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Calcium-triggered exocytotic release of neurotransmitters and hormones from neurons
and neuroendocrine cells underlies neuronal communication, motor activity and
endocrine functions. The core of the neuronal exocytotic machinery is composed of
soluble N-ethyl maleimide sensitive factor attachment protein receptors (SNAREs).
Formation of complexes between vesicle-attached v- and plasma-membrane anchored
t-SNAREs in a highly regulated fashion brings the membranes into close apposition.
Small, soluble proteins called Complexins (Cpx) and calcium-sensing Synaptotagmins
cooperate to block fusion at low resting calcium concentrations, but trigger release
upon calcium increase. A growing body of evidence suggests that the transmembrane
domains (TMDs) of SNARE proteins play important roles in regulating the processes of
fusion and release, but the mechanisms involved are only starting to be uncovered. Here
we review recent evidence that SNARE TMDs exert influence by regulating the dynamics
of the fusion pore, the initial aqueous connection between the vesicular lumen and
the extracellular space. Even after the fusion pore is established, hormone release by
neuroendocrine cells is tightly controlled, and the same may be true of neurotransmitter
release by neurons. The dynamics of the fusion pore can regulate the kinetics of cargo
release and the net amount released, and can determine the mode of vesicle recycling.
Manipulations of SNARE TMDs were found to affect fusion pore properties profoundly,
both during exocytosis and in biochemical reconstitutions. To explain these effects,
TMD flexibility, and interactions among TMDs or between TMDs and lipids have been
invoked. Exocytosis has provided the best setting in which to unravel the underlying
mechanisms, being unique among membrane fusion reactions in that single fusion pores
can be probed using high-resolution methods. An important role will likely be played by
methods that can probe single fusion pores in a biochemically defined setting which
have recently become available. Finally, computer simulations are valuable mechanistic
tools because they have the power to access small length scales and very short times
that are experimentally inaccessible.
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INTRODUCTION

Coordinated neuronal communication and motor activity rely
on tightly controlled release of neurotransmitters. Secretion
of hormones is likewise finely tuned, since these compounds
control the physiological activities of organs and cells. Both
neurotransmitters and hormones are packaged into intracellular
secretory vesicles (synaptic vesicles or secretory granules,
respectively) and are secreted via calcium-triggered exocytosis.
Exocytosis is a multi-step process, involving translocation of
secretory vesicles to release sites at the plasma membrane,
maturation (called ‘‘priming’’) to a state of fusion-readiness, and
opening of a fusion pore in response to an increase in the local
calcium concentration (Sudhof and Rothman, 2009; Jahn and
Fasshauer, 2012; Rizo and Xu, 2015).

The late stages of exocytosis (from maturation at the fusion
site to pore dilation) involve about a dozen proteins, many
of which are essential. Munc13 is a large priming factor that
cooperates with Munc18 to direct SNARE assembly (Rizo and
Xu, 2015; Baker and Hughson, 2016). Synaptotagmin-1 (Syt1)
and Complexin (Cpx) cooperate to inhibit fusion at resting
(low) calcium and to induce rapid fusion upon a rise in
calcium (Chapman, 2008; Diao et al., 2012; Rizo and Xu, 2015;
Lai et al., 2016). The fusion step itself requires formation
of trans complexes between vesicular v- and plasma (target)
membrane t-SNAREs that bridge the two membranes (Sudhof
and Rothman, 2009). Syt and Cpx may contribute to pore
creation (Martens et al., 2007; Hui et al., 2009; Kyoung et al.,
2011; Brunger et al., 2015), as Syt couples calcium binding to
fusion (Rizo and Xu, 2015) and Cpx somehow increases the
efficiency of this process (Lai et al., 2016).

