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Abstract

The cortical dynamics of somatosensory processing can be investigated using vibrotactile

psychophysics. It has been suggested that different vibrotactile paradigms target different cortical

mechanisms, and a number of recent studies have established links between somatosensory

cortical function and measurable aspects of behavior. The relationship between cortical

mechanisms and sensory function is particularly relevant with respect to developmental disorders
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in which altered inhibitory processing has been postulated, such as in ASD and ADHD. In this

study, a vibrotactile battery consisting of nine tasks (incorporating reaction time, detection

threshold, and amplitude- and frequency discrimination) was applied to a cohort of healthy adults

and a cohort of typically developing children to assess the feasibility of such a vibrotactile battery

in both cohorts, and the performance between children and adults was compared. These results

showed that children and adults were both able to perform these tasks with a similar performance,

although the children were slightly less sensitive in frequency discrimination. Performance within

different task-groups clustered together in adults, providing further evidence that these tasks tap

into different cortical mechanisms, which is also discussed. This clustering was not observed in

children, which may be potentially indicative of development and a greater variability. In

conclusion, in this study, we showed that both children and adults were able to perform an

extensive vibrotactile battery, and we showed the feasibility of applying this battery to other (e.g.,

neurodevelopmental) cohorts to probe different cortical mechanisms.
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1. Introduction

The cortical dynamics of somatosensory processing can be investigated using vibrotactile

psychophysics. It has been suggested that different vibrotactile paradigms target different

cortical mechanisms, and a number of recent studies have established links between

somatosensory cortical function and measurable aspects of behavior (Hernandez et al., 2000;

Puts et al., 2011; Romo et al., 2003). However, links between GABAergic inhibitory

neurotransmission and behavioral measures are less well understood. GABAergic inhibition

is important in shaping the neuronal response to sensory stimulation (Alloway and Burton,

1986; Dykes et al., 1984; Juliano et al., 1989), and most vibrotactile tasks rely in part on

cortical GABAergic inhibitory mechanisms (Tommerdahl et al., 2010). Recent

developments have made it possible to measure neurotransmitter concentration

noninvasively in humans and correlate these concentrations with measures of tactile

sensitivity (e.g., Puts et al., 2011).

The relationship between GABA and sensory function is particularly relevant with respect to

developmental disorders in which altered GABAergic processing has been postulated. For

example, in Autism Spectrum Disorder (ASD), abnormal cortical structure (Casanova, 2004)

and sensory processing (Blakemore et al., 2006; Tommerdahl et al., 2008b) have been linked

to GABAergic processing, and GABA-system genetic variants have been proposed as

models for ASD (e.g., (DeLorey, 2005)). In Tourette syndrome, both an altered density of

GABAergic neurons (Kalanithi et al., 2005) and sensory impairments have been described

(Belluscio et al., 2011; Miguel et al., 2000), and GABA gene markers correlate with tic

severity (Tian et al., 2011). Finally, GABA reductions have been shown in attention-deficit

hyperactivity disorder (ADHD) (Edden et al., 2012), and impaired inhibition during cortical

stimulation suggests reduced abnormal GABA interneuron activity (Gilbert et al., 2011).
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Thus, understanding the differences in sensory processing between groups may allow for a

better understanding of cortical (dys)function in health and disease.

In this study, we present a battery of vibrotactile tasks that targeted different aspects of

cortical function. We demonstrate their feasibility in healthy adults (HA) and typically

developing children (TDC), a prerequisite for future clinical studies, and present normative

results. We present these data in the context of previous work in the field (Puts et al., 2011;

Tannan et al., 2007a, 2007b; Tommerdahl et al., 2008b; Zhang et al., 2011) (Lee et al., 2012;

Nelson et al., 2012; Nguyen et al., 2013a, 2013b; Rai et al., 2012) to compare the

performance of children and adults and to investigate patterns of performance. A priori, we

would expect absolute levels of performance to differ between the HA and TDC but the

relationships between related tasks to be preserved.

