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Abstract: The biochemical identification of carotid artery stenosis (CAS) is still a challenge. Hence,
349 male subjects (176 normal controls and 173 stroke patients with extracranial CAS ≥ 50% diameter
stenosis) were recruited. Blood samples were collected 14 days after stroke onset with no acute illness.
Carotid plaque score (≥2, ≥5 and ≥8) was used to define CAS severity. Serum metabolites were
analyzed using a targeted Absolute IDQ®p180 kit. Results showed hypertension, diabetes, smoking,
and alcohol consumption were more common, but levels of diastolic blood pressure, HDL-C, LDL-C,
and cholesterol were lower in CAS patients than controls (p < 0.05), suggesting intensive medical
treatment for CAS. PCA and PLS-DA did not demonstrate clear separation between controls and
CAS patients. Decision tree and random forest showed that acylcarnitine species (C4, C14:1, C18),
amino acids and biogenic amines (SDMA), and glycerophospholipids (PC aa C36:6, PC ae C34:3)
contributed to the prediction of CAS. Metabolite panel analysis showed high specificity (0.923± 0.081,
0.906 ± 0.086 and 0.881 ± 0.109) but low sensitivity (0.230 ± 0.166, 0.240 ± 0.176 and 0.271 ± 0.169)
in the detection of CAS (≥2, ≥5 and ≥8, respectively). The present study suggests that metabolomics
profiles could help in differentiating between controls and CAS patients and in monitoring the
progression of CAS.
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1. Introduction

Stroke is a major cause of functional disability and death worldwide, and the economic
expense of treatment and post-stroke care is a great burden to the society [1]. Atherosclerosis
is a chronic disease of complex etiology and usually results in arterial stenosis and acute
thrombosis. Among ischemic stroke subtypes, our previous study showed that carotid
artery stenosis (CAS) carries a high mortality rate, with 23.7% mortality upon recurrent
stroke [2]. Recent genome-wide association studies in Caucasians [3–5] found six genetic
loci, and our study in Han Chinese [6] found two loci that were associated with CAS.
Among these loci, histone deacetylase 9-TWIST1 (HDAC9-TWIST1, encoding histone
deacetylase 9) on chromosome 7p21.1 was found in both ethnicities. However, due to the
heterogeneity of stroke, genetic studies did not consistently find replicable genetic risk
factors for cerebral atherosclerosis, which may raise difficulty in stroke prevention for CAS.

Despite the advanced diagnostic tools, such as angiography and ultrasound study,
in detecting CAS, the biochemical identification of CAS is still a challenge. Metabolomics
is known as a quantitative measurement of the metabolic response of living creatures
to pathophysiological stimuli or genetic modification [7]. Metabolomics is used as a
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promising tool to provide current, single biomarker-based approaches by identifying
the global biochemical changes and a good tool in the analysis of disease mechanisms
and biomarkers [8]. It is possible that using potent analyses, metabolomics may help in
quantifying thousands of different metabolites simultaneously within a given sample to
create a great impact on medical practice in CAS.

The use of carotid ultrasound and angiography in the diagnosis of CAS [9] is time-
consuming, costly, or even invasive. The application of metabolomics could be of potential
as a biomarker to investigate the presence of CAS. Untargeted metabolomics using proton
nuclear magnetic resonance (1H NMR) spectroscopy has been applied in many fields of
atherosclerosis research, including carotid [10–14] and coronary [11,15,16] systems. Our pre-
vious study using 1H NMR found that homocysteine, choline, and lipids in association with
traditional risk factors may be involved in the pathogenesis of extracranial CAS [14]. High
intima-media thickness was found best predictable when total and high-density lipoprotein
cholesterol (HDL-C) were replaced by NMR-determined low-density lipoprotein choles-
terol (LDL-C) and medium HDL-C, docosahexaenoic acid, and tyrosine in combination
with the risk factors from Framingham risk score [10]. Atherosclerosis may be associated
with metabolites that have disturbances in lipid and carbohydrate metabolism, branched
chain, aromatic amino acid metabolism, and also oxidative stress and inflammatory path-
ways [11]. There are differences in metabolic patterns between extracranial and intracranial
carotid artery calcification, with the 3-hydroxybutyrate circulating level being higher in
intracranial carotid artery calcification [12].

In the studies using liquid chromatography–mass spectrometry (LC–MS) [17–20], sub-
jects with asymptomatic severe intracranial artery stenosis were found to have abnormal
metabolism of sphingomyelin, taurine/hypotaurine, pyrimidine, and protein (peptide)
with the major involvement in taurine/hypotaurine, glycerophospholipid, and sphin-
golipid metabolism pathways [17]. Hydroxytetradecanoylcarnitine (C14OH) was detected
to have positive correlation with carotid plague area after age adjustment [18]. The levels
of metabolites related to the eicosanoid and beta-oxidation pathways were detected higher
in symptomatic carotid plaque tissue than non-symptomatic one [19]. Nonenzymatic
lipid peroxidation, mainly 9-hydroxyeicosatetraenoic acids, was abundant in advanced
atherosclerosis and may promote plaque instability [20]. Nevertheless, there is no report
using the targeted metabolomics in combination with machine learning to identify the
metabolomics biomarkers in patients with severe extracranial CAS. The present study
hypothesized that the use of targeted metabolomics in combination with machine learning
techniques could help in identifying certain plasma metabolites that may be associated
with the pathogenesis of CAS and may predict the presence of CAS.