The neuronal/exocytotic soluble N-ethyl maleimide sensitive
factor attachment protein receptors (SNAREs) consist of the
v-SNARE Synaptobrevin/VAMP2 (Syb2) and the t-SNAREs
Syntaxin-1 (Stx) and SNAP25 (SN25; Sollner et al., 1993). The
α-helical SNARE domains of these proteins (highly conserved
60–70 residue cytoplasmic regions) assemble in a parallel coiled
coil (with all the N-termini at the membrane-distal end) that
brings the membranes to be fused into close proximity (Figure 1;
Sutton et al., 1998). It is less clear what happens as the SNARE
complex assembly proceeds toward the membrane-proximal
ends. The juxtamembrane regions (JMRs) have a propensity to
zipper (Gao et al., 2012), with possible functional implications
(Stein et al., 2009; Hernandez et al., 2012). These domains are rich
in positively charged residues (Neumann and Langosch, 2011)
that bind and recruit acidic phospholipids, including PI(4,5)P2
(van den Bogaart et al., 2011; Honigmann et al., 2013) and
PI(3,4,5)P3 (Khuong et al., 2013) to vesicle docking and fusion
sites (Barg et al., 2010; Gandasi and Barg, 2014).

Fusion formally occurs once the vesicular lumen is connected
to the extracellular space via a fusion pore. Nevertheless, the
dynamics of the pore can further control the release process
(Breckenridge andAlmers, 1987; Zimmerberg et al., 1987;Monck
and Fernandez, 1996; Lindau and Alvarez de Toledo, 2003).
The pore is initially small (a few nm in diameter) and can
flicker open and closed repeatedly before resealing or dilating
irreversibly. In transient ‘‘kiss and run’’ fusion, the pore reseals

before complete emptying of the vesicle. Alternatively, the pore
may dilate irreversibly as the fused vesicle’s membrane collapses
into the plasma membrane and the entire cargo is released (full
fusion). Thus, beyond affecting the kinetics and the amount
of cargo released, pore dynamics also control the mode of
vesicle recycling. Transient fusion is a well-established mode
of hormone release by neuroendocrine cells (Breckenridge and
Almers, 1987; Zimmerberg et al., 1987; Monck and Fernandez,
1996; Lindau andAlvarez de Toledo, 2003; Fulop et al., 2005). It is
also documented for synaptic vesicle exocytosis (Staal et al., 2004;
He et al., 2006; He and Wu, 2007; Alabi and Tsien, 2013), but its
prevalence and significance are debated, in part due to technical
challenges in probing fusion pores during neurotransmitter
release.

Molecular mechanisms that regulate pore dynamics are not
well understood (Lindau and Alvarez de Toledo, 2003; Harata
et al., 2006; He and Wu, 2007; Lindau, 2012). Fusion pore
properties are affected by calcium (Hartmann and Lindau, 1995;
Chiang et al., 2014), dynamin (Anantharam et al., 2011; Chiang
et al., 2014), the actin cytoskeleton and/or membrane tension
(Bretou et al., 2014; Wen et al., 2016), phosphorylation (Staal
et al., 2004), molecular crowding (Wu et al., 2017) and mutations
in many of the components of the fusion machinery. In this
review article, we emphasize the role of SNARE TMDs in
regulating fusion pore dynamics. We choose this focus because
SNAREs and Syt are the only TMD proteins known to be
involved in the late stages of pore opening and dilation, and
few systematic studies of the role of Syt1 TMD in exocytosis are
available (Lee and Littleton, 2015). However, we stress that in
addition to affecting pore dynamics (Han et al., 2004; Borisovska
et al., 2005; Chang et al., 2015, 2016; Dhara et al., 2016), SNARE
TMDs also regulate pre-fusion stages (Chang et al., 2016; Dhara
et al., 2016). In addition, for nearly all of the proteins mentioned
above there are mutations with fusion pore phenotypes (Wang
et al., 2001, 2003; Jorgacevski et al., 2011; Dhara et al.,
2014). In particular, interfering with synaptotagmin’s calcium
binding and/or membrane penetration (Paddock et al., 2011; Lai
et al., 2015) influence fusion pore opening and pore properties
(Chapman, 2008). Since Synaptotagmin also binds SNAREs (Lai
et al., 2014; Zhou et al., 2015), its effects on fusion pores
may be difficult to disentangle from those of SNARE protein
TMDs. Finally, in addition to possible direct influences, TMDs of
other proteins may indirectly influence the fusion pore via their
interactions with SNARE TMDs (e.g., the synaptophysin TMD
interacts with the Syb2 TMD, Adams et al., 2015).