1.1. Overview of task groups

1.1.1. Reaction time—A simple reaction time experiment (‘press when you feel the

stimulus’) is a straightforward task for naïve participantsthat allows them to become

familiarized with the vibrotactile stimulation. Reaction time has been closely linked to white

matter structure (Kerchner et al., 2012; Tamnes et al., 2012) and GABA concentration

(Stagg et al., 2011) in healthy subjects. In addition, reaction time has been shown to be

altered in developmental disorders (Debes et al., 2011; Schuerholz et al., 1996; Xiao et al.,

2012). Reaction time probes both attentional and sensorimotor components.

1.1.2. Detection threshold—The static detection threshold task is a well-known

diagnostic tool. An abnormal detection threshold has been used as an indicator of brain

dysfunction (Belluscio et al., 2011; Nudo et al., 2000; Staines et al., 2002) and is dependent

on both white matter structure (Mountcastle et al., 1972) and GABAergic mechanisms

(DeLorey et al., 2011; Tavassoli et al., 2012). In a static vibrotactile detection threshold

experiment, the weakest detectable stimulus is typically determined in either a yes/no or a

two-alternative forced-choice (2AFC) manner. In contrast, a dynamic vibrotactile detection

threshold experiment consists of a stimulus that is increased until perceived (see Zhang et

al., 2011). It is thought that pre-detection sub-threshold stimulation mainly activates local

feed-forward inhibitory mechanisms (Blankenburg et al., 2003; Favorov and Kursun, 2011;

Middleton et al., 2012; Swadlow, 2003), which thereby raises the detection threshold.

Comparing dynamic and static threshold measures probes this feed-forward inhibition.

1.1.3. Amplitude discrimination—Discriminating between two stimuli that are

simultaneously applied to adjacent digits engages lateral inhibition to separate the response

functions of the cortical areas representing each stimulus. A repetitive or ‘adapting’ stimulus

has been shown to sharpen this response function (Whitsel et al., 1989, 2003), either by

improving signal-to-noise or spatial resolution. Behaviorally, Hollins and Goble (1993) have

shown that single-digit amplitude discrimination is improved by a 5 s adapting stimulus

prior to each trial. In a similar fashion, Tannan et al. (2007b) have shown that in a healthy

population, dual-site amplitude discrimination is improved when each trial is preceded by

dual-site adaptation but is diminished when each trial is preceded by adaptation on only one
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of the digits. Interestingly, this effect of adaptation is absent in ASD (Tommerdahl et al.,

2007).

1.1.4. Frequency discrimination—Discriminating the frequency of two sequentially

applied stimuli relies upon temporal processing. McLaughlin and Juliano (2005) showed

that frequencies were, at least in part, encoded by the periodic synchronous firing of

neuronal ensembles in the primary somatosensory cortex (S1) and that applying a GABA

antagonist destroys this periodicity. We have previously shown that individual differences in

frequency discrimination performance were correlated with GABA concentration in the

sensorimotor cortex, as measured by edited MRS (Puts et al., 2011). In contrast, when

frequencies are applied simultaneously to adjacent digits, temporal synchronization between

the cortical areas, mediated by GABAergic lateral inhibition, would be expected to disrupt

the temporal and periodic encoding of each stimulus, thereby impairing discrimination (e.g.,

Tommerdahl et al., 2008b).

2. Materials and methods

2.1. Participants

Two cohorts were tested on a tactile battery consisting of nine tasks. Thirteen healthy adults

(aged 30.5 ± 4.9 years old; 3 female) and 22 typically developing children (aged from 8 to

12 years old; 2 female) participated in this study. All of the participants were right-handed,

which was confirmed using the Edinburgh Handedness Inventory (Oldfield, 1971) in the

TDC cohort and by oral report in the healthy adult cohort. All of the TDC were recruited as

controls for ongoing studies of ASD and ADHD. In TDC, the Wechsler Intelligence Scale

for Children Third or Fourth Edition (WISC-III/IV) was used to assess intellectual ability.

