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Abstract
In nematodes, environmental or physiological perturbations alter death’s
scaling of time. In human cancer, genetic perturbations alter death’s curvature
of time. Those changes in scale and curvature follow the constraining contours
of death’s invariant geometry. I show that the constraints arise from a
fundamental extension to the theories of randomness, invariance and scale. A
generalized Gompertz law follows. The constraints imposed by the invariant
Gompertz geometry explain the tendency of perturbations to stretch or bend
death’s scaling of time. Variability in death rate arises from a combination of
constraining universal laws and particular biological processes.
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Introduction
The coil of a snail’s shell expresses the duality of constraint and 
process. The logarithmic spiral of growth constrains overall form. 
Particular snails modulate the process of shell deposition, varying 
the parameters of the logarithmic spiral. To interpret the variety 
of snail shells, one must recognize the interplay between broad 
geometric constraint and the special modulating processes of indi-
vidual types1.

The pattern of death in populations follows the same duality 
of invariant geometric constraint and modulating process. The 
invariant geometry of death’s curve arises from the intrinsic order 
of large samples2,3. A large sample erases underlying randomness, 
preserving only invariant aggregate values4.

I extend the large-sample concept to clarify the invariant geometry 
of death. I then illustrate the role of particular biological proc-
esses in modulating death’s curve: the stretch of death’s time in 
nematode response to physiological perturbation5 and the curva-
ture of cancer’s time in response to genetic perturbation6,7. The 
consequences of particular biological perturbations can only be 
understood within the geometry that constrains change to follow 
invariant contours.

To restate the puzzle: How can we relate small-scale molecu-
lar and physiological process to population consequence? The 
problem remains unsolved. Finch and Crimmins8 emphasized: 
“A key question is how to connect … [linear] aging processes to 
the exponential rates of accelerating mortality that set life spans. 
… Although we can readily assess molecular aging, such biomark-
ers of aging are rarely robust as predictors of individual morbidity 
and mortality risk in populations.”

Randomness and invariance
I begin with the relation between small-scale randomness and 
large-scale order. The classical theory derives from the principles 
of statistical mechanics2, later developed through aspects of entropy 
and information4,9. Here, I briefly summarize my own extension 
of classical results based on geometric principles of invariant 
measurement and scale10–13. I then show how the abstract geometry 
constrains the relation between biological process and the pattern 
of death’s curve.

To understand the probability of dying at a particular age, we begin 
with the geometry of probability patterns13. For an underlying 
quantity, z, the probability of observing a value near to z is the 
rectangular area with height q

z
, width dψ

z
, and area qdψ. A 

probability pattern is a curve with coordinates (ψ
z
, q

z
) defined 

parametrically with respect to z. For the curve of death, the input, 
z, may be age or time.

Two invariances constrain the geometry of probability curves. 
First, total probability is invariantly one. Invariant total probability 
implies that the height of the probability curve has a natural 
exponential expression13 

     q
z
 = kae–λ(a+Tz) = ke–λTz ,                              (1)

in which k = kae
λa remains constant for any a to satisfy the require-

ment that total probability is invariant. The exponential form for 
the height of the probability curve, q

z
, implies that the probabil-

ity curve remains invariant to a shift of the fundamental metric, Tz 
(see Frank13).

In general, we seek metrics for which it does not matter where we 
set our zero reference point. In geometry, a circle shifted in space 
retains its invariant form. Similarly, proper geometric scaling 
for probability patterns is shift invariant. In terms of death, any 
transformation of time, z, into a fundamental time metric for 
probability pattern, Tz, must measure time such that a shift a + Tz 
does not alter death’s curve. That shift-invariant requirement leads 
to the exponential expression13 in equation 1.

The second key invariance is that a uniform stretching or shrinking 
of the fundamental metric does not alter probability pattern13 

                      q
z
 = ke–λbbTz = ke–λTz ,                             (2)

in which λ = λ
b
 b remains constant for any b, causing the 

probability pattern to be invariant to stretch of Tz. Stretch invariance 
is equivalent to invariance of λ 〈T 〉ψ, the value of λ multiplied by 
the average value of T when probability, q dψ, is measured on the 
scale, ψ (see Frank13).

To summarize, probability curves remain invariant to shift and 
stretch of the fundamental metric, Tz, such that 

            ,T a bT T+� ∼                                 (3)

in which ‘~’ means invariant with respect to shift and stretch. In 
geometry, invariance with respect to shift and stretch is affine 
invariance.

Affine invariance leads to probability pattern described by a 
sequence of rectangular areas 

              d d ,−λψ= ψTq ke

in which k and λ are constants that adjust to satisfy, respectively, 
invariant total probability and invariant average value, λ〈T〉

ψ
. Many 

different approaches and interpretations all arrive at this same 
basic form.

Consequences of affine invariance
Here, by emphasizing the fundamental invariances, we can take the 
next key step in understanding the geometry of probability patterns 
and the curves of death. In particular, each successive application 
of the affine transformation (equation 3) to T leaves the probability 
pattern unchanged, defining an invariant group of metrics11 

      ( )1
1 ,β β= −

β
∼w wT e e                               (4)

with β → 0 implying T → w. Here, w(z) is a scale for the 
underlying values, z, such that a shift in that scale, w ↦ α + w, only 
changes T by a constant multiple, and therefore does not change 
the probability pattern.
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To find the proper metric, T, for a particular probability pattern, we 
only need to find the proper base scale w for which the probability 
pattern is shift invariant. If, for example, z is time or age, then we 
only need to discover the scaling, w(z), for which 

          q dψ = ke–λeβw
dψ                                 (5)

is invariant to a shift in w, when allowing adjustment of λ. When 
β → 0, then q → e–λw.