SNARE TMDs seem to possess some special features. First,
compared to other tail-anchored proteins, SNARE TMDs are
enriched in beta-branched Ile and Val residues (Neumann
and Langosch, 2011). Beta-branched residues (Ile, Val, or Thr)
contain two non-hydrogen substituents attached to their C-β
carbon, compared to other amino acids that contain only one
(Popot and Engelman, 2000). The increased bulkiness near the
protein backbone makes it harder for β-branched amino acids
to adopt α helical conformations in solution. Nevertheless, such
residues are frequently found in α-helical TMDs where they are
thought to increase the conformational flexibility of the TMD
(Popot and Engelman, 2000). Second, the tiny, helix-perturbing
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FIGURE 1 | Possible fusion pathways for soluble N-ethyl maleimide sensitive factor attachment protein receptors (SNARE)-mediated fusion, and the structure of the
post-fusion cis SNARE complex (Stein et al., 2009). (A) A synaptic vesicle is docked at the plasma membrane by trans-SNARE complexes. The exocytotic/neuronal
v-SNARE Syb2 (blue) and the t-SNARE (Stx1 and SNAP25, depicted together in red) are anchored to the synaptic vesicle and the plasma membrane, respectively
via their transmembrane domains (TMDs). Further zippering, coupled with the action of the calcium sensor Synaptotagmin-1 (not shown) and possibly other factors
leads to the opening of a fusion pore (C). Possible intermediate structures on the pathway to opening of the fusion pore include a hemifusion state (B) wherein the
proximal leaflets, but not the distal ones, are fused. An alternative intermediate is a channel-like structure formed by oligomerization of the TMDs of soluble N-ethyl
maleimide sensitive factor attachment protein receptors (SNAREs) in both membranes (B′). Hetero-oligomerization of SNAREs with other proteins may also
contribute to the channel structure. Expansion of the proteinaceous pore would lead to invasion of the pore’s walls by lipids. In (C), the SNAREs are shown fully
zippered at the waist of the pore, but the actual structure is unknown. The fusion pore can fluctuate in size, and flicker open and shut multiple times before
expanding further, leading to full fusion (D), or resealing, concluding a transient or kiss-and-run fusion event (E). (F) Structure of the cis-SNARE complex (adapted
from Stein et al., 2009), PDB file 3HD7, rendered in PyMol). The t-SNAREs Syntaxin 1A and SNAP25 are shown in red and salmon, respectively; the v-SNARE
Syb2 is shown in blue; TMDs are shown inserted into a membrane. Beta-branched residues are indicated in orange (Stx1) or cyan (Syb2). Note that the ultimate
residue in Syb 2 and the last two C-terminal residues in Stx1 were not resolved in the structure and are absent from the image. The plasma membrane thickness is
slightly larger than the TMD lengths (Sharpe et al., 2010). (G) Alignment of TMD sequences of Syb2 and Stx1 according to the crytal structure shown in (F). Contacts
between residues observed in the crystal structure are indicated as black lines. The dashed lines indicate residues that face one another, but are further apart, as the
two helices veer apart toward the very C-termini. Beta-branched residues are indicated in orange (Stx1) or cyan (Syb2), as in (F) modified from Stein et al. (2009).
(H) Alignment of TMDs of Syb2 from several species. Uniprot identifiers (http://www.uniprot.org) are indicated in parentheses. The arrows mark the Gly in position
100 (using the rat sequence as reference) and the tiny residue in position 103. See Hastoy et al. (2017) for a more comprehensive alignment.