Children with full-scale IQ scores below 80 were excluded from participation (average IQ

114.5 ± 11.6). All of the children in the TDC cohort were free of criteria for psychiatric

disorders as tested by the Diagnostic Interview for Children and Adolescents-Fourth Edition

(DICA-IV), and none of the children in the TDC cohort were prescribed psychoactive

medications. Informed consent was obtained from adult subjects and a parent of each child

(who themselves assented to testing), under the approval of the Kennedy Krieger Institute

and The Johns Hopkins School of Medicine Institutional Review Boards.

2.2. Stimulus delivery

A CM4 four-digit tactile stimulator (Cortical Metrics) was used for stimulation (Holden et

al., 2012). All of the stimuli were delivered to the glabrous skin of the left digit 2 (LD2) and

digit 3 (LD3) using a cylindrical probe (5 mm in diameter), and all stimuli were in the flutter

range (25–50 Hz). Visual feedback, task responses, and data collection was performed using

an Acer Onebook Netbook computer, running CM4 software (Holden et al., 2012).

2.3. Experimental design

The vibrotactile testing battery consisted of nine tasks, as shown in schematic form in Fig. 1.

Prior to each task, the participants had to correctly respond to three consecutive practice

trials to proceed, to confirm that the subject understood the instructions. Feedback was given

during the practice trials but not during the task trials. In all tasks, stimulus delivery was
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pseudo-randomized between LD2 and LD3. The response was obtained via a mouse-click

using the participant’s right hand. The left mouse button corresponded to LD3 and the right

mouse button to LD2. All of the data were visually inspected prior to analysis.

2.3.1. Reaction time: simple (sRT) and choice (cRT) reaction time—A

suprathreshold stimulus (frequency 25 Hz, amplitude 300 μm, duration 40 ms) was delivered

on LD2 or LD3, and the participants were asked to respond as quickly as possible when they

felt the stimulus. In the sRT task, a mouse-click was sufficient, whereas in the cRT task, the

participants additionally had to determine on which finger they felt the stimulus (inter-trial

interval (ITI) 3 s; 20 trials). For each individual, the reaction times (for correct trials only in

the cRT task) were sorted in ascending order, and the mean of the median 6 values was

obtained as the mean RT.

2.3.2. Detection threshold: static (sD) and dynamic (dD) detection threshold—
In the sD task, a supra-threshold stimulus (frequency 25 Hz, starting amplitude 25 μm,

duration 500 ms) was delivered to either digit and the participants were asked to respond on

which finger they felt the stimulus. A 1 up/1 down tracking paradigm (stimulus amplitude

was decreased for a correct answer and increased for an incorrect answer) was used for the

first 10 trials and a 2 up/1 down (two correct answers were necessary for a reduction in test

amplitude) was used for the remainder of the task (ITI 5 s; 24 trials). The sD threshold was

obtained as the mean amplitude of the final four trials, and the amplitude was determined for

the twenty-fifth trial. In the dD task, after a variable delay (0–2500 ms), a 25 Hz stimulus

increased from zero amplitude (rate of amplitude increase 2 μm/s). The participants were

asked to respond as soon as they felt the stimulus and to indicate the finger on which the

stimulus was felt (ITI 10 s; 7 trials). The DD threshold was obtained as the mean stimulus

amplitude at the time of pressing the button, across all correct trials.

2.3.3. Amplitude discrimination threshold with no adaptation (nAD), dual-site
adaptation (dAD) and single-site adaptation (sAD)—The amplitude discrimination

tasks have been previously described (Tannan et al., 2007b; Tommerdahl et al., 2008a). In

the nAD task, the participants were asked to choose which of the two simultaneously

delivered stimuli had the higher amplitude (25 Hz; 500 ms; Standard stimulus amplitude:

100 μm; initial comparison stimulus amplitude: 200 μm). A 1 up/1 down tracking paradigm

(comparison stimulus amplitude was decreased for a correct answer and increased for a

wrong answer) was used for the first 10 trials and a 2 up/1 down (two correct answers were

necessary for a reduction in comparison stimulus amplitude) was used for the remainder of

the task (ITI 5 s; 20 trials). In the dAD condition, each trial was preceded by dual-site-

delivered adapting stimuli (25 Hz; duration 1 s, amplitude 100 μm) and in the sAD task,

each trial was preceded by a single-site-delivered adapting stimulus (duration 1 s, amplitude

100 μm). Amplitude discrimination thresholds were obtained as the mean amplitude of the

final four trials, and the amplitude was determined for the twenty-first trial.