Equation 5 expresses the abstract form of common probability 
patterns11. The abstraction does not specify the two key scaling 
relations ψ(z) and w(z) that define the coordinates of the 
parametric probability curve (ψ, q) with respect to z. However, the 
invariances that define the geometry do impose strong constraints, 
leading to a limited set of forms for almost all of the commonly 
observed probability patterns11–13.

We have two scaling relations ψ and w, but only a single parametric 
probability curve (ψ, q) with associated probability qdψ in each 
increment. Thus, many different scales can express the same 
probability pattern. For each application, there is often a natu-
ral scale that has a simple, understandable form for its scaling 
relations.

The invariant ticking of death’s clock
A natural scale corresponds to an additional invariance with a 
simple interpretation. That additional invariance sets the underlying 
metric for the pair of scaling relations. For death, we can set the 
probability of dying to be invariant in each increment of the scale, 
dψ, so that ψ represents the uniform metric of mortality—the invar-
iant ticking of death’s clock. This uniform metric extends the theory 
of extreme values and time to failure14–17 to a more abstract and gen-
eral understanding of the invariances that shape all of the common 
probability patterns11–13.

Invariant probability in each increment can be written as q dψ = −dq 
and thus ψ = − log q, in which dq is a constant incremental frac-
tion of the total probability. I use a minus sign as a convention to 
express the total probability as declining with an increase in ψ.

With regard to dying, we may think of the total probability of 
being alive as declining by a constant increment of death, −dq, in 
each increment dψ. In classic epidemiology, this definition of q 
would be expressed as q(z) ≡ S(z), in which S(z) is the probability 
of survival to time z. However, it is important to consider the classic 
definition as a special case of the deeper abstract geometry, which 
leads to a more general understanding of the constraints that shape 
death’s curve.

Universal Gompertz geometry
Given the exponential form for qz in equation 2, a constant prob-
ability q dψ in each increment requires dψ = dT. Using the general 
form of T in equation 4, we have dT = eβwdw = T ′dw, in which 
T′ > 0 is the derivative of T with respect to w. With q̂dw = q dT for 
the constant probability in each increment, we have 

           
logˆ d d d .

ww eT Tq w ke w ke w
ββ −λ′−λ= =                   (6)

This probability pattern is expressed on the scale w, in which w 
defines the natural shift-invariant metric. In other words, for some 
underlying observable value z, such as time or age, w(z) transforms 
z to a scale, w, that expresses an invariant total probability q̂ dw 
in each increment, and for which shifts in the scale w ↦ α + w, do 
not change the probability pattern.

The probability pattern in equation 6 has the familiar Gompertz 
form. I derived that form solely from a few simple geometric 
invariances. The simple invariances elevate the generalized Gom-
pertzian form to a universal geometric principle for probability 
patterns11,13. By contrast, the Gompertzian pattern is usually derived 
from descriptive statistics or from particular assumptions about 
processes of failure or growth.

Pattern on the observed scale
We may express the probability pattern on the scale of the under-
lying observable value, z. For that scale, dw = w′dz, in which 
w′ > 0 is the derivative of w with respect z. The abstract Gom-
pertzian geometry in w becomes the explicit form with respect to 
the directly measured value z as

     
logd d d .

ww ew T Tq z ke z kw e z
ββ −λ′ ′−λ ′= =

                
(7)

The hazard of death
Only living individuals can die. Thus, the hazard of death is the 
probability of dying in an incremental metric of time divided by 
the probability of being alive. The incremental metric scale, ψz, 
transforms the observed value, z, which may be time or age, into 
the abstract incremental scale, dψ. The abstract expression for the 
hazard of dying in an increment dψ is 

     

( )
d

d .
1 d

ψ
ψ ψ=

− ψ∫
q

h
q

                               

(8)

In each increment, the probability of dying is q dψ. The integral in 
the bottom is the sum of the probabilities of dying over the period 
from a starting point until the current period, in which the time 
metric is described by ψ(z).

Three different metrics transform the observable time input, or 
other measurable input, z, into the scale of analysis: T, w, and z 
itself. Those three metrics yield three equivalent forms for the 
hazard, each emphasizing different aspects of the underlying 
geometric invariances 

                 
( )d d dh T T T T= λ ∝                                (9)

  ( )ˆ d d dwh w w T w e wβ′= λ ∝                       (10)

                   ( )d d dwh z z w T z w e zβ′ ′ ′= λ ∝                    (11)

in which ‘∝’ denotes proportionality. The top form expresses the 
most general and abstract invariance of death. By transforming time 
into a general metric, z ↦ T, the hazard is invariantly λ in each 
increment of the metric, dT. The metric T defines the scale on 
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which the probability pattern is invariant to the affine transforma-
tion T ↦ a + bT.

