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Abstract: This study aimed to investigate the phenolic profile and selected biological activities of
the leaf and aerial extracts of three Ericaceae species, namely Erica multiflora, Erica scoparia, and
Calluna vulgaris, collected from three different places in the north of Morocco. The phenolic composi-
tion of all extracts was determined by LC coupled with photodiode array and mass spectrometry
detection. Among the investigated extracts, that of E. scoparia aerial parts was the richest one, with a
total amount of polyphenols of 9528.93 mg/kg. Up to 59 phenolic compounds were detected: 52 were
positively identified and 49 quantified—11 in C. vulgaris, 14 in E. multiflora, and 24 in E. scoparia.
In terms of chemical classes, nine were phenolic acids and 43 were flavonoids, and among them,
the majority belonged to the class of flavonols. The antioxidant activity of all extracts was investi-
gated by three different in vitro methods, namely DPPH, reducing power, and Fe2+ chelating assays;
E. scoparia aerial part extract was the most active, with an IC50 of 0.142 ± 0.014 mg/mL (DPPH
test) and 1.898 ± 0.056 ASE/mL (reducing power assay). Further, all extracts were non-toxic against
Artemia salina, thus indicating their potential safety. The findings attained in this work for such
Moroccan Ericaceae species, never investigated so far, bring novelty to the field and show them to be
valuable sources of phenolic compounds with interesting primary antioxidant properties.

Keywords: Ericaceae; LC–DAD/ESI–MS; phenolic compounds; flavonoids; antioxidant activity;
Artemia salina Leach

1. Introduction

Ericaceae is a cosmopolitan family, represented by 124 genera and 4100–4250 species
that are widely distributed around the world, particularly in the Mediterranean area,
in deficient and non-calcic soils, as well as in high mountains [1–4]. Within this family,
Erica and Calluna are the most abundant and widely spread genera. In Northern Mo-
rocco, E. multiflora, E. scoparia, and C. vulgaris are traditionally consumed by local people
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in the form of infusions, and are well known for their therapeutic properties [5–7]. In
Morocco, Erica multiflora L. and Erica scoparia L. are considered among the most well-known
species of the Erica genus [1,8]. According to popular knowledge, both species might
have anti-inflammatory and analgesic properties when it comes to urinary diseases [5,6].
Moreover, E. multiflora has shown antihyperlipidemic and liver function repair effects [8,9],
and effective antilithiatic activity [10].

Calluna vulgaris (L.) Hull belongs to the monotypic genus of Calluna, also known
for its powerful bioactive compounds. It is widely used to treat kidney and urinary
system disorders, particularly inflammatory diseases of the bladder, prostate, and urinary
tract [7,11–15]. It is also important to note that heather honey obtained from C. vulgaris
nectar is a special type of honey that is highly appreciated by consumers, not only for its
distinctive flavor and dietary value but also for its therapeutic purposes [12,15].

These biological effects are closely related to their composition in bioactive compounds
such as flavonoids, tannins, anthocyanins, vitamins C and E, triterpenoids, saponins,
proteins, steroids, coumarins, ascorbic acid, hydroquinone, etc. [4,16–19]. In the human
body, the accumulation of free radicals induces numerous illnesses and health issues.
Therefore, research within plants for natural antioxidant sources might be a promising
alternative to lower the incidence of multiple diseases that are due to oxidative stress [20,21].
Polyphenols are an important class of secondary metabolites in plants, characterized by
one or more hydroxyl groups binding to one or more aromatic rings, and are divided into
two groups: flavonoids and non-flavonoids [22]. The biological and medicinal proprieties
of antioxidant compounds such as plant polyphenols have been widely reported in the
scientific literature [23]. Indeed, the protective role of polyphenols, especially as free radical
scavengers, has been well established, and these molecules may play a prominent role in
the prevention and/or the treatment of oxidative stress-induced diseases [24].

In the current study, E. multiflora, E. scoparia, and C. vulgaris, collected from North-
ern Morocco, were investigated for their phenolic composition and were further tested
for their antioxidant properties as well as for their potential toxicity. In particular, the
qualitative–quantitative profile of the phenolic constituents contained in the hydroalcoholic
extracts obtained from the leaves and aerial parts of both Erica species and from the leaves
of C. vulgaris was determined by LC–DAD/ESI–MS analyses. In order to provide a compre-
hensive view of the antioxidant profiles, the in vitro antioxidant effectiveness of the extracts
was assessed by using three different methods: the DPPH (1,1-diphenyl-1-picrylhydrazyl)
test and the reducing power and ferrous ion chelating assays. Moreover, the brine shrimp
(Artemia salina Leach) lethality bioassay was utilized to evaluate the toxicity.