2.3.4. Frequency discrimination threshold: sequential (sqFD) and
simultaneous (smFD)—In the sqFD task, stimuli (500 ms; 200 μm) were delivered to

LD2 and LD3 sequentially (inter-stimulus interval 500 ms; pseudo-random location). In the
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smFD task, the two stimuli were delivered simultaneously to both LD2 and LD3

(pseudorandom location). One finger always received the standard stimulus (30 Hz) and the

other the comparison stimulus (initial frequency 40 Hz). In both conditions, the participants

were asked which finger received the higher frequency stimulus. The 1 up/1 down tracking

paradigm (comparison stimulus frequency was decreased for a correct answer and increased

for a wrong answer) was used for the first 10 trials and the 2 up/1 down (two correct

answers were necessary for a reduction in comparison stimulus frequency) was used for the

remainder of the task (ITI 5 s; 20 trials). Frequency discrimination thresholds were obtained

as the mean of the frequency of the final four trials, and the frequency was determined for

the twenty-first trial. Previous frequency discrimination studies have shown that the

perceived intensity varies as a function of frequency as well as intensity (LaMotte and

Mountcastle, 1975; Verrillo and Capraro, 1975). However, Harris et al. (2001) previously

reported that the “subjects’ accuracy at comparing frequency was not affected by shifts in

vibration amplitude that causes the two vibrations to have equivalent intensity (i.e., by

increasing the amplitude of a lower frequency)”. In this study, the amplitude was constant

for both the standard and comparison stimuli, and the order of higher/lower was randomized

across digits.

2.4. Analysis

The participants’ data for an individual task were excluded when it was reported – orally by

the experimenter- that the participant did not execute the task properly and showed poor

behavioral compliance (e.g., pressing buttons as quickly as possible without regard for the

stimulus and task), or when inspection of the tracking-profile showed large deviations in

stimulus value over the last five trials (greater than four times the starting value, divided by

the number of trials). Initial analysis focused on comparisons between related tasks (i.e.,

paired t-test between sRT and cRT; paired t-test between sD and dD; paired t-test between

dAD and sAD; ANOVA of the three AD tasks; paired t-test of smFD and sqFD) keeping

HA and TDC separate. The correlation matrices were calculated for all nine tasks for the HA

and TDC groups independently. A clustering den-drogram was calculated from the

normalized correlation matrix to investigate the relationships between the different tasks.

3. Results

One participant was fully excluded from the TDC cohort due to poor execution of all tasks,

based on an oral report by the experimenter and confirmed visual inspection of data.

3.1. Reaction time

The mean RT for the sRT task and cRT tasks were 227.03 ± 71.61 ms and 411.2 ± 71.07 ms,

respectively, for the HA group (an average increase in RT of 90% between the sRT and

cRT) and 320.72 ± 84.51 and 640.6803 ± 191.60 ms for the TDC (an average increase in RT

of 108% between the sRT and cRT), as shown in Fig. 2a. As expected, the mean RT was

slower for the cRT task than for the sRT tasks for both groups (paired t-test p < 0.0001). The

RT was significantly slower in both tasks for TDC compared to HA (p < 0.01 for both

tasks), although the increase in RT was not.
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3.2. Detection threshold

For the HA group, the mean sD threshold was 4.84 ± 1.3 μm and the mean dD threshold was

8.4 ± 2.05 μm. For the TDC group, the mean sD threshold was 5.75 ± 2.28 μm and the mean

dD threshold was 8.68 ± 2.35 μm. As the stimulus amplitude continued to increase between

perception and response, the reaction time component in the dD task increased its threshold

values; thus, the dD threshold for each individual was corrected using their mean cRT and

the rate of amplitude increase. This resulted in corrected dD thresholds of 7.44 ± 2.16 μm for

the HA group and 7.42 ± 2.32 μm for the TDC group. The sD and corrected dD are shown in

Fig. 2b. The dD threshold was significantly greater than the sD threshold in both groups (p <

0.001). The results from one additional participant in the TDC group were excluded due to

poor execution of the task. There were no differences in task performance or difference in

sD–dD difference between the two cohorts (p > 0.5).