We know the scale of death’s curve when we can transform our 
underlying observation, z, such as age, to the affine-invariant scale, 
T. Often, adding a constant to age or multiplying age by a constant, 
z ↦ a + bz, changes the pattern of death’s curve, so using age itself 
as the metric is usually not sufficient. We must find some transfor-
mation of age.

The middle expression in equation 10 describes the generalized 
Gompertzian geometry in the most direct way. In this case, when 
we transform z ↦ w, changing an observation such as age, z, to the 
metric, w(z), we only require that death’s curve be invariant to a 
shift, w ↦ a + w.

The force of death and the curvature of time
We are partitioning the scaling of death’s curve into two steps, 
z ↦ w ↦ T. Once we have the shift-invariant scaling of time, w, then 
T = eβw changes w into the ultimate affine-invariant scaling, T. To 
make that last change, we need to know β, which is 

	 	 						

ˆd log
,

d

′′
β = =

′

T
T w

h

																													
(12)

in which each prime denotes the derivative with respect to w. This 
value of β defines the curvature for the geometry of death and time. 
Once we have the shift-invariant scaling for time, z ↦ w, we can 
consider death’s invariant curvature in the transformation w ↦ T.

The expression T″ is the acceleration, or absolute curvature, of T. 
The expression T ′ is the rate or velocity at which T is changing. 
Thus, T″ / T ′ can be thought of as the acceleration relative to the 
velocity.

Acceleration, curvature and force are ultimately equivalent. In 
terms of death, for a given velocity or rate at a particular age, T′, 
the value of β is the relative force that bends death’s curve. The 
bending of death’s curve may also be described as 

      
ˆ ˆd log

,ˆd

h h

w h

′
= =A                                 (13)

which is the change in the hazard of death relative to the current 
hazard. The hazard, ĥ, is the rate, or velocity, of death on the scale 
w. Thus, the change in relative velocity, A, describes the accelera-
tion of mortality in terms of the relative bending of death’s rate.

The invariant geometry of death’s curve in equation 12 may be 
expressed as a balance, β − A = 0, between force and accelera-
tion. That balance is roughly analogous to Newton’s second law of 
motion, F = mA, relating force to acceleration.

Inference
The invariant geometry does not tell us the form for the shift- 
invariant scaling of death’s time, w, or the value of the invariant 
force, β, that bends death’s curve. However, the invariances strongly 
constrain the likely form of death’s curve and the meaningful 

metrics of death’s time. Importantly, these expressions allow us to 
transform data about rates or motions into expressions that empha-
size force and causal interpretations18,19. In biology, we rarely can 
predict trajectories. Instead, we focus on interpreting the changes in 
observed trajectories with respect to hypothesized forces7,20.

The abstract geometry is correct unto itself. In application, the 
geometry provides a tool that we may use for particular problems. 
A tool is neither right nor wrong. Instead, a tool is helpful or not 
according to its aid in providing insight. Below I discuss some 
examples. A few comments prepare for the discussion.

If we knew the correct scaling for age, w(z), then within that frame 
of reference, the force, β, and acceleration, A, of mortality would 
be constant with respect to w. Thus, the frame of reference, w, pro-
vides valuable insight. However, w may turn out to be a weirdly 
nonlinear scaling of measured time, z, in which the form of w is 
difficult to determine directly. In practice, we can derive w from 
equation 11 by relating the hazard, h

~
(z), to w by 

	 	 							 log d ,β = ∫  zw h 																														(14)

or Tz ~ ∫ h~dz, the affine similarity of T
z
 to the accumulated hazard 

on the z scale.

I now discuss the time scaling of mortality in nematodes and 
cancer. I consider these applications only to illustrate general 
aspects of mortality’s temporal geometry. See Stroustrup et al.5 for 
details about nematodes and Frank7 for details about cancer.

Nematode mortality and the stretch of time
Stroustrup et al.5 conclude from their study of nematode mortality: 

 [W]e observe that interventions as diverse as changes in 
diet, temperature, exposure to oxidative stress, and disrup-
tion of [various] genes … all alter lifespan distributions 
by an apparent stretching or shrinking of time. To produce 
such temporal scaling, each intervention must alter to the 
same extent throughout adult life all physiological determi-
nants of the risk of death.

I begin with the apparent stretching or shrinking of time. I will 
arrive at the same description of the nematode mortality pattern 
as given by Stroustrup et al.5, but framed within my more gen-
eral understanding of mortality’s invariant geometry. From that 
broader perspective, the observed stretching or shrinking of time 
in the nematode study can be seen as a special case of the vari-
ous temporal deformations that arise with respect to mortality’s 
invariant scale.

The perspective of my general framing calls into question the 
second conclusion that each intervention must alter to the same 
extent throughout adult life all physiological determinants of the 
risk of death. I present a simple counterexample consistent with 
the observed patterns. My counterexample may not be the correct 
description of process in nematode mortality. The counterexample 
does, however, emphasize key aspects of the logic by which we must 
evaluate the relations between pattern and process in mortality.
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My framework analyzes the sequence of transformations z ↦ w ↦ T. 
The initial input, z, typically represents what we measure, such as a 
standard description of time or age. We then seek a transformation, 
w(z), such that the parametric curve, (w, q̂), for observed or assumed 
probability pattern is shift-invariant with respect to w (equation 6). 
In other words, the shift w ↦ α + w does not alter the probability 
curve. When we find the shift-invariant scale for w, we have an 
expression for the probability pattern in terms of the Gompertzian 
geometry of equation 6.