The phenolic content of E. multiflora has been already evaluated in other works [2,8,25,26];
however, either the leaves [2,8] or flowers [25]/entire plant [26] have been investigated.
Notably, ref. [2] refers to an Algerian species, whereas ref. [25] refers to a Tunisian species.
No data are available in the literature on the chemical composition and biological properties
of E. scoparia; on the other hand, for C. vulgaris, only the inflorescences of a Portuguese
species [27] have been reported so far.

2. Results and Discussion
2.1. Polyphenol Composition

The phenolic compounds present in the aerial parts and leaves of C. vulgaris, E. multiflora,
and E. scoparia were identified by using an HPLC chromatogram at 330 nm (Figure 1). The
main phenolic compounds were recognized by combining the retention times, UV spectra,
and mass spectra of each peak with its standard, when available, and with literature data.
The results revealed different quali-quantitative profiles among the studied parts, as shown
in Figure 1. A total of 59 phenolic compounds were detected: 14 in C. vulgaris, 18 in
E. multiflora, and 27 in E. scoparia (Table 1). Among them, 52 were positively identified
(11 in C. vulgaris, 14 in E. multiflora, and 24 in E. scoparia). In terms of chemical classes, nine
were phenolic acids and 43 were flavonoids, and among them, the majority belonged to the
class of flavonols, mainly derivates of quercetin, myricetin, isorhamnetin, and kaempferol,
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while the rest of the compounds belonged to the class of flavanones, specifically eriodictyol
and taxifolin. It is worth mentioning that, to the best of our knowledge, no previous studies
have investigated the chemical composition of E. scoparia.

Calluna vulgaris leaves contained a total amount of phenolic compounds of 1567.78 mg/kg,
comprising caffeoylquinic acid, which was the most abundant phenolic compound
(1180 ± 8.18 mg/kg), followed by myricetin-O-rhamnoside (232.98 ± 0.30 mg/kg), myricetin-
O-pentoside (48.81 ± 2.22 mg/Kg), and myricetin-O-hexoside (41.66 ± 1.88 mg/kg),
whereas quercetin-O-hexoside (2.82 ± 3.24 mg/kg) was the lowest one. The results are in
accordance with those presented by Mandim et al. [27] at the qualitative level, except for
catechin, isorhamnetin-3-O-glucoside, and isorhmnetin-O-rhamnoside, which were absent
in this studied species. However, a notable difference has been shown at the quantitative
level, which could be, at least in part, attributed to the different organ of the plant used in
this study, viz. leaves instead of inflorescences.

The leaves of E. multiflora contained 399.01 mg/kg of phenolic compounds, and
were characterized by the presence of a quercetin derivative, myricetin-O-hexoside, and
quercetin-O-(6”-cinnamoyl)-hexoside, while the aerial parts contained 227.6 mg/kg of
phenolic compounds, and were distinguished by the presence of 4-caffeoylquinic acid,
methyl-ellagic acid hexoside, and eriodictyol-O-hexoside, wherein 4-caffeoylquinic acid
was the main compound in the aerial parts, with 83.75± 0.74 mg/kg, and where kaempferol
was the least prevalent compound, with 0.95 ± 1.84 mg/kg. According to these results, it
can be concluded that E. multiflora leaves presented higher phenolic compound content
when compared to the aerial parts. The output of heat map analysis showed that the leaves
and aerial parts of E. multiflora were clustered together into the same group and displayed
the following main compounds in common: quercetin-O-hexoside, kaempferol-rhamnosyl-
hexoside, rutin, caffeoylquinic acid, and kaempferol-hexoside. Moreover, in both parts,
the presence of small amounts of three other compounds, quercetin, dimethylquercetin,
and kaempferol, was noted. These results contradict those obtained by Mandim et al. [27],
where quercetin was the most abundant compound, followed by kaempferol. This dis-
cordance could be partially related to the time and the location of the harvest, and/or
the extraction method. Erica scoparia aerial parts presented a total amount of polyphenols
of 9528.93 mg/kg. The most abundant compounds identified were myricetin-O-hexoside
(2130.25 ± 0.78 mg/kg), myricetin-O-rhamnoside (1625.89 ± 0.39 mg/kg), and myricetin-
O-pentoside (852.85 ± 1.97 mg/kg), whereas quercetin-O-(6”-p-hydroxybenzoyl)-hexoside
(91.34 ± 1.22 mg/kg) was the least abundant one. Notably, myricetin-O-hexoside was shown
to be the greatest phenolic compound in the leaves of E. scoparia (184.38 ± 0.26 mg/kg), while
the smallest content was recorded for quercetin-O-(malonyl)-hexoside (18.52± 0.27 mg/kg).
Thus, a remarkable discrepancy in the phenolic composition between the leaves and aerial
parts of E. scoparia was observed. In addition, some phenolic compounds contained in the
aerial parts seemed to be entirely absent in the leaves, such as taxifolin, digalloyl-quinic
acid, and kaempferol.