Gly is enriched in the N-terminal portion of the TMD (Neumann
and Langosch, 2011) which may allow a kink in the TMD helix
(Han et al., 2016b). In comparison, viral fusion protein TMDs are
also enriched in Gly (Cleverley and Lenard, 1998), but at a more
central position (Neumann and Langosch, 2011). Finally, the
TMDs of exocytotic SNAREs are exceptions to the observation
that for most proteins the TMD length matches the thickness
of membrane wherein the protein resides (Sharpe et al., 2010).
Neuronal SNARE TMDs are shorter than the average plasma
membrane thickness.

Exocytosis is unique among all biological fusion reactions
in that pore dynamics can be observed with sub-millisecond
temporal resolution under native conditions using high
resolution electrophysiological and electrochemical methods
(Travis and Wightman, 1998; Lindau, 2012). In addition,
high temporal resolution of single-pore measurements was
recently achieved in biochemically defined systems, promising

to illuminate many mechanistic questions (Nikolaus and
Karatekin, 2016; Stratton et al., 2016; Wu et al., 2016, 2017).
Finally, atomistic (Blanchard et al., 2014; Han et al., 2016b) and
coarse-grained (CG) simulations (Risselada et al., 2011; Han
et al., 2015; Mostafavi et al., 2017) of fusogen protein-membrane
systems have provided important insights into the role of TMDs
in fusion pore regulation.

MEMBRANE FUSION PATHWAYS

Fusion between purely lipidic membranes is non-specific
and relatively slow (Chanturiya et al., 1997; Warner and
O’Shaughnessy, 2012a). In consequence, biological membrane
fusion requires specific proteins to perform the recognition and
fusion steps. Despite great diversity in biological fusion reactions,
from enveloped virus infection, cell-cell fusion, intracellular
trafficking and wound repair to exocytosis, the fusogens involved
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share some general evolutionary principles and drive fusion
through a limited number of pathways (Figure 1). First, at
some stage the fusogens must be anchored to both of the
bilayers. Second, a conformational change in the fusogens brings
the hydrated phospholipid head groups into close contact.
Fusion requires that substantial hydration forces be overcome
(Rand and Parsegian, 1989) and that intermediate high energy
states be transiently assumed, in which lipid arrangements are
far from that of the equilibrium bilayer. How the associated
barrier to fusion is overcome by fusion proteins has been
much debated. It was proposed that fusion is triggered when
SNARE proteins cooperatively generate entropic forces that
clear the contact zone between apposing membranes and
push them into close proximity, causing rapid fusion due to
thermally driven collisions (Mostafavi et al., 2017). Fusion may
be promoted by local destabilization of the bilayer structure,
for example by bulging (Martens et al., 2007; Hui et al., 2009).
In a radically different possible scenario, the initial fusion
pore is a channel-like structure formed by assembly of two
hemi-channels in the two fusing membranes (Breckenridge and
Almers, 1987; Jackson and Chapman, 2008; Chang et al., 2017;
Figure 1B′). In this view the channel somehow subsequently
dilates, allowing lipids to invade the pore (Chang et al.,
2017).

The fusion pathway may be different in different systems and
remains controversial, but in some cases has been shown to pass
through or terminate in a hemifused state in which only the
proximal leaflets of the apposing membranes are fused while
the distal leaflets engage in an extended bilayer region called
a hemifusion diaphragm (Figure 1B). These include calcium-
mediated fusion of protein-free giant unilamellar vesicles (GUVs;
Nikolaus et al., 2010; Warner and O’Shaughnessy, 2012b), fusion
of yeast vacuoles (Reese et al., 2005; Jun andWickner, 2007), and
fusion between liposomes mediated by SNAREs alone (Lu et al.,
2005; Hernandez et al., 2012) or together with Syt and/or Cpx
(Schaub et al., 2006; Diao et al., 2012). Hemifusion was recently
observed during exocytosis in chromaffin cells (Zhao et al., 2016).

Truncating SNARE TMDs or replacing them with lipids
spanning a single membrane leaflet usually impairs fusion and
results in hemifusion (McNew et al., 2000; Xu et al., 2005; Fdez
et al., 2010; Chang et al., 2016). Thus TMDs can affect the
pathway, either by helping to bypass dead-end hemifusion, or by
converting hemifusion to fusion.