Our contributions are as follows. We have (1) proposed a novel framework using
decision tree and random forest techniques to predict the presence of CAS through targeted
metabolomics methods; (2) compared the targeted metabolomics factors in different severity
subgroups of CAS to predict the progression of atherosclerosis; (3) proposed a metabolomics
framework to support the early prediction of CAS and raise the possibility of adjuvant
metabolite therapy to prevent the progression of CAS to reduce the risk of stroke.

2. Materials and Methods
2.1. Subject Recruitment

Consecutive ischemic stroke patients with CAS were recruited from 2010 to 2015 ac-
cording to the following inclusion criteria: (1) patients had at least one extracranial carotid
artery ≥ 50% diameter stenosis in any segment from common carotid to extracranial
internal/external carotid artery by cerebral angiography (digital subtraction, computed to-
mographic or magnetic resonance angiography) according to North American Symptomatic
Carotid Endarterectomy Trial (NASCET) criteria [21], (2) blood samples were collected
over 14 days after stroke onset with stable neurological condition, (3) patients had no acute
illness at the time of blood sample collection such as infection or progressing stroke, and
(4) modified Rankin scale ≤ 3. The normal controls were recruited in the same time period
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from a neurology outpatient clinic. Normal controls were defined as (1) no stroke and
coronary artery disease (CAD) history, (2) carotid duplex, and brain magnetic resonance or
computed tomographic angiography showed <50% diameter stenosis at bilateral intracra-
nial and extracranial carotid arteries, and (3) no acute illness during blood sample collection
such as infection. In all normal controls and CAS patients, the exclusion criteria included
(1) female subjects, (2) having systemic diseases, such as hypo/hyperthyroidism, decom-
pensated liver cirrhosis, acute kidney injury, or systemic lupus erythematosus, (3) presence
of cancer and severe illness during the time of recruitment, and (4) normal controls with
plaque score ≥ 1. This study was approved by the Institution Review Board, Linkou Chang
Gung Memorial Hospital (number of revised approval document: 201506352B0C501 and
202000552B0C601). All subjects signed inform consent before the recruitment.

2.2. Carotid Plaque Score

All subjects had received carotid duplex for plaque score calculation. The accuracy
of carotid duplex in the diagnosis of CAS was confirmed in our previous reports [9,22].
The time interval between carotid duplex and blood sample collection was within 30 days.
Plaque score was evaluated according to our previous method [23] and was defined in the
following degrees: 0 = diameter stenosis < 20%, 1 = 20–50%, 2 = 51–70%, and 3 = 71–100%
in 12 segments, including bilateral common (proximal, middle, distal and bifurcation),
internal and external carotid arteries. The summation of plaque score in the 12 carotid
segments was used for analysis. Normal controls were defined as having plaque score = 0
in the 12 carotid segments. Patients with extracranial CAS was defined as having at least
one carotid segment with plaque score≥ 2. The distribution of plaque score in CAS patients
and normal controls is presented in Supplementary Figure S1. Age, clinical profiles, and
laboratory blood tests were recorded for analysis.

2.3. Blood Sampling and Examination

Blood samples were collected at recruitment of normal controls and CAS patients in
stationary condition. Blood for metabolomics was collected in sodium citrate tubes and then
centrifuged immediately (10 min, 3000 rpm at 4 ◦C) within an hour after blood collection.
Plasma was aliquoted into separate polypropylene tubes and immediately stored at −80 ◦C
freezer. Measurement of other parameters, including homocysteine, high-sensitive C-
reactive protein, lipid profiles, blood sugar, and kidney/liver function, was conducted at
the Department of Laboratory Medicine in Linkou Chang Gung Memorial Hospital.

2.4. Metabolite Analysis

Metabolites were analyzed according to our previous method [24] with a commercial
kit, the targeted Absolute IDQ®p180 kit (Biocrates Life Science, AG, Innsbruck, Austria).
According to the manufacture manual, this kit contains a direct flow injection assay and a
LC-MS/MS assay which can quantify a total of 194 endogenous metabolites from 5 classes
of compound, including acylcarnitines, amino acids and biogenic amines, sugar, sphin-
gomyelins, and glycerophospholipids. The LC-MS/MS assay was performed by using
a Waters Acquity Xevo TQ-S instrument (Waters, Milford, MA, USA). First, the samples
were thawed, vortexed, and centrifuged at 13,000× g. Then, a 10-uL aliquot of sample
supernatant was loaded onto filter paper, dried under nitrogen flow, and derivatized by
adding 20 µL of 5% phenyl-isothiocyanate for 20 min. Second, the filter spots were dried
under nitrogen flow for 45 min. Then, the metabolites were extracted by adding 300 µL
of methanol containing 5 mM ammonium acetate. Third, the extracts were analyzed by
mass spectrometry by injection onto an Acquity UPLC BEH C18 (2.1 × 75 mm, 1.7-µm
particle size, Waters, Milford, MA, USA) at 50 ◦C for the chromatographic separation of
amino acids and biogenic amines. The process was followed under negative electrospray
ionization and multiple reaction monitoring (MRM) mode and followed by flow injec-
tion analysis/thermospray mass spectrometry (FIA-MS)/MS of sphingolipids, hexoses,
acylcarnitines, and glycerophospholipids. Finally, liquid chromatography data were quan-
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tified by performing with TargetLynx (Waters, Milford, MA, USA) based on an external
7-point calibration. The level of metabolite was obtained by converting and importing FIA
data into the Biocrates® MetIDQ™ software (10th version, BIOCRATES Life Sciences, AG,
Innsbruck, Austria).