3.3. Amplitude discrimination

In the HA group, the mean AD threshold was 46.15 ± 18.5 μm without adaptation, 34.38 ±

18.57 μm with dual-site adaptation (an average increase in performance of 21%) and 58.08 ±

21.84 μm with single-site adaptation (an average decrease in performance of 36%), as shown

in Fig. 2c. A one-way ANOVA showed a significant difference between the task

performance in the three adaptation conditions, and post hoc paired t-tests showed that the

dAD and sAD thresholds were significantly different (p = 0.013) and that the differences

between dAD and nAD and between sAD and nAD were close to threshold (p = 0.055, and

p = 0.0494, respectively).

For the TDC group, the mean AD threshold was 49.21 ± 29.98 μm without adaptation, 39.41

± 22.20 μm with dual-site adaptation (an average increase in performance of 20%) and 65.81

± 36.22 μm with single-site adaptation (an average decrease in performance of 34%). A one-

way ANOVA showed a significant difference (p < 0.05) between the conditions, and post

hoc paired t-tests showed that both nAD and dAD thresholds were significantly different

from the sAD thresholds (p = 0.010, and p = 0.001, respectively) but that they did not differ

from one another (p = 0.7). Four TDC participants were excluded from the amplitude

discrimination task (one for nAD, three for dAD) due to poor execution of the task and

improper tracking. Moreover, there were no significant differences in AD performance

between the two cohorts (p = 0.08 for nAD, p > 0.5 for dAD and sAD).

3.4. Frequency discrimination

For the HA group, the mean frequency discrimination threshold was 5.4 ± 2.4 Hz in the

sequential condition and 10.2 ± 3.5 Hz in the simultaneous condition (significantly different

at p < 0.0001), as shown in Fig. 2d. For the TDC group, the mean frequency discrimination

threshold was 7.68 ± 2.31 Hz in the sequential condition and 9.31 ± 2.61 Hz in the

simultaneous condition (not significantly different at p < 0.05). In the TDC group, one

participant was excluded for both tasks due to poor execution, three were excluded for the

sequential condition due to poor tracking, and one was excluded from the simultaneous task

due to poor tracking. The TDC performed significantly worse than the adults in the

sequential, but not in the simultaneous FD task (p < 0.05, p > 0.4, respectively).
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3.5. Correlation analysis of all tasks

The correlation matrix for the HA group, shown in Fig. 3a, demonstrates particularly strong

relationships between the two RT tasks, between the FD tasks, and between the three

amplitude discrimination tasks. Furthermore, the amplitude discrimination following single-

site adaptation was negatively correlated with corrected dynamic detection threshold (R =

−0.83). There was a correlation between the dD threshold and cRT, which decreased after

correcting for reaction time, suggesting an important role of reaction time in the dD

threshold (R = 0.5 and 0.38, respectively). The clustering dendrogram in the analysis

depicted in Fig. 3b showed that the related tasks clustered together (RT, R = 0.78; AD, R =

0.35–0.46; FD, R = 0.42), although the dynamic detection threshold (both corrected and

uncorrected dD) clustered to some extent with the RT tasks. The correlation matrix for the

TDC group, as shown in Fig. 3a, appeared to show more, but weaker, correlations. Similar

to the HA group, the RT tasks were correlated with each other as well (R = 0.49) and with

both detection threshold tasks (R = 0.38). Consistent with the HA group, the dynamic

detection threshold was negatively correlated with amplitude discrimination following

single-site adaptation (R = −0.51). However, the correlations among the amplitude

discrimination tasks and among the frequency discrimination tasks as shown in the HA

group were absent in the TDC group, and the dendrogram appeared uninformative.