REGULATION OF EXOCYTOTIC FUSION
PORES BY SNARE TMDs

Once the two membranes have fused, the SNARE complex is
now in cis, i.e., both the Syb2 and Stx TMDs are embedded
in the same membrane. There are several features of the
TMDs which may influence pore opening and dynamics at
this stage: (1) flexibility of the TMDs; (2) specific interactions
between TMDs; and (3) TMD-lipid interactions. These effects
are difficult to disentangle. In addition, membrane properties
(curvature and tension) and the soluble portions of the
fusogens and their interactions with one another and with

other proteins will constrain the configurations available to
the TMDs.

TMD Flexibility
Increased flexibility may promote membrane fusion by allowing
TMDs to sample conformations compatible with membrane
shape changes that accompany fusion (Langosch et al., 2007;
Neumann and Langosch, 2011). Consistent with this view, in
reconstituted bulk fusion assays fusion activity correlated with
β-branched residue content in the TMD sequence (Hofmann
et al., 2004; Langosch et al., 2007), although some of these
experiments used small sonication-generated liposomes that can
be prone to fusion even without fusogens, and leakiness during
fusion was not always tested.

TMD flexibility was also identified as a key factor in
secretion kinetics in recent studies of exocytosis from mouse
chromaffin cells. Dhara et al. (2016) studied cells lacking
Syb2 and Cellubrevin (Syb3), that expressed exogenous Syb2 with
the entire TMD replaced with a sequence containing various
combinations of only Ile, Leu or Val. The results ranged
from severe impairment to normal exocytosis. The degree of
restoration of secretion correlated well with the fraction of
β-branched residues that the Syb2 TMD sequence contained in
its N-terminal half (that portion embedded in the cytoplasmic
leaflet of the vesicular/plasma membrane). Replacing the
wild-type TMD with a polyL stretch reduced the amplitudes of
the rapid phases of exocytosis∼5 fold and the slow phase<2 fold
as measured by whole-cell capacitance. Interestingly, however,
the kinetics were unaffected. In amperometric measurements
of single-vesicle release events, replacing the native TMD by
polyV or polyI led to shorter, faster rising spikes (∝ amount of
catecholamine flux reaching the detector), and shorter, higher
amplitude pre-spike features (related to release through the initial
pore). Further, pre-spike fluctuations increased in frequency and
amplitude. Replacing the TMD by an α-helix-stabilizing polyL
sequence produced the opposite effects. These findings suggest
that β-branched residues destabilize the pore, facilitating its
nucleation (increasing event frequency), and accelerating pore
dilation (shorter pre-spike duration and sharper spikes).

In the VAMP2 TMD, a highly conserved Gly100 is followed
by another tiny residue three positions later (Cys, Gly, or Ala,
Figure 1H), which may be important in allowing a kink in
the TMD toward the middle of the bilayer (Han et al., 2016b).
Hastoy et al. (2017) studied the role of VAMP2 G100 and
C103 by substituting them with Val. These substitutions
should impair the ability of the TMD to kink. Using both
short peptides encompassing the TMD and full-length purified
VAMP2 reconstituted in artificial lipid membranes, the authors
found that substitution of C103 and especially of G100 with Val
rendered the membranes less fluid and impaired a transition
from alpha-helical to beta-sheet conformation of the TMD as
the protein concentration increased. These effects correlated
with reduced exocytosis in PC12 and INS-1 cells when the
knocked-down endogenous VAMP2 expression was rescued
with the mutants. Fusion pores expanded faster for the Val
mutants, but they also resealed faster after discharging less
cargo—a result compatible with transient, kiss and run fusion.
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These effects of TMD flexibility on fusion pores are further
discussed in the ‘‘Computer Simulations of SNARE TMDs and
Their Influence on the Fusion Pore’’ section.

TMD-TMD Interactions
Interactions among v- and t-SNARE TMDs can take three
forms: homotypic (vTMD-vTMD or tTMD-tTMD), heterotypic
(vTMD-tTMD) or interactions of SNARE TMDs with TMDs of
other proteins, e.g., synaptophysin (Adams et al., 2015).