2.5. Statistical Analysis

The baseline characteristics and metabolite concentrations were presented as mean ±
standard deviation (SD) for continuous variables with the statistics using Student’s t test
and as count and percentage for categorical variables using chi-square test or Fisher’s exact
test. To account for multiple testing, the Benjamini and Hochberg linear step-up method
was adopted [25], and false discovery rate (FDR) adjusted p values (PFDR) were calculated
using the MULTTEST procedure in SAS software (SAS Institute, Cary, NC, USA). A PFDR
value < 0.05 was considered statistically significant.

The metabolites were analyzed using principal components analysis (PCA) and or-
thogonal partial least squares discriminant analysis (OPLSDA) through the web-based
metabolomics software MetaboAnalyst 5.0 (https://www.metaboanalyst.ca (accessed on 15
July 2022)). All metabolites were normalized by Pareto scaling. The variable importance in
the projection (VIP) of each variable in the model was calculated to indicate its contribution
to the classification. A higher VIP value indicates a stronger contribution to discrimination
between groups. VIP values greater than 1.0 were considered significantly different.

The metabolites were further analyzed with decision tree and random forest analysis.
The normal controls and CAS patients were randomly divided into training and testing
groups in the ratio of 80% and 20%, respectively. The decision tree package (rpart) was
used with the classification and regression tree (CART) method, and the model details were
xval = 10, minsplit = 20, cp = 0.01, maxdepth = 30. RandomForest package (R software) was
used for random forest analysis.

A total of 6 performance metrics, including accuracy, specificity, sensitivity, positive
predictive value (PPV), negative predictive value (NPV), and area under the receiver
operating characteristic (ROC) curve (AUC) were used to evaluate the performance of
decision tree and random forest in the 3 subgroups of CAS patients. The split method was
utilized to validate the results in which data were split into training and testing sets.

3. Results
3.1. Subject Characteristics

A total of 349 male subjects (176 normal controls and 173 ischemic stroke patients with
≥50% extracranial CAS) were consecutively recruited for metabolomics study (Figure 1).
The distribution of plaque score in the 349 subjects is demonstrated in Supplementary
Figure S1. To further identify the normal controls with plaque score = 0 (127 subjects), 49
normal controls with plaque score ≥ 1 were excluded from the analysis (Figure 1). The
three subgroups of CAS patients with plaque score ≥ 2, ≥5, and ≥8 were identified in 173,
142, and 79 CAS patients, respectively.

3.2. Baseline Characteristics

The baseline characteristic for normal control with plaque score = 0, and CAS patients
with plaque score ≥ 2, ≥5, and ≥8 are presented in Table 1. Age, homocysteine, creatinine,
and the percentage of comorbidity, including hypertension, diabetes, smoking, and alcohol
consumption were significantly higher in the three subgroups of CAS patients when
compared to normal controls (adjusted PFDR value < 0.05). However, body weight, diastolic
blood pressure, HDL-C, LDL-C, and total cholesterol were significantly lower in the three
subgroups of CAS patients when compared to normal controls (adjusted PFDR value <
0.05, Table 1). A comparison of metabolite levels between normal controls and the three
subgroups of CAS patients is shown in Supplementary Table S1.

https://www.metaboanalyst.ca
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Table 1. Comparison of baseline demographics between normal controls and the 3 subgroups of
carotid artery stenosis.