4. Discussion

We have presented vibrotactile behavioral data on a battery of tasks that can be collected

from cohorts of healthy adults (HA) and typically developing children (TDC) in a total

testing time of approximately 30 min. Both HA and TDC of 8–12 years of age were able to

perform these tasks. Moreover, we have shown not only that TDC are able to perform these

tasks but also that they show the same patterns of performance as healthy adults (the effect

of feed-forward inhibition on detection threshold, the effect of adaptation on amplitude

discrimination and the effect of synchronous stimulation on frequency discrimination),

which suggested that the mechanisms underlying these tasks were similar between healthy

adults and healthy children. It should be noted that three adult female participants performed

the tasks. It is possible that menstrual cycle has an effect on tactile sensitivity, although the

evidence is inconsistent (Bajaj et al., 2001, 2002; Drobek et al., 2002). All of the participants

performed the tasks within a single session, and any differences in sensitivity due to

hormonal effects were expected to be reflected within the variance of the data.

In both HA and TDC, as expected, the choice reaction times were longer than the simple

reaction times, and the two results were highly correlated across individuals within both

groups. Children performed significantly more slowly than adults in both reaction time

tasks, consistent with previous studies showing a U-shaped relationship between age and

reaction time (Williams et al., 2005).

The static detection threshold was slightly higher for TDC, which was consistent with

previous findings (Bernstein et al., 1986; Guclu and Oztek, 2007), although it was not

significant. There was no significant difference between groups in the dynamic detection

threshold and no difference at all after correction for reaction time. It has previously been

shown that the dD threshold was greater than sD threshold in HA and that adults become
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worse at both tasks with age (Zhang et al., 2011). To the best of our knowledge, this task has

not previously been examined in children. The difference between the dynamic and static

detection thresholds has been suggested to be related to feed-forward GABAergic inhibition.

Favorov and Kursun (2011) have suggested that layer IV is highly involved in computations

of the feed-forward inhibitory drive, which is affected by prior stimulus information.

Blankenburg et al. (2003) showed that a preliminary sub-threshold stimulus 30 ms prior to

the detection trial increases the detection thresholds, and the authors proposed that this effect

was due to cortical feed-forward inhibitory mechanisms, as inhibitory interneurons have a

lower spiking threshold than excitatory neurons and are therefore more strongly activated by

sub threshold stimuli (Gil and Amitai, 1996). Blankenburg et al. (2003) discussed the

possibility that this feed-forward inhibition might be protective against spurious activity in

the cortex by decreasing the net cortical activity. Zhang et al. (2011) suggested that sub-

threshold stimulation in the dynamic threshold task drives inhibitory mechanisms, which

was supported by the observation that the difference diminishes with age (Zhang et al.,

2011) as GABAergic inhibition declines. It also appears that this feed-forward processing

was fully developed in the cohort examined (8–12 years old).

In amplitude discrimination, dual-site adaptation tends to improve performance, whereas

single-site adaptation worsens it, as expected from previous studies (Tannan et al., 2007a,b;

Zhang et al., 2011). Our results were consistent with (although extrapolatory to) previous

reports that amplitude discrimination performance and the effect of adaptation did not

change with age (Zhang et al., 2011).

In frequency discrimination, both cohorts performed worse in the simultaneous frequency

discrimination task. In fact, most subjects had significant difficulty in advancing beyond the

practice trials and reported being unable to perform the task (some children were unable to

perform either task, supported by an oral report from both children and experimenters,

potentially due to frequency as an abstract concept). The mean simultaneous FD threshold

was not significantly different from the initial difference of 10 Hz. It appeared that whereas

sequentially applied stimuli can be distinguished on the basis of frequency, simultaneously

applied stimuli cannot, or at least not better than 10 Hz. It is possible that synchronization

between cortical representations of the two stimuli, mediated by lateral inhibitory pathways,

reduced the perceptual separation of signals and impaired task performance. The detrimental

effect of cortical synchronization between digits on stimulus separation has been previously

described (Tommerdahl et al., 2008), with reference to temporal order judgment. In that

study, negative effects of synchronization were not observed in participants with autism, and

the authors suggested this phenomenon could be due to reduced GABAergic local

connectivity.