Homodimerization of v-SNARE TMDs has long been known
(Washbourne et al., 1995; Roy et al., 2004; Langosch et al., 2007),
but it has been argued that these weak interactions are of little
consequence for exocytosis (Bowen et al., 2002; Fdez et al., 2010;
Dhara et al., 2016). Neuronal t-SNAREs form clusters in artificial
membranes (Bacia et al., 2004; Murray and Tamm, 2009),
neuroendocrine cells (Lang et al., 2001; Barg et al., 2010; van
den Bogaart et al., 2011; Honigmann et al., 2013, Honigmann-
NSMB13; Gandasi and Barg, 2014) and at the neuromuscular
junction (Khuong et al., 2013). However, these clusters seem to
arise from electrostatic interactions between phospholipids and
the JMR of Stx, or from recruitment by vesicle docking (Gandasi
and Barg, 2014) rather than specific TMD-TMD interactions.

It has also been proposed that both t- and v-SNARE
TMDs may homo-oligomerize into channel-like structures (Han
et al., 2004; Jackson and Chapman, 2008; Chang et al., 2015).
Remarkably, systematic mutagenesis showed that residues that
affected fusion pore currents all fall on one side of the t-SNARE
TMD helix, possibly facing the pore’s lumen (Han et al., 2004).
In order to release cargo from the vesicular lumen to the
extracellular space, a pore lined with t-SNARE TMDs would
require a complementary pore formed on the vesicular side by
oligomerization of v-SNARE TMDs. Although some evidence
supports this idea (Chang et al., 2015; Bao et al., 2016), it is
less compelling than that for t-SNARE TMDs. It is also possible
that the vesicular hemi-channel includes TMDs from another
vesicular protein such as synaptophysin (Chang et al., 2017).
A channel-like pore might constitute only the initial structure,
yielding a lipid-lined pore once the pore expands (Chang et al.,
2017). Since the initial pore lasts only a few milliseconds, it is
difficult to confirm or refute such a highly transient, channel-like
structure. The notion of a channel-like structure would gain
credibility if the contacts between channel-forming units could
be identified and manipulated, e.g., to stabilize the pores.

Interactions between v- and t-SNARE TMDs were reported
nearly two decades ago (Poirier et al., 1998; Margittai et al., 1999).
More recently, Stein et al. (2009) solved the crystal structure
of the neuronal SNARE complex including the Syb2 and Stx
TMDs in the presence of detergent. The α-helices of Syb2 and
Stx1 continued beyond the SNARE domain to the C-termini,
spanning the linker region and the TMDs. Contacts between
certain Syb2 and Stx1 residues were identified in both linker and
TMD domains (Figures 1F,G).

This raises an interesting question: do the TMD-TMD
contacts represent specific interactions promoting SNARE
complex zippering through the bilayer and affecting the fusion
process, or are they artifacts of crystal packing constraints?
Wu et al. (2016) sought to answer this question using a

novel approach in which single fusion pores can be probed
in a biochemically defined system. Three isoleucines in the
Syb2 TMD that contact Stx1 TMD residues in the crystal
structure were mutated to alanines, and the fusion rate and
individual pore properties were monitored. The manipulation
reduced the fusion rate moderately, but increased pore lifetimes
10-fold, from ∼6 s to ∼60 s. Replacing the entire TMD with
that of a non-exocytotic v-SNARE or a lipid anchor spanning
the entire bilayer resulted in qualitatively similar outcomes.
These results suggest that specific interactions between Syb2 and
Stx1 TMDs are not essential, but may help fine-tune the fusion
reaction.

In a later study, Wu et al. (2017) found that pore dilation
does not rely on putative v- and t-SNARE TMD interactions, but
rather their results support a dilation mechanism from entropic
forces generated by crowding of SNARE complexes at the fusion
pore.