Study Group A. Plaque
Score = 0

B. Plaque
Score ≥ 2 Adj PFDR

A vs. B

C. Plaque
Score ≥ 5 Adj PFDR

A vs. C

D. Plaque
Score ≥ 8 Adj PFDR

A vs. D
Characteristics\No. 127 173 142 79

Age 60.58 ± 6.23 64.19 ± 7.82 5.588 × 105 * 65.00 ± 7.89 7.308 × 105 * 66.38 ± 7.96 1.056 × 104 *
Sex (Male) 127 (100) 173 (100) 0.581 142 (100) 0.738 79 (100) 0.971
Height 164.44 ± 7.80 163.44 ± 6.46 0.395 163.22 ± 6.65 0.309 162.92 ± 6.66 0.304
Weight 68.56 ± 10.38 65.50 ± 8.99 0.024 * 65.34 ± 9.07 0.026 * 64.13 ± 7.56 0.005 *
BMI 25.32 ± 3.28 24.52 ± 3.11 0.079 24.53 ± 3.17 0.125 24.18 ± 2.72 0.039 *
Waist circumference 85.01 ± 8.71 85.11 ± 8.89 0.941 85.00 ± 9.14 0.992 84.21 ± 8.49 0.669
Hip circumference 91.82 ± 6.36 89.98 ± 7.40 0.078 90.13 ± 7.61 0.143 89.72 ± 7.42 0.101
Systolic blood pressure 132.97 ± 18.45 135.88 ± 23.43 0.382 137.58 ± 24.34 0.170 139.35 ± 27.03 0.160
Diastolic blood pressure 81.60 ± 11.01 75.84 ± 13.30 5.588 × 105 * 75.62 ± 13.30 0.001 * 74.32 ± 13.40 1.056 × 104 *
Mean blood pressure 98.72 ± 12.36 95.86 ± 14.90 0.150 96.27 ± 15.31 0.286 96.00 ± 16.34 0.358
Heart rate 75.83 ± 13.70 74.37 ± 14.42 0.530 75.08 ± 14.92 0.778 76.01 ± 13.68 0.957
Homocysteine 10.17 ± 2.72 11.77 ± 3.95 5.588 × 105 * 11.71 ± 4.12 0.004 * 12.14 ± 5.12 0.020 *
AC Sugar 98.31 ± 14.85 105.41 ± 30.28 0.031 * 105.07 ± 29.68 0.064 106.85 ± 33.19 0.101
HsCRP 2.65 ± 8.03 5.04 ± 12.57 0.121 5.21 ± 13.03 0.144 6.06 ± 15.98 0.220
HDL-C 49.39 ± 10.92 41.06 ± 10.42 5.588 × 105 * 41.16 ± 10.66 7.308 × 105 * 40.38 ± 8.91 1.056 × 104 *
LDL-C 120.21 ± 39.92 104.89 ± 36.34 0.003 * 104.44 ± 36.05 0.004 * 106.09 ± 39.52 0.047 *
Triglyceride 130.44 ± 72.35 134.78 ± 75.11 0.724 136.60 ± 77.34 0.645 137.84 ± 82.44 0.638
Cholesterol 192.69 ± 35.06 172.45 ± 41.49 5.588 × 105 * 172.54 ± 41.72 7.308 × 105 * 173.58 ± 46.52 0.012 *
Uric acid 6.22 ± 1.38 6.35 ± 1.68 0.583 6.41 ± 1.68 0.452 6.34 ± 1.68 0.689
Creatinine 0.86 ± 0.16 1.04 ± 0.38 5.588 × 105 * 1.05 ± 0.39 7.308 × 105 * 1.02 ± 0.39 0.005 *

Comorbidity No. (%) No. (%) p value No. (%) p value No. (%) p value
Hypertension 49 (39) 130 (75) 1.700 × 108 * 107 (75) 1.010 × 107 * 59 (75) 4.314 × 105 *

Diabetes mellitus 1 (1) 55 (32) 1.900 × 109 * 49 (35) 2.000 × 1010

*
34 (43) <0.001 *

Smoking 50 (39) 128 (74) 1.031 × 107 * 102 (72) 5.234 × 106 * 59 (75) 5.017 × 105 *
Alcohol 32 (25) 74 (43) 0.006 * 62 (44) 0.006 * 34 (43) 0.030 *
FHx stroke 41 (32) 64 (37) 0.536 52 (37) 0.601 31 (39) 0.469

Data are presented as mean ± SD for numerical data and number (%) for categorical data. Variables are analyzed
by Student’s t-tests for numerical data or Chi-square test for categorical data. Model significance is presented
in adjusted p value (Adj PFDR). * indicates p value < 0.05. AC, Ante cibum (before meals); BMI, body mass
index; HDL-C, high-density lipoprotein-cholesterol; HsCRP, high-sensitive C-reactive protein; LDL-C, low density
lipoprotein-cholesterol; FHx stroke, family history of stroke.

As the traditional metabolomics methods, PCA and PLSDA, did not show a clear
separation between normal controls and the three subgroups of CAS patients (Supplemen-
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tary Figure S2A–C), decision tree and random forest algorithms were employed for the
construction of differentiation models.

3.3. Decision Tree Analysis

In decision tree analysis, the predictor metabolites and the cut-off points for each
metabolite identified between plaque score ≥ 2 and 0 in the training group were demon-
strated, as shown in Figure 2A. The root metabolite was butyrylcarnitine (C4). Subjects with
C4 concentration ≥ 0.19 µmol/L could be divided into two groups according to tetrade-
cenoylcarnitine (C14:1) concentration. The subjects with C14:1 concentration < 0.07 µmol/L
mainly consisted of CAS patients (58 in 63, 92.1%). Subjects with C14:1≥ 0.07 µmol/L were
then split into two groups according to symmetric dimethylarginine (SDMA). Subjects with
SDMA concentration ≥ 0.75 µmol/L were all CAS patients (10 in 10, 100%). Subjects with
SDMA < 0.75 µmol/L were further split into two groups according to phosphatidylcholine
with acyl-alkyl residue sum C32:2 (PC ae C32:2). Subjects with PC ae C32:2 concentration
≥ 0.34 µmol/L mainly consisted of normal controls (10 in 11, 90.9%).