A probability pattern that remains the same except for a con-
stant stretching or shrinking of time corresponds to w(z) = log z, 
because a constant stretch or shrink of time by a = eα yields 
w(az) = α + w(z). If we express the associated parametric prob-
ability curve as the relation between time and probability, (z, q̃), 
as in equation 7 with w = log z, we obtain a curve that is invariant 
to a constant stretching or shrinking of the temporal scale, z, as 

             
1 ,� zq z e

ββ λ− −∝

in which the parameter λ and the constant of proportionality both 
adjust to cancel any stretch or shrink of time by a > 0 (see Frank13). 
This curve is the Fréchet probability distribution, corresponding to 
the power law hazard in equation 11 as 

   
1.h zβ−∝�

Stroustrup et al.5 concluded that the Fréchet distribution is the 
best overall match to their nematode studies. However, they invoked 
the Gompertz-Fréchet family of distributions by appeal to tradi-
tional epidemiology and by appeal to the general form of extreme 
value distributions for failure times. By contrast, I derived those 
distributions simply as the inevitable consequence of basic assump-
tions about the invariant geometry of meaningful scales13.

The deformation of death’s time
Stroustrup et al.5 discussed the stretching or shrinking of death’s 
time by a single constant value. My framework generalizes the 
deformation of time in relation to death. We begin with T, the 
universal frame of reference for the scaling of death’s time. On the 
temporal scale, T, the hazard of death, h(T), remains constant at 
all times (equation 9). Thus, T represents the invariant ticking of 
mortality’s clock.

Given that universal frame of reference for time, we may then 
consider other temporal scales in terms of the way in which they 
deform the invariant frame of reference. In this case, we work 
inversely, by starting with T in equation 4, and then inferring the 
deformations with respect to the underlying scale of description, z. 
We can then think of the shape of the curve (Tz, z) as describing how 
measured time, z, is deformed in relation to the universal invariant 
scale of mortality’s time, Tz.

Ideally, we first infer the shift-invariant scale, w(z), and then 
use w in equation 4 to determine the relation between T and z. 
In the nematode case, w(z) = log z achieved shift invariance. 
Thus Tz ∼ eβw = zβ. The power law curve (zβ, z), with curvature 
determined by β, describes the deformation of time. The different 

experimental treatments did not significantly alter the curvature 
associated with β.

We can relate increments of the measured input, dz, to increments 
of mortality’s universal measure, dT, by starting with equation 11 
as h̃ ∝ dT/dz, and then writing 

                                         d d .z∝ T h                                         (15)

For a case such as the nematodes in which Tz ∼ zβ, the measured 
temporal increments, dz, scale in relation to the universal temporal 
frame as dz ∝ dT/zβ−1. For β > 1, measured temporal increments, 
dz, shrink as time passes relative to the constant ticking of mor-
tality’s clock at dT. When we think of dT as mortality’s constant 
temporal frame of reference, then the deformation of measured 
time is 

              1

1
d .z

z β−∝

The shrinking of measured time corresponds to the increase in 
the rate of measured mortality, in other words, the same amount 
of mortality, dT, is squeezed into smaller temporal increments, dz, 
increasing the density of mortality per measured unit.

In other cases, the relation of measured inputs, z, to mortality’s 
universal scale, Tz, will have different functional forms. Those 
different functional forms may correspond to non-uniform stretch-
ing and shrinking of the observed temporal scale at different 
magnitudes of z relative to the universal frame of reference for 
mortality on the scale Tz. If possible, we first infer the shift- 
invariant scale, w(z), for example by equation 14, and then use w 
to determine the relation between T and z, as in the nematode 
example. However, in practice, it may be easier to go directly from 
the invariant clock, T, to the deformed time scale, z, by using the 
relation dz ∝ dT/h̃. The following critique of the conclusions by 
Stroustrup et al.5 about nematode mortality provides an example.

Invariant pattern and underlying process
Stroustrup et al.5 claimed that all physiological determinants of 
the risk of death change in the same way with each experimen-
tal intervention. I present simple counterexamples. Although my 
counterexamples may not describe the true underlying process, 
they do highlight two important points. First, commonly observed 
patterns often express invariances that are consistent with many 
alternative underlying processes21,22. Second, consideration of the 
alternative processes with the same observable invariances leads to 
testable predictions about the underlying causal processes.

In these examples, suppose that death follows a multistage process, 
as is often discussed in cancer progression23. Following Frank7, 
p. 98, we may write the dynamics of progression toward mortality 
as a sequence of transitions 

    

0 0 0

1 1

1 1

( ) ( )

( ) ( ) ( ) 2,..., 1

( ) ( ),

z z

z z z

z z
− −

− −

=−

= − = −

=





i i i i i

n n n

x u x
x u x u x i n
x u x
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where x
i
(z) is the fraction of the initial population born at time 

z = 0 that is in stage i at measured time, z. Assume that when 
the cohort is born, at z = 0, all individuals are in stage 0, that is, 
x

0
(0) = 1, and the fraction of individuals in other stages is zero.