TMD-Lipid Interactions
Clusters formed by neuronal t-SNAREs are cholesterol-
dependent in artificial membranes (Bacia et al., 2004;
Murray and Tamm, 2009; Milovanovic et al., 2015) and
in live neuroendocrine cells (Lang et al., 2001). Unlike
raft-associated proteins, t-SNAREs were found to be enriched in
cholesterol-poor membrane regions. Milovanovic et al. (2015)
showed that the TMD of Stx1 alone is sufficient for cholesterol-
dependent clustering and argued that this effect originated in
hydrophobic mismatch. Cholesterol-rich membrane regions
tend to form thicker liquid-ordered Lo domains, whereas
cholesterol-poor regions tend to form thinner, liquid-disordered
(Ld) domains. Remarkably, the TMD length of most membrane
proteins matches the thickness of the membrane in which
they normally reside (Mitra et al., 2004; Sharpe et al., 2010),
while neuronal/exocytotic SNAREs appear to be exceptions in
that their TMDs are considerably shorter than the thickness
of the plasma membrane (Sharpe et al., 2010). This length
mismatch may introduce lipid-packing defects that can be
minimized if the offending TMDs are clustered (Milovanovic
et al., 2015).

Addition of even a single charged residue to the lumenal
C-terminus of Syb2 inhibits fusion (Ngatchou et al., 2010). In
contrast, Syb2 fused to a pH-sensitive GFP via a flexible linker
sequence composed of S and G supports exocytosis (Miesenböck
et al., 1998). Ngatchou et al. (2010) interpreted this as evidence
that a few of the lumenal Syb2 residues adjacent to the TMDmay
need to move toward the hydrophobic core of the membrane.
This would destabilize the vesicular membrane and help open a
fusion pore. D’Agostino et al. (2016) argued that at least during
yeast vacuolar fusion this ‘‘penetration model’’ is unlikely to
hold.

COMPUTER SIMULATIONS OF SNARE
TMDs AND THEIR INFLUENCE ON THE
FUSION PORE

Computational studies are of particular value to the fields
of membrane fusion and exocytosis because experimental
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characterization of the small, short-lived fusion pore is
challenging. These small scale and short-lived features
are accessible to computer simulations. The most detailed
approaches are atomistic, currently accessing up to microsecond
timescales (Han et al., 2016b), while CG methods can
probe considerably larger times (Cooke et al., 2005;
Marrink et al., 2007; Monticelli et al., 2008; Mostafavi et al.,
2017).

TMD Flexibility
Conformational flexibility of the TMDs has been proposed to
play a role in fusion (Langosch et al., 2007; Stelzer et al.,
2008). Atomistic simulations of a v-SNARE C-terminal fragment
in a membrane identified three types of flexibility possessed
by the α-helical linker-TMD regions: (i) tilt relative to the
membrane normal; (ii) a kink feature at the Gly100 residue;
and (iii) conformational flexibility of the entire backbone
(Blanchard et al., 2014; Han et al., 2016b). The tilt and kink
angles were uncorrelated, as expected for a flexible TMD,
yet confined to a narrow range ∼100 (Blanchard et al.,
2014). Similar kinked conformations were seen in simulations
with CG representations of TMDs and lipids (Durrieu et al.,
2009; Lindau et al., 2012), and in an atomistic study of
a t-SNARE C-terminal fragment (Knecht and Grubmuller,
2003).

Taken together, simulations and experiments suggest that
TMD conformational flexibility (in particular kinking and/or
backbone flexibility—types (ii) and (iii) above) promotes
exocytosis. In chromaffin cell experiments with the Syb2 native
TMD replaced by sequences containing only Val, Ile, or
Leu, β-branched residue content correlated with restoration of
secretion (Dhara et al., 2016). Simulations appear to identify
flexibility as the relevant property, because polyI and polyV
substitutions increased simulated backbone TMD flexibility,
while polyL substitution decreased the flexibility (Han et al.,
2016b). By contrast, in these simulations all three substitutions
reduced the tilt and straightened the TMD compared to
wildtype, while fluctuations in the associated angles were
reduced. These results suggest tilt and kink flexibilities are of
minor importance to pore dilation. However, mutations of the
Syb2 residues Gly100 and Cys103 to Val that would be expected
to reduce the N-terminal kinking resulted in a decrease in
exocytosis and pores that expanded and closed faster following
partial release (Hastoy et al., 2017). Therefore, both types of
flexibility (kinking and backbone fluctuations) appear to be
relevant.