Subjects with C4 < 0.19 µmol/L were split into two groups according to phosphatidyl-
choline with diacyl residue sum C40:2 (PC aa C40:2). Subjects with PC aa C40:2 concentra-
tion < 0.21 µmol/L mainly consisted of CAS patients (27 in 33, 81.8%). Subjects with PC aa
C40:2 ≥ 0.21 µmol/L were further split according to decenoylcarnitine (C10:1). Subjects
with C10:1 concentration ≥ 0.39 µmol/L mainly consisted of normal controls (50 in 56,
89.3%). Subjects with C10:1 concentration < 0.39 µmol/L were then split according to
kynurenine. Subjects with kynurenine concentration ≥ 1.79 µmol/L mainly consisted of
CAS patients (19 in 24, 79.2%). Subjects with kynurenine concentration < 1.79 µmol/L were
further split according to methionine. Subjects with methionine < 18.75 µmol/L mainly
consisted of CAS patients (eight in 11, 72.7%). Subjects with methionine ≥ 18.75 µmol/L
mainly consisted of normal controls (19 in 21, 90.4%).

The same decision tree analysis of plaque score ≥ 2 (Figure 2A) was also applied to
differentiate the normal controls and patients with plaque score ≥ 5 (Figure 2B) and ≥
8 (Figure 2C) to create another two models in the training group. As shown in Figure 2,
C4 remained the root metabolite in the three plaque score subgroups. C14:1 and SAMA
in plaque score ≥ 2 were the main metabolites, while octadecanoylcarnitine (C18) and
phosphatidylcholine with diacyl residue sum C36:6 (PC aa C36:6) in plaque score ≥ 5 and
phosphatidylcholine with acyl-alkyl residue sum C34:3 (PC ae C34:3) in plaque score ≥ 8
were the main metabolites in the differentiation between normal controls and CAS patients
with a positive rate over 90% for CAS.

3.4. Random Forest Analysis

In the random forest analysis using the training group, the analysis of normal controls
and CAS patients with plaque score ≥ 2 showed that seven metabolites had a mean
decrease in Gini score ≥ 2.0, including C4, asparate, PC ae C34:3, C10:1, C14:1, C10, and
proline (Figure 3A). The analysis of CAS patients with plaque score ≥ 5 showed only five
metabolites (C4, C10, SDMA) with a mean decrease Gini score ≥ 2.0 (Figure 3B). However,
in the analysis of CAS patients with plaque score ≥ 8, C4 had mean decrease gini score ≥
2.0 (Figure 3C).



Cells 2022, 11, 3022 7 of 14Cells 2022, 11, 3022 7 of 13 
 

 

 
Figure 2. Decision tree study of normal controls (normal) and carotid artery stenosis (CAS) patients 
with plaque score ≥ 2, ≥ 5 and ≥ 8. 

3.4. Random Forest Analysis 
In the random forest analysis using the training group, the analysis of normal con-

trols and CAS patients with plaque score ≥ 2 showed that seven metabolites had a mean 
decrease in Gini score ≥ 2.0, including C4, asparate, PC ae C34:3, C10:1, C14:1, C10, and 
proline (Figure 3A). The analysis of CAS patients with plaque score ≥ 5 showed only five 
metabolites (C4, C10, SDMA) with a mean decrease Gini score ≥ 2.0 (Figure 3B). However, 

Figure 2. Decision tree study of normal controls (normal) and carotid artery stenosis (CAS) patients
with plaque score ≥ 2, ≥5 and ≥8.



Cells 2022, 11, 3022 8 of 14

Cells 2022, 11, 3022 8 of 13 
 

 

in the analysis of CAS patients with plaque score ≥ 8, C4 had mean decrease gini score ≥ 
2.0 (Figure 3C). 

 
Figure 3. Random Forest study of normal controls (normal) and carotid artery stenosis (CAS) pa-
tients with plaque score ≥ 2, ≥ 5 and ≥ 8. 

After creating the predictive models in the training group, the predictive models were 
applied to the testing group. The results of the six metrics in the evaluation of the performance 
of decision tree and random forest in the three subgroups of CAS patients among training, 
testing, and total subjects are shown in Table 2. In the analysis of training groups, the perfor-
mance of the six metrics was greater than 0.8, except the specificity (0.782) in the decision tree 
of plaque score, which was ≥ 2. In the analysis of testing groups, the performance of the six 
metrics was greater than 0.6, except the PPV (0.588) in the decision tree of plaque score, ≥ 8. In 
the analysis of total subjects, the performance of the six metrics was greater than 0.7, except 
the specificity (0.642) in the decision tree of plaque score ≥ 2 and the sensitivity (0.647) in the 
decision tree of plaque score ≥ 8. The results of ROC curve and AUC are presented in Supple-
mentary Figure S3. The AUC results of training, testing, and total groups in plaque score ≥ 2, 
5, 8 showed values greater than 0.7 in both decision tree and random forest (Table 2). 

Table 2. Performance metrics of decision tree and random forest in the 3 subgroups of carotid artery 
stenosis patients among training, testing and total subjects. 