The percepts of frequency and amplitude are not independent, and higher frequencies tend to

be perceived as having higher amplitude (LaMotte and Mountcastle, 1975; Verrillo and

Capraro, 1975). Some studies (Goble and Hollins, 1994) have used frequency-amplitude

matching to remove amplitude as a potential driver of frequency discrimination performance

(also; Goble and Hollins, 1994). The aim of this study was to develop a short battery of

tasks. Thus, we used a frequency discrimination task that involved physically equal rather

than perceptually matched stimulus amplitudes, as has been done by Harris and colleagues
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(e.g., (Harris et al., 2001, 2006)). Harris et al. (2001) found that amplitude matching did not

reduce frequency discrimination performance, and interestingly, our current results showed

no significant correlation between amplitude and frequency discrimination performance.

One potential improvement on physically matched amplitudes would be to introduce an

amplitude jitter.

Interestingly, the correlational and clustering analysis in the HA group tended to sort tasks

by property. Thus, the subjects who performed well at the simple reaction time task tended

to perform well at the choice reaction time; subjects who performed well at the static

detection threshold task also tended to perform well at the dynamic task; etc. This outcome

was perhaps not surprising; however, the fact that the two frequency discrimination tasks

clustered suggested that it was not true to simply imply that the subjects ‘cannot perform the

task.’ The modulus mean between-task correlation coefficient was 0.23 for HA and 0.26 for

children (compared to the maximum correlation value of 0.78 in HA), suggesting that it was

not true that these tasks were equivalent and that the subjects did not perform ‘well’ or

‘badly’ in equal measure across tasks. This finding was the main value of performing a

battery of tasks such as the one presented. In general, the clustering of similar tasks

suggested that measuring performance with respect to different properties of vibrotactile

stimuli targeted different aspects of cortical processing.

The correlational analysis did reveal some links between task groupings. The relationship

between detection threshold and reaction time was not expected, although both tasks were

related to white matter integrity (Tamnes et al., 2012; Kerchner et al., 2012). The negative

correlation between detection threshold and amplitude discrimination (non-adapted and with

single-site adaptation) makes sense in terms of cortical inhibition; subjects with greater

levels of inhibition will have higher detection thresholds but would be expected to show

better discrimination. Interestingly, this relationship was not maintained for dual-site

adaptation, although this result could be due to a bottom effect and there might not be room

for improvement in the dual-site adaptation condition. In addition, in neither HA nor TDC

were frequency and amplitude discrimination correlated, which may provide additional

evidence that amplitude information is not used in the frequency discrimination task.

Correlation and dendrogram analyses revealed differences in the way the domains are

related between HA and TDC. However, neither the frequency tasks nor the amplitude

discrimination tasks appeared to be correlated in the TDC, while they were in HA.

Differences in task relationships between HA and TDC may be indicative of development

(neither cutaneous nerves nor spinal cord mature fully until after puberty (e.g., (Allison et

al., 1984; Sato et al., 1977)), sensorimotor development, or the development of attentional

control. It is possible that some children have more difficulty with tasks than others, thereby

increasing variability and masking correlational relationships.

4.1. Limitations

While it is beneficial to present a battery of tasks to investigate a number of different

processes, these methods do have some limitations. The aim of this battery was that it could

be performed within 30 min, which makes it suitable for a naïve cohort as well as for

pediatric populations. However, most behavioral tasks described in the psychophysics
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literature are lengthy (in terms of trial numbers and task repeats), and it remains unclear

what effect our shorter protocols have on the accuracy of the measurements. However, the

brevity of testing does allow for a much greater number of participants to be tested at the

same time, partially offsetting any loss of statistical power.

