until analysis. Total RNA was isolated by tissue homogenization with a bullet blender
bead beater (Navy Rino RNA lysis kit; Next Advance) followed by an RNeasy minikit (Qiagen) according to the
manufacturer’s protocol. DNA contamination was removed by DNase I treatment (Thermo Scientific). cDNA syn-
thesis was performed using a high-capacity cDNA reverse transcription kit (Applied Biosystems). Quantitative
real-time PCR (qRT-PCR) was performed using Fast SYBR green master mix (Applied Biosystems). The primer
sequences of the target genes are listed in Table S2. The reactions were performed on a StepOne Plus real-time
PCR machine (Applied Biosystems, USA). Results were normalized to the housekeeping gene hypoxanthine phos-
phoribosyltransferase (HPRT) and calculated by the 22DDCT method.

Serum TNF-a and IL-6 analysis. Blood samples were collected by cardiac puncture. Serum samples
were separated by clotting the blood samples for 30 min, followed by spinning for 10 min at 12,000 � g.
Serum TNF-a and IL-6 were measured using a murine TNF-a standard 2,29-azinobis(3-ethylbenzthiazoli-
nesulfonic acid) (ABTS) enzyme-linked immunosorbent assay (ELISA) development kit and a murine IL-6
standard ABTS ELISA development kit (Peprotech) according to the manufacturer’s protocol.

Statistical analysis. Unless otherwise specified, statistical analysis was performed with GraphPad
Prism 8. Data were represented as means 6 standard deviations (SD). An unpaired t test (parametric data)
or a Mann-Whitney U test (nonparametric data) was performed for fecal SCFA, colon gene expression, and
serum TNF-a and IL-6. Spearman rank correlation was performed between colon gene expression and gut
microbial carbon degradation/fermentation pathways, between colon gene expression and fecal SCFA,
and between taxa and fecal SCFA. The adjusted P value was determined by the Benjamini-Hochberg
method using the function p.adjust in the base R package for P values obtained from the Spearman rank
correlation and enrichment analyses. A P value of,0.05 was regarded as statistically significant.

Code availability. The code used for the analysis in the paper is available at GitHub (https://github
.com/xyou103/murine-aging-microbiome-meta-analysis).

Data availability. Raw sequencing data for each study can be accessed as listed in Table S1. The
sequencing data generated in our laboratory has been deposited in the NCBI SRA under accession num-
bers PRJNA737742 (16S rRNA gene) and PRJNA739153 (whole-genome metagenomics).
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