Plaque Score  Patient No. Accuracy Specificity Sensitivity PPV NPV AUC 
Decision tree         

0 vs. ≥ 2 
Training 239 0.870 0.782 0.935 0.854 0.898 0.897 
Testing 61 0.754 0.654 0.829 0.763 0.739 0.752 
Total 349 0.777 0.642 0.913 0.715 0.883 0.811 

0 vs. ≥ 5 
Training 214 0.864 0.842 0.885 0.862 0.867 0.903 
Testing 55 0.727 0.731 0.724 0.750 0.704 0.750 
Total 349 0.779 0.739 0.821 0.755 0.807 0.818 

0 vs. ≥ 8 
Training 164 0.884 0.911 0.8413 0.855 0.902 0.897 
Testing 42 0.690 0.731 0.625 0.588 0.760 0.714 
Total 349 0.751 0.852 0.647 0.812 0.711 0.754 

Random forest 

0 vs. ≥ 2 
Training 239 1.000 1.000 1.000 1.000 1.000 1.000 
Testing 61 0.770 0.654 0.857 0.769 0.773 0.881 
Total 349 0.877 0.784 0.971 0.816 0.965 0.979 

0 vs. ≥ 5 
Training 214 1.000 1.000 1.000 1.000 1.000 1.000 
Testing 55 0.855 0.846 0.862 0.862 0.846 0.933 
Total 349 0.874 0.841 0.908 0.849 0.902 0.966 

0 vs. ≥ 8 
Training 164 1.000 1.000 1.000 1.000 1.000 1.000 
Testing 42 0.857 0.923 0.750 0.857 0.857 0.887 
Total 349 0.851 0.938 0.763 0.923 0.801 0.923 

Bold numbers indicate the lowest metric among training, testing and total subjects. Total 349 sub-
jects = 176 normal controls + 173 patients with carotid artery stenosis; PPV: Positive predictive value; 
NPV: Negative predictive value; AUC: area under the receiver operating characteristic curve. 

Figure 3. Random Forest study of normal controls (normal) and carotid artery stenosis (CAS) patients
with plaque score ≥ 2, ≥ 5 and ≥ 8.

After creating the predictive models in the training group, the predictive models
were applied to the testing group. The results of the six metrics in the evaluation of the
performance of decision tree and random forest in the three subgroups of CAS patients
among training, testing, and total subjects are shown in Table 2. In the analysis of training
groups, the performance of the six metrics was greater than 0.8, except the specificity (0.782)
in the decision tree of plaque score, which was ≥ 2. In the analysis of testing groups, the
performance of the six metrics was greater than 0.6, except the PPV (0.588) in the decision
tree of plaque score, ≥ 8. In the analysis of total subjects, the performance of the six metrics
was greater than 0.7, except the specificity (0.642) in the decision tree of plaque score ≥ 2
and the sensitivity (0.647) in the decision tree of plaque score ≥ 8. The results of ROC curve
and AUC are presented in Supplementary Figure S3. The AUC results of training, testing,
and total groups in plaque score ≥ 2, 5, 8 showed values greater than 0.7 in both decision
tree and random forest (Table 2).

Table 2. Performance metrics of decision tree and random forest in the 3 subgroups of carotid artery
stenosis patients among training, testing and total subjects.

Plaque Score Patient No. Accuracy Specificity Sensitivity PPV NPV AUC

Decision tree

0 vs. ≥ 2
Training 239 0.870 0.782 0.935 0.854 0.898 0.897
Testing 61 0.754 0.654 0.829 0.763 0.739 0.752
Total 349 0.777 0.642 0.913 0.715 0.883 0.811

0 vs. ≥ 5
Training 214 0.864 0.842 0.885 0.862 0.867 0.903
Testing 55 0.727 0.731 0.724 0.750 0.704 0.750
Total 349 0.779 0.739 0.821 0.755 0.807 0.818

0 vs. ≥ 8
Training 164 0.884 0.911 0.8413 0.855 0.902 0.897
Testing 42 0.690 0.731 0.625 0.588 0.760 0.714
Total 349 0.751 0.852 0.647 0.812 0.711 0.754

Random forest

0 vs. ≥ 2
Training 239 1.000 1.000 1.000 1.000 1.000 1.000
Testing 61 0.770 0.654 0.857 0.769 0.773 0.881
Total 349 0.877 0.784 0.971 0.816 0.965 0.979

0 vs. ≥ 5
Training 214 1.000 1.000 1.000 1.000 1.000 1.000
Testing 55 0.855 0.846 0.862 0.862 0.846 0.933
Total 349 0.874 0.841 0.908 0.849 0.902 0.966

0 vs. ≥ 8
Training 164 1.000 1.000 1.000 1.000 1.000 1.000
Testing 42 0.857 0.923 0.750 0.857 0.857 0.887
Total 349 0.851 0.938 0.763 0.923 0.801 0.923

Bold numbers indicate the lowest metric among training, testing and total subjects. Total 349 subjects = 176 normal
controls + 173 patients with carotid artery stenosis; PPV: Positive predictive value; NPV: Negative predictive
value; AUC: area under the receiver operating characteristic curve.
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3.5. Metabolite Panel Analysis

For further evaluation, the metabolite panels which included the metabolites with a
positive rate ≥ 90% for CAS in decision tree and the mean decrease Gini ≥ 1.0 in random
forest (except C18 and PC aa C36:6) were used to evaluate the six performance metrics
in the total of 349 subjects. The performance metrics showed that the detection of CAS
had high specificity (0.923 ± 0.081, 0.906 ± 0.086 and 0.881 ± 0.109) but low sensitivity
(0.230 ± 0.166, 0.240± 0.176 and 0.271± 0.169), with accuracy (0.580± 0.044, 0.635± 0.025,
0.743 ± 0.049) in different plaque score ≥ 2, ≥ 5, and ≥ 8, respectively (Table 3).