As time passes, some individuals move into later stages of pro-
gression toward death. The rate of transition from stage i to stage 
i + 1 is ui. The ẋ’s are the derivatives of x with respect to z. Death 
occurs when individuals transition into stage n. A fraction xn(z) of 
individuals has died at time z, and the rate of death at time z is 
ẋn(z) ≡ q̃, in which q̃ has the probability interpretation of equation 7.

If the transition rates are constant and equal, ui = u for all i, then 
we can obtain an explicit solution for the multistage model24. This 
solution provides a special case that helps to interpret more 
complex assumptions. The solution is x

i
(z) = e−uz(uz)i/i! for 

i = 0, …, n − 1, with the initial condition that x0(0) = 1 and 
xi(0) = 0 for i > 0. Note that the xi(z) follow the Poisson distribu-
tion for the probability of observing i events when the expected 
number of events is uz.

In the multistage model above, the derivative of xn(z) is given by 
ẋn(z) = uxn−1(z). From the solution for xn−1(z), we have 

  
� � 1( ) ( ) 1!,uz n

nq x z ue uz n− −= = −

which is a gamma probability distribution. One can think of the 
gamma distribution as the waiting time for the nth event, in which 
each event occurs at constant rate, u. However, many other proc-
esses lead to the same gamma distribution.

Age-specific incidence is the hazard7 

           

1

1

0

( ) ( ) 1!
( ) .

1 ( ) ( ) !

z z
z

z z

−

−

=

−
= =

− ∑


n
n

n in
i

x u u n
x u i

h

                  

(16)

We can express the scaling of measured time, dz, relative to the 
constant ticking of mortality’s time, dT, from equation 15, by taking 
dT as constant and thus 

    

( ) 12

1

1 ( )
d 1 ... .

( ) 2 1!

n

n

uz uz
z uz

uz n

−

−

 
 ∝ + + + + −              

(17)

Simultaneity and temporal deformation
When measured time, z, is small, during the initial period of the 
process, the deformation of time is approximately the same as the 
Fréchet pattern, dz ∝ 1/zn−1. This deformation in the gamma proc-
ess describes the force of simultaneity. Early in the process, all 
components that protect against mortality remain in the initial 
working state. Thus, mortality requires the nearly simultaneous 
failure of n independent events, which creates a force that deforms 
the constant ticking of mortality’s clock by rescaling the measured 
increments, dz.

As measured time increases, the increments dz shrink, compress-
ing the same amount of mortality, dT, into smaller measured 
temporal increments. As z becomes larger, the increments dz in 

equation 17 shrink less, because of the reduced force of simulta-
neity that deforms mortality’s constant clock. With larger z, the 
higher-power terms of the sum increasingly dominate, until the 
largest power term dominates and dz then ticks at a constant rate, 
with dz ∝ dT.

The changing deformation of dz and the associated force of mor-
tality can be thought of roughly as follows7. Early in the gamma 
process, mortality requires the nearly simultaneous failure of n 
independent events, creating a force of simultaneity such that 
dz ∝ 1/zn−1. As time passes, many individuals suffer failure of 
some of the n processes, leaving in aggregate the equivalent of 
n−1 remaining protective components, and a force of simultane-
ity such that, approximately, dz ∝ 1/zn–2. As more time passes, 
additional components fail, and the remaining force of simulta-
neity diminishes, until eventually only one protective component 
remains for those still alive, at which point dz then ticks at a 
constant rate, so that dz ∝ dT.

We may also express the scaling of time on the shift-invariant 
Gompertzian scale, w, in which β is a relative measure of the 
acceleration of mortality (equation 12), by using the general expres-
sion in equation 14 and the specific form of h

~
 in equation 16 to 

yield 

          1log d log log ( , ) ,z z −β = = Γ∫ w h n u

in which Γ is the incomplete gamma function.

Alternative models of nematode mortality
With this understanding of the gamma process, we can consider 
alternative interpretations of the nematode data5. I present these 
alternatives to illustrate the logic of mortality’s temporal scaling 
and the potential relation to underlying process. The data do not 
provide information about whether or not these alternative interpre-
tations are the correct description of nematode mortality. The point 
here is that these alternatives, or some other structurally similar 
alternative, might be correct, and therefore the strong conclusions 
of the original article may be false.

To repeat the key conclusion from Stroustrup et al.5, each 
intervention must alter to the same extent throughout adult life 
all physiological determinants of the risk of death.

That conclusion is true for the simple gamma process, as summa-
rized by equation 17. In that equation, the value of u represents 
the rate at which each of the n processes fails and contributes to 
overall mortality. If we substitute uz ↦ ξ, then the scaling of 
measured time, expressed as dz ∝ dξ, changes only by a constant 
of proportionality as the rate, u, changes.

I now consider two variations on the underlying gamma process for 
mortality. Each of these variations leads to a constant rescaling of 
time, dz. However, that constant rescaling arises from underlying 
processes of mortality that change in different ways in response to 
perturbations. These examples show that the constant rescaling of 
time does not imply that an intervention alters to the same extent 
throughout adult life all physiological determinants of the risk of 
death.
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The first example considers two distinct sets of underlying proc-
esses that influence mortality, each set composed of n processes. 
Mortality occurs only after the failure of all 2n processes. Before 
experimental perturbation, one set of n processes has a relatively 
slow failure rate per process of u. The other set of n processes has a 
relatively fast failure rate of u′ >> u.