Thus, increased TMD flexibility may favor pore nucleation
and expansion. What is the underlying mechanism? Greater
TMD flexibility in the N-terminal portion of the TMD
might splay lipids and so relieve the high negative curvature
in the outer phospholipid leaflet in a small fusion pore,
thereby promoting pore nucleation (Dhara et al., 2016).
Dhara et al. (2016) also proposed that this mechanism would
promote pore expansion, but this is less clear since pore
geometry is complex. Consistent with the ability of TMDs to
moderate lipid ordering, TMDs disturbed lipid ordering in
their vicinity in atomistic and Martini simulations (Risselada

et al., 2011; Han et al., 2016b). TMD flexibility may also
promote fusion more directly, by helping membranes to assume
configurations required to navigate pathways to fusion. Further,
several known or potential TMD-TMD interactions may be
affected by Syb2 TMD mutations. One might expect that
any specific interactions would be disrupted by replacing
the TMD with a simple I, L, or V repeat sequence (Dhara
et al., 2016). However, specificity in TMD-TMD interactions
may be encoded in just a single TMD residue in a cellular
context, likely due to packing interactions (Heim et al.,
2015).

Many questions remain unanswered regarding the role of
TMD flexibility in fusion. For example, if indeed greater
flexibility translates to more frequent and faster exocytosis, one
might anticipate that lipid-anchored Syb2 would provide the
most efficient fusion. However, no such enhancement is seen
when Syb2 is anchored by palmitoylated cysteine string protein
(CSP) in chromaffin cells (Chang et al., 2016; Dhara et al., 2016),
neurons (Chang et al., 2016), or when a lipid anchor that spans
the entire bilayer is used (McNew et al., 2000; Wu et al., 2016,
2017).

A mathematical model suggested that another possible
mechanism whereby TMD flexibility could promote fusion is by
enhancing entropic forces tending to expand the pore. In the
model, increased TMD flexibility would increase orientational
fluctuations of and mutual steric interactions among the
cis-SNARE complexes, increasing the entropic pore expansion
force (Wu et al., 2017).

TMD-TMD Interactions
The mathematical model of Wu et al. (2017) identified a
critical role for specific and non-specific TMD-TMD interactions
in fusion. These interactions drive zippering of cis-SNARE
complexes to the fusion pore waist, forcing the SNAREs to
interact sterically and thus generating entropic forces that drive
pore expansion.

TMD interactions may be important at other stages of
fusion. Simulations show v-SNARE TMDs interact and can
homodimerize or form higher order oligomers (Fleming and
Engelman, 2001; Han et al., 2015, 2016a), with an interaction
energy of ∼10 kBT between v-SNARE C-terminal fragments
measured in a hybrid atomistic-MARTINI approach (Han
et al., 2015). A MARTINI study suggested that the fusion
pathway passes through a hemifused state with a HD, and that
homodimerization of SNARE TMDs restricts the HD to remain
small and therefore to transit more readily to a fusion pore
(Risselada et al., 2011).

TMD-Lipid Interactions
Interactions between lipids and SNARE TMDs or JMRs may
assist fusion. In Martini simulations, post fusion SNARE
complexes surrounding the fusion pore were constrained to
retain their Y shape by the energy penalty associated with
moving the C-terminal polar residues through the hydrophobic
membrane core (Risselada et al., 2011). Thus, the bending energy
stored in the C-terminal portion of the complexes could be
released only by pore expansion. Other MARTINI and hybrid
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atomistic/CG studies have shown that PI(4,5)P2 concentrates at
t-SNARE JMRs due to interactions with the charged Lys and
Arg residues (Khelashvili et al., 2012; Sharma et al., 2015). These
effects are thought to help cluster neuronal t-SNAREs (van den
Bogaart et al., 2011).
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