The task duration was reduced by starting the tasks with relatively difficult initial settings,

simultaneous presentation of stimuli to two digits (i.e., smFD is shorter than sqFD), and the

randomization of the order of stimuli and parameters not being tested (e.g., amplitude was

pseudo-random in the frequency discrimination tasks to reduce discrimination on the basis

of amplitude, without having to perform frequency–amplitude correction). Visual inspection

of the tracking curves showed that the majority of the participants reached a plateau. The

threshold was obtained as the mean of the final five trials, and the average coefficient of

variation in adults for all tasks was less than 10% of the average threshold value, indicating

a small variability of the last five trials. In addition, the results shown by our naïve cohort

compared well with previous findings on these tasks. Testing a pediatric cohort can be

challenging, and increasing the number of trials, while potentially increasing the SNR of the

measurement, would be expected to adversely affect compliance and threshold

measurements. Testing the reproducibility of these measurements within naïve cohorts is

problematic because a number of different studies have shown effects of perceptual learning

in these tasks. However, the strong within-task-group correlations observed are at least

circumstantial evidence for good within-task reproducibility.

In conclusion, we have presented a 30 min tactile behavioral battery that probes a number of

different cortical mechanisms and that is easily applied to adults and children as young as 8

years old.
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Abbreviations

HA healthy adults

TDC typically developing children

LD2/LD3 left digit 2 and left digit 3

sRT simple reaction time task

cRT choice reaction time task

sD static detection threshold task

dD dynamic detection threshold task

nAD amplitude discrimination – no adaptation
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dAD amplitude discrimination – dual-site adaptation

sAD amplitude discrimination – single-site adaptation

sqFD sequential frequency discrimination

smFD simultaneous frequency discrimination

ISI interstimulus interval

ITI intertrial interval
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Fig. 1.
Vibrotactile testing battery, trial examples. (a) Simple (sRT) and choice (cRT) reaction time.

(b) Static (sD) and dynamic (dD) detection threshold. (c) Amplitude discrimination without

adaptation (nAD), with dual-site adaptation (dAD) and single-site adaptation (sAD). (d)

Sequential (sqFD) and simultaneous (smFD) frequency discrimination.
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Fig. 2.
Individual results for all tasks. (a) Reaction time. RT was faster in the sRT task than in the

cRT task in both HA and TDC (p < 0.001). The TDC were significantly slower (p < 0.01)

than the HA. (b) Detection threshold. The sD was significantly lower than the dD in both

HA and TDC (p < 0.001). There was no significant difference in the detection threshold

between HA and TDC. (c) Amplitude discrimination. In HA, the sAD threshold was

significantly worse than the dAD (p < 0.02) and close to significance from nAD (p = 0.0494,

uncorrected for multiple comparisons). The dAD was close to being significantly different

from nAD (p = 0.055). In TDC, the sAD was also significantly worse than the dAD and

nAD (p < 0.02), but the dAD and nAD did not differ significantly. There were no

differences between the cohorts. (d) Frequency discrimination. sqFD was significantly better

than smFD in HA (p < 0.05), but not in TDC. *p < 0.05. Box plot whisker are 5th and 95th

percentile, center of the box is the mean.
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Fig. 3.
Correlation matrix and cluster analysis. (a) In HA, three different task groupings (RT + DT;

AD; FD) correlated with each other. Furthermore, the sAD was negatively correlated with

the corrected dD threshold (R = −0.83). (b) Cluster analysis clustered different tasks-groups

within separate branches, although dD clustered with RT to some extent. (c) In the TDC, the

correlation matrix showed more, but weaker correlations. The RT tasks are correlated with

each other (R = 0.49) and with both detection threshold tasks (R = 0.38). Consistent with the

HA group, the dD threshold was negatively correlated with the sAD (R = −0.51). However,

the correlations among the amplitude discrimination tasks and among the frequency

discrimination tasks, as shown in the HA group, were absent in the TDC group. (d) No

clustering could be observed in the TDC.
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