Table 3. Performance metrics of metabolite panels in the 3 subgroups of carotid artery stenosis
patients among the total 349 subjects.

Metabolite Panel Plaque Score Accuracy Specificity Sensitivity PPV NPV

C4 ≥ 0.19 + C14:1 < 0.07
≥2 0.645 0.852 0.434 0.743 0.605
≥5 0.676 0.826 0.458 0.644 0.690
≥8 0.702 0.767 0.481 0.376 0.835

C4 ≥ 0.19 + C14:1 ≥ 0.07 +
SDMA ≥ 0.75

≥2 0.533 0.989 0.069 0.857 0.519
≥5 0.622 0.990 0.085 0.857 0.612
≥8 0.791 0.985 0.127 0.714 0.794

C4 ≥ 0.19 + C18 < 0.04
≥2 0.602 0.818 0.382 0.673 0.574
≥5 0.639 0.802 0.401 0.582 0.661
≥8 0.682 0.759 0.418 0.337 0.817

C4≥ 0.19 + C18 ≥ 0.04 + PC aa
C36:6 < 0.34

≥2 0.562 0.972 0.145 0.833 0.536
≥5 0.628 0.957 0.148 0.700 0.621
≥8 0.785 0.952 0.215 0.567 0.806

C4 < 0.2 + PC ae C34:3 < 2.31
≥2 0.556 0.983 0.121 0.875 0.532
≥5 0.610 0.957 0.106 0.625 0.609
≥8 0.756 0.944 0.114 0.375 0.785

Mean ± standard deviation ≥2 0.58 ± 0.04 0.92 ± 0.08 0.23 ± 0.17 0.80 ± 0.09 0.55 ± 0.04
≥5 0.64 ± 0.03 0.91 ± 0.09 0.24 ± 0.18 0.68 ± 0.11 0.64 ± 0.04
≥8 0.74 ± 0.05 0.88 ± 0.11 0.27 ± 0.17 0.47 ± 0.16 0.81 ± 0.02

PPV: Positive predictive value; NPV: Negative predictive value.

4. Discussion

Our study demonstrated that C4 is the root metabolite in the detection of CAS in the
three subgroups. Acylcarnitine species (C4, C14:1, C18), amino acids and biogenic amines
(SDMA), and glycerophospholipids (PC aa C36:6, PC ae C34:3) may be involved in the
biomarker evaluation of CAS. The metabolite panels could be used as a more effective
method than single metabolite to evaluate the possibility of CAS. Different metabolites
may be involved in the varied severity of CAS.

Disturbances in lipid and carbohydrate metabolism, branched-chain and aromatic
amino acid metabolism, as well as oxidative stress and inflammatory pathways observed
on 1H NMR spectroscopy were found to have associations with subclinical atherosclerosis,
which were consistent between coronary and carotid vascular beds [11]. In the studies
of stable CAD, branched-chain amino acid metabolites and urea cycle metabolites were
found to be associated with CAD [15], and reduced global arginine bioavailability ratio
and increased citrulline levels were associated with an increased frequency of severe
CAD [16]. A population-based Rotterdam study using 1H NMR found that location-
specific metabolites, including glycolysis-related metabolites, lipoprotein subfractions, and
amino acids, were associated with the etiology of intracranial and extracranial carotid
artery calcification [12].

In the study of acylcarnitine, a previous report has shown the concentrations of acyl-
carnitines, including acetylcarnitine (C2), hydroxybutyrylcarnitine (C3DC), tetradecenoyl-
carnitine (C14:1), hydroxytetradecenoylcarnitine (C14OH), hydroxyhexadecanoylcarnitine
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(C16OH) and behenic carnitine (C22) had significant differences between male partici-
pants with and without carotid atherosclerosis [18]. However, after the adjustment for age,
only C2 and C14OH were positively correlated with carotid plague area [18]. Aggregated
short-chain acylcarnitines were reported as being associated with progression of carotid
artery atherosclerosis in HIV-positive individuals, especially in those without persistent
viral suppression [26]. Decreasing the acylcarnitine pools in apolipoprotein E knockout
(apoE−/−) mice is able to attenuate the development of atherosclerosis [27].

C4 is found to be a good prognostic marker with an increase in hypoxic-ischemic
encephalopathy and decrease after hypothermia treatment [28]. Three acylcarnitine species,
including C4, hexanoylcarnitine (C6), and palmitoylcarnitine (C16), were detected with high
intensity in carotid plaque samples of symptomatic stroke patients [19]. However, plasma
C4 level was found being decreased in the atherosclerosis rats fed with high fat diet [29].
The compound including octadecanoylcarnitine (C18) proved positively correlated with
the risk of diabetic cardiomyopathy [30].