In this case, the fast processes will all tend to fail early in life, 
almost always before all of the slow processes fail. Thus, the fast 
processes have little influence on mortality. The mortality rate will 
closely follow the gamma process with n steps, each step at rate u, 
as analyzed above7.

Now suppose that an intervention influences all of the slow steps 
but none of the fast steps. The intervention changes the previ-
ously slow rate processes into fast processes, u ↦ u″ >> u ′. After 
intervention, the mortality rate will closely follow the gamma 
process with n steps, with each step at rate u ′. The mortality pattern 
remains unchanged, except for a constant rescaling of time.

However, the underlying physiological processes that determine 
mortality have changed completely. Previously unimportant rate 
processes with respect to mortality now completely dominate, and 
previously important rate processes no longer influence mortality.

The second example considers a set of n underlying processes that 
influence mortality. Each process has a different failure rate of u

i
 

for i = 1, …, n, with u
i
 < u

i+1
. As before, mortality occurs only after 

the failure of all n processes. Frank7 presented numerical studies 
for this heterogeneous rate process model. Typically, the faster rate 
processes fail early in life and have relatively little influence. The 
slower processes dominate the overall temporal pattern.

With n equal rate processes, the curvature declines with time, as 
in equation 17. With a heterogeneous set of rate processes, the 
curvature tends to decline more quickly as the fastest processes 
fail earlier, typically leaving a progressively smaller set of remain-
ing protective mechanisms as time passes, reducing the force of 
simultaneity.

Now suppose that the heterogeneous set of n processes has a 
simple hierarchy of rates, such that u

i+1
 = γ u

i
, in which γ > 1 is the 

factor by which each rate increases relative to its slower neighbor. 
If the only effect of an experimental intervention is abrogation of 
the slowest process, u

1
, then the hierarchy is effectively altered 

only by multiplying each rate in the set by γ , because the fastest 
processes typically have almost no influence on pattern.

Once again, the overall mortality pattern will change only by a 
constant rescaling of time, even though the underlying physi-
ological processes have changed significantly with respect to their 
influence on mortality. In this case, the most important process 
that limited mortality before intervention was in effect knocked out 
after intervention, whereas all other processes did not change.

Different processes lead to same invariances
The actual biology of nematodes will, of course, not follow exactly 
either of these two example cases. The examples do show, how-
ever, that a constant rescaling of measured time for mortality can 
arise by heterogeneous changes in the underlying physiological 
determinants of the risk of death.

How should we interpret the match between variants of the multi-
stage gamma process model and the observed scaling of nematode 
mortality? The correct view is that the invariances expressed by 
the gamma model are approximately the same as the invariances 
that arise by the true physiological processes. Those invariances 
dominate the shape of the observed patterns. The examples of 
the gamma models are helpful, because they show the sorts of 
underlying processes that generate the required invariances.

Ultimately, the theoretical challenge is to understand the full set 
of underlying processes that lead to the same invariances and thus 
the same observed pattern22. The empirical challenge is, of course, 
to figure out which particular processes occur in each particular 
case. Success in the empirical challenge will likely depend on fur-
ther progress on the theoretical challenge, because the theoretical 
frame strongly influences how one goes about solving the empirical 
problem.

Cancer incidence and the curvature of time
I now turn to genetic knockouts in cancer that change the cur-
vature of time. Cancer incidence often follows a pattern roughly 
consistent with a multistage gamma process7,23. Again, that match 
does not mean that the underlying physiological processes truly 
follow the assumptions of the gamma model. Instead, the correct 
view is that the invariances expressed by the gamma model are 
approximately the same as the invariances that arise by the true 
physiological processes.

Consider the simplest gamma process, in which cancer arises only 
after n protective mechanisms fail. Each mechanism fails at the 
same rate, u. I gave the explicit solution for that process earlier. 
In interpreting that solution for cancer, it is important to note an 
essential distinction between mortality and cancer incidence.

Everyone dies but only a small fraction of individuals develop 
a particular form of cancer. Thus, we must analyze mortality by 
running the measured time, or age, z, out to a large enough value 
so that the cumulative probability of dying approaches one. In the 
gamma models above, that means letting uz increase significantly 
above one. By contrast, if only a small fraction of the population 
develops cancer before dying of other causes, then we must run 
z only up to a time at which the cumulative probability of cancer 
remains small. That limit on total incidence typically means 
capping uz below one.

With a small maximum value of uz, the age-specific hazard 
simplifies approximately to h̃ ∝ zn–1, and the scaling of measured 
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time simplifies to dz ∝ 1/zn–1. Those scalings match the Fréchet 
model when we equate the curvature of time, β, with the number 
of steps, n, and we interpret force and curvature with respect to the 
shift-invariant scaling of time, w(z) = log z.

We can think of n = β as the force imposed on the logarithmic time 
scale, log z, caused by the requirement for the nearly simultaneous 
failure of n protective processes. The greater n, the greater the pro-
tective force, and the greater the bending of observed time relative 
to cancer’s invariant clock, ticking in increments of dT.

All of that may seem to be a very abstract theory in relation to 
the actual physiological processes of cancer. However, certain 
empirical studies suggest that the simple geometric theory of 
cancer’s time does in fact capture key aspects of cancer’s real 
physiology and genetics. In particular, certain inherited genetic 
mutations correspond almost exactly to the predicted theoretical 
change in the force of simultaneity and the temporal curvature of 
incidence.