In the male population, it has been reported that C14:1 measured by liquid chromatog-
raphy mass spectrometry was positively correlated with age, but C2 and C14OH were
positively correlated with carotid artery plague area after adjustment for age [18]. Elevated
plasma levels of some acylcarnitine metabolites including C14:1 were found to be associated
with cardiovascular disease risk, including stroke in type 2 diabetes [31]. The level of C14:1
was reported being similar between stroke patients and stroke-free controls [32]. However,
our results showed that C14:1 was lower in extracranial CAS stroke patients compared to
normal subjects, and the more severe the plaque score is, the higher the C14:1 level becomes
(Supplementary Table S1). However, the remaining metabolites that were included in our
metabolite panels had a similar level difference to the previous reports [32–34]. The reasons
of different results of C14:1 levels in diseased subjects and controls may be related to the
technique diversity, biofluid variation, different stroke populations, heterogeneous stroke
etiologies, and various sampling times [35].

In the study of amino acids and biogenic amines, SDMA is reported as an endogenous
inhibitor of nitric oxide synthase activity and is considered a novel risk factor for endothe-
lial dysfunction and cardiovascular disease [36]. However, SDMA was not found to be
significantly related to the cardiovascular disease risk factors in patients with rheumatoid
arthritis [37]. In patients with cardiac diseases, SDMA was increased in patients with
chronic renal failure [33]. A review article suggested that SDMA has the potential to repre-
sent a strong and reliable marker of vascular disease, renal dysfunction, and cardiovascular
risk [38].

Phosphatidylcholine (PC) belongs to glycerophospholipid family and plays a struc-
tural role in cell membrane and blood lipoprotein [34]. In a systematic review, Mc-
Granaghan et al. discussed the metabolomic biomarkers for cardiovascular risk and
found glycerophospholipids occupied the largest number of biomarkers reported in the
literature [39]. Previous studies in the Atherosclerosis Risk in Communities study have
found that lower concentration of PC aa C36:6 was associated with worse cognitive status
and poor physical function in the elderly [40,41]. PC ae C34:3 was found to be correlated
negatively with heart rate in patients with peripheral and coronary artery disease, suggest-
ing its chronotropic effect which may act via cardiac ion channels [34]. A recent report also
demonstrates that the modification of the glycerophospholipid metabolism pathway may
help Herba patriniae to regulate lipid metabolism and inflammation for the treatment of
atherosclerosis [42]. The alteration of specific pathways of glycerophospholipid and sphin-
golipid metabolism has been identified between the atherosclerosis-prone and age-matched
atherosclerosis-resistant apoE−/−mice [43], suggesting that disturbances of metabolism
in these lipids may be involved in atherosclerosis-related diseases [44,45].

The present study has the novelty of using LC-MS in combination with machine
learning to define the metabolites that carry the potential to predict the presence of CAS
and to define the components of metabolites that can help predicting the progression of
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CAS. The future perspectives are to use simple blood test of metabolites to early predict
CAS and to prevent the progression of CAS by using adjuvant metabolite therapy.

There are also some limitations. First, we only studied the metabolomics in male
subjects to avoid the influence of gender difference. It has been reported that males and
females have some major differences in metabolomics components as well as phenotypic
characteristics [46]. So, it is suggested that a separate statistical analysis should be consid-
ered carefully when detecting novel biomarkers and discovering a diagnostic algorithm
for metabolic disorders to increase the statistical significance [46,47]. Second, our decision
tree and random forest analysis did not include the clinical parameters. Table 1 shows that
diastolic blood pressure, HDL-C, LDL-C, and total cholesterol were significantly lower in
the three subgroups of CAS patients when compared to normal controls, which was likely
due to the intensive medical controls in CAS patients. It has been reported that adjustment
for conventional vascular risk factors may cause the attenuation of metabolite associa-
tion [11] and result in inadequate results. Moreover, the metabolomics-based models can
help in imputing conventional clinical variables when phenotypic variables are incomplete
or unobserved in large epidemiological and clinical studies [48]. Third, the application of
metabolic panels may need validation in another group of CAS patients. However, due to
the limited number of CAS patients, further recruitment is needed.

5. Conclusions

Our previous genome-wide association study found two important genes being related
to extracranial CAS, papillary thyroid carcinoma susceptibility candidate 3 (PTCSC3) and
HDAC9 [6]. In association with the present metabolomics results, it is possible that there is
a potential “metabolite–gene” regulatory axis to act on CAS, which may help to create a
theoretical basis for the identification of CAS. It is likely that distinct plasma metabolomic
biomarkers could be useful to monitor the development of CAS and help in differentiating
the different stages of atherosclerotic progression. Diet adjustment to reduce the production
of certain metabolites may be an adjuvant therapy to reduce the progression of CAS.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11193022/s1, Figure S1: The distribution of plaque score
in normal controls (normal) and patients with carotid artery stenosis (CAS); Figure S2: Principal
components analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLSDA)
study in normal controls and the 3 subgroups of carotid artery stenosis (CAS) patients. The PCA
plots (A–C) and OPLSDA plots (D-F) did not demonstrate a clear separation between normal controls
and CAS patients with plaque score ≥ 2 (A,D), plaque score ≥ 5 (B,E) and plaque score ≥ 8 (C,F);
Table S1: Comparison of metabolite levels between normal controls and the 3 subgroups of carotid
artery stenosis.
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