If a mutational knockout reduces the number of protective mecha-
nisms by one, such that n ↦ n – 1, then the approximate pattern 
of incidence changes from h̃ ∝ zn−1 to h̃ ∝ zn−2. In other words, the 
force and associated curvature, β, is reduced by one.

Two classic studies of cancer incidence made exactly that com-
parison. Ashley25 compared colorectal cancer incidence between 
groups with and without an inherited mutation that predisposes to 
the disease. Similarly, Knudson26 compared retinoblastoma inci-
dence between groups with and without a predisposing inherited 
mutation.

I analyzed those same cancers with additional data that became 
available after the original studies6. My analysis showed that, in 
each case, the groups carrying the inherited predisposing muta-
tion had a pattern of incidence that changed relative to the control 
groups by reducing the estimated value of β by approximately one. 
Thus, the genetic knockouts reduced time’s curvature by almost 
exactly the amount predicted by the reduced force of diminished 
simultaneity in the protective mechanisms.

Conclusion
A few simple invariances shape the patterns of death. That geom-
etry does not tell us exactly how biological mechanisms influence 
mortality. But the geometry does set the constraints within which 
we must analyze the relation between pattern and process.

I started with the temporal frame of reference, dT, on which mor-
tality has a constant rate, or velocity. That temporal frame, with 

unchanging rate, expresses the ticking of mortality’s clock in the 
absence of any apparent force that would change velocity.

Given that frame without apparent force, we can then evaluate 
other temporal scales in terms of the forces that must be applied 
to change mortality’s rate relative to the force-free scale. That 
approach focuses attention on the forces of mortality, rather than 
the incidence or “motion” alone, because the pattern of motion 
is inherently confounded with the particular temporal frame of 
reference18,19.

Mortality’s temporal frame leads to a natural expression of invari-
ant death with respect to a universal Gompertzian geometry. That 
geometric expression separates the uniform application of force 
from the additional distortions of time with respect to observed 
pattern.

The examples of nematodes and cancer illustrated how to parse 
observable deformations of mortality’s clock with respect to 
invariant aspects of pattern and potential underlying explanations 
about process.

Until biologists can see the constraints of Gompertzian geometry 
on the curves of death as clearly as they can see the constraints of 
the logarithmic spiral on the growth curves of snail shells and goats’ 
horns, we will not be able to read properly the relations between the 
molecular causes of failure and the observable patterns of death.

Put another way, geometry does not tell one how to build a bridge. 
But one would not want to build a bridge without understanding 
the constraints of geometry. Properly interpreting the duality of 
constraint and process with respect to pattern is among the most 
difficult and most important aspects of science.
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This paper by S. A. Frank builds on his recent work on general common patterns of statistical distributions
to comment on some invariance rules when examining the distribution of mortality data. In particular, the
present paper shows that there always exists an adequate transformation of time (or age), such as, when
measured on this scale, the shape of the survival curve is unaffected by any shift on this scale.
Interestingly, Frank here also shows that on this scaling, the survival curve has necessarily a Gompertz
form. On this scaling, the acceleration of mortality with (transformed) time is constant.

This is indeed interesting to realize that any mortality distribution would have these properties. So not
much could be inferred about the mechanisms of mortality and aging just because one transformation of
time would lead to the distribution of mortality satisfying those properties. The remaining question is
whether we can infer something from the fact that one transformation of time rather than another produces
this invariance.

As an illustration, the present paper by S. A Frank then comments on a recent study by Stroustrup et al.
(2016, hereafter S2016), which showed that various genetic or environmental interventions affected
mortality patterns in nematodes populations by modifying the time scale of mortality, leaving the shape of
survival curves unchanged. More precisely, a log transformation of time then satisfies the invariance
properties mentioned above. Interestingly, a few interventions in their data set do not exhibit invariance
after a log-transformation of time. In the supplementary material of the S2016, the authors have examined
a diversity of mechanistic models of mortality and checked under which perturbations of the parameters of
these models one would observe the specific invariance pattern seen in their data. In some of these
models, the specific invariance pattern emerges only when all sub-processes affecting mortality are
affected to the same extent by the intervention (e.g. competing risk models), or when all parameters in the
models are affected to a similar extent by the intervention (diffusion models). In some other models (e.g.
network models), the specific invariance can emerge when only part of the processes are affected by the
intervention. These conclusions appear therefore more subtle than the claim made in the main text of
S2016 that “each intervention must alter to the same extent throughout adult life all physiological
determinants of the risk of death”. It is furthermore not very clear to me what is meant exactly by “all
physiological determinants of the risk of death”. Can we say that the drift and variance terms in a diffusion
model for vitality correspond to different physiological determinants of the risk of death? Again we could
imagine different mechanistic sub-models that would create different functional relationships between the
drift and variance parameters.

Frank uses S2016 in two ways: first, as an illustration of a particular type of invariance exhibited by real
data, second, as a warning against the risk of over-interpretation of such invariances. In particular, Frank
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Frank uses S2016 in two ways: first, as an illustration of a particular type of invariance exhibited by real
data, second, as a warning against the risk of over-interpretation of such invariances. In particular, Frank
reacts to the claim cited above, which is indeed confusing. As S2016 did in their supplementary material,
Frank exhibits a mechanistic model of mortality (but yet a different one from those considered S2016),
which shows the same properties of invariance when only part of the processes of mortality are affected
by the intervention. Both the theoretical exercise of Frank and those of S2016 show that there are many
different mechanistic models that can exhibit the same specific invariance and thus raise together strong
doubts about what we can infer from invariances in mortality patterns. The set of models examined by
S2016 is certainly not exhaustive despite its diversity, and claims based upon this set (already more
complex than the simple cited argument suggests) cannot really be generalized to all models of mortality.

I therefore agree with the general message of caution of the present paper by S.A. Frank. It however
remains frustrating that the general framework that he proposes does not really help to get a better
general grasp at what features of a model would produce one type of invariance rather than another, and
for instance help generating hypotheses that would explain why some interventions did fail to produce the
same type of invariance in S2016. This what S2016 attempted in their supplementary material.

In particular, I would be interested in a clearer illustration of the claim made by Frank that “consideration of
the alternative processes with the same observable invariances leads to testable predictions about the
underlying causal processes”.

Interestingly, the model put forward by Frank is shift-invariant on a scale, which is not a simple
log-transformation of time (see equation 17 and that following on the right column of page 6). While early
in the process, the deformation of time to achieve invariance would resemble that expected under a
log-scaling, this is not true later. I therefore failed to understand exactly why this model would actually fit
the data presented by S2016. More explanation would be necessary here.

The whole argument page 7 about interventions affecting part of the processes when slow and fast
processes determine mortality makes intuitive sense but would be more convincing if illustrated (as was
done for instance with examples in the supplementary material of S2016). I found these arguments about
slow and fast processes to be quite disconnected actually from the general arguments about invariance
presented before.

To conclude, I found the contribution of Frank novel and interesting, but still a bit frustrating about how this
perspective could help us extract more information from patterns of mortality. The message of caution is
an important one. The criticism of S2016 is justified by the over-simplistic claim included in their abstract
and main text, but I am a bit concerned that it may misrepresent what these authors have achieved. This
claim was actually motivated, not directly by the examination of invariance in the data, but by the
comparison of several models to data in a spirit similar to what Frank proposes here. That several models
could exhibit the same invariance rule for different reasons was clearly shown already in S2016
(supplementary material). The common properties of models exhibiting that specific invariance rule
however appear even less clear than suggested by the initial exploration of S2016 and it could be good
that the present paper communicates more precisely about this point.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:
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Survival analysis is a field with a long history, mainly associated with the name David Cox, and is of
interest far outside of biology, e.g. the reliability analysis of machines. One element of it concerns making
inferences about underlying mechanisms from observed processes. The historical development of the
subject seems to have ended in a cul-de-sac which we see in Stroustrup's worm paper, discussed here,
although clearly explored in an earlier Ricklefs paper, discussed by no-one. Frank offers an entirely new
approach with a different starting point. It seems sensible to discuss the Frank paper at the junction where
the new collides with the old, which is the Stroustrup worm paper, published in magazine this year.Nature 

The heart of the matter, from my perspective, is this. The old development of the subject ended up at this
point -

Survival data is typically well described by  Weibull and Gompertz distributions, which areboth
described in terms of the 'hazard' function derived from them, describing your future chance of
surviving beyond a particular time, given you have survived to that time so far.
 
If these hazards change for some reason (e.g. temperature for Stroustrup), we can model the
effect of these changes in one of two ways, dreamed up by Cox because they 'work' for statistical
analysis. One of these ways (AFT) is a time scaling of the hazard, in which everything happens in
'dog years' for example. The other (PH), as noted by Cox, is very hard to give a biological
interpretation to in terms of underlying mechanisms, although it is very useful for prediction,
evaluating drug efficacy etc.

Now, the Weibull distribution can be proved analytically to allow interpretation under both these ways of
changing circumstance, one of which is, itself, intrinsically hard to interpret. So if the data are Weibull,
which fits the Stroustrup data, you cannot really say anything about the underlying mechanism. Unless
you get very inspired and allow "imagination" (Ricklefs) and "preferences" (Stroustrup Supp Info) to assist
you. This is not necessarily a bad thing, of course, but it sounds like an admission that you have gone as
far as you can by the traditional route. I note that the Supp. Info Figure 1.1, which is central to the narrative
flow, uses a Weibull distribution, which has a log-log hazard and the Weibull plays a large role in their
statistics/simulations etc. The Gompertz has a measly log hazard, which rather screws up the simple
scaling story.

Frank now approaches the whole subject in a way which is new, thought-provoking, challenging and very
welcome, starting from a rethinking of the basic meanings of statistical distributions. It is far to soon to
have an opinion on the likely success of this approach in leading us out of the cul-de-sac. But I certainly
have the opinion it should be published.

The Ricklefs paper deserves some acknowledgement and will also flag this topic for a larger audience of
evolutionary ecologists, as it concerns the evolution of longevity, species variation in longevity etc. etc.

Ricklefs RE, Scheuerlein A. 2002. Biological implications of the Weibull and Gompertz models of aging. J
Gerontol A Biol Sci Med Sci. 2002 Feb;57(2):B69-76.
doi: 10.1093/gerona/57.2.B69
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