A principal component analysis (PCA) alongside a heat map analysis were carried
out on the phenolic compounds as variables to identify the connection between all the
plant parts under observation (Figures 2 and 3). The PCA results presented two main
components (F1 × F2) that determine 68.94%, whereas (F1 × F3) showed a contribution
of 62.60%.
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Table 1. Phenolic compounds detected in C. vulgaris, E. multiflora, and E. scoparia.

Peak No Compound tR (min) UV max
(nm)

[M-H]-

E. multiflora
(mg/Kg ± RSD%)

E. scoparia
(mg/Kg ± RSD%)

C. vulgaris
(mg/Kg ± RSD%)

Leaves Aerial
Parts Leaves Aerial

Parts Leaves

1 Taxifolin-O-hexoside 4.11 288 465, 303, 313 332.96 ± 0.68

2 Taxifolin-O-hexoside isomer 4.24 284 465, 303, 313 214.93 ± 1.49

3 Digalloyl-quinic acid 4.61 274 495 Nq

4 Caffeoylquinic acid 4.81 297sh, 326 353, 191, 179 53.93 ± 0.11 61.11 ± 0.18

5 4-O-Caffeoylquinic acid 4.91 297sh, 326 353, 191, 179 83.75 ± 0.74

6 Caffeoylquinic acid 4.99 290, 325 353, 191,137 626.40 ± 0.77

7 Myricetin-O-hexoside 5.38 258, 358 479, 317 2130.25 ± 0.78

8 Eriodictyol-O-hexoside 5.42 297, 321 449, 287 Nq

9 Caffeoylquinic acid 5.42 290, 325 353, 191,137 138.37 ± 0.23

10 Caffeoylquinic acid 5.47 290, 325 353, 191,137 231.54 ± 1.68

11 Quercetin derivative 5.63 260, 356 615, 463, 301 2.89 ± 0.83

12 Myricetin-O-hexoside isomer 5.67 356 479, 317 43.46 ± 0.35

13 Myricetin-O-pentoside 5.70 259, 357 449, 317 852.85 ± 1.97

14 Myricetin-O-rhamnoside 5.74 260, 357 463, 317 1625.89 ± 0.39

15 Quercetin-O-hexoside 5.83 255, 353 463, 301 213.14 ± 0.43

16 Rutin 5.87 257, 354 609, 301 55.44 ± 2.59 14.16 ± 0.18

17 Caffeoylquinic acid 5.87 290, 325 353, 191,137 184.69 ± 0.95

18 Methoxy-myricetin-O-
rhamnoside 5.88 254, 358 493 810.78 ± 0.43

19 p-Coumaroylquinic acid 6.07 312 337 Nq

20 Quercetin-O-hexoside 6.08 255, 355 463, 301 117.43 ± 0.48 29.48 ± 1.76

21 Quercetin-O-hexoside 6.13 354 463, 301 4.78 ± 0.67 0.10 ± 2.51
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Table 1. Cont.

Peak No Compound tR (min) UV max
(nm)

[M-H]-

E. multiflora
(mg/Kg ± RSD%)

E. scoparia
(mg/Kg ± RSD%)

C. vulgaris
(mg/Kg ± RSD%)

Leaves Aerial
Parts Leaves Aerial

Parts Leaves

22 Kaempferol-O-(6”-
galloyl)hexoside 6.17 253, 358 599, 285 564.64 ± 0.19

23 Myricetin-O-rhamnoside 6.20 358 463 268.52 ± 0.08

24 Myricetin-O-hexoside 6.21 356 479, 317 184.38 ± 0.26

25 Kaempferol-rhamnosyl-
hexoside 6.24 264, 347 593, 447, 285 90.76 ± 1.19 15.24 ± 0.21

26 Myricetin-O-hexoside 6.25 356 479, 317 41.66 ± 1.88

27 Isorhamnetin-O-hexoside 6.32 252, 357 477 683.43 ± 0.93

28 Kaempferol-hexoside 6.51 264, 348 447, 285 4.83 ± 1.27 5.55 ± 2.06

29 Myricetin-O-pentoside 6.55 260, 357 449, 317 72.79 ± 0.05

30 Quercetin galloyl hexoside
derivative 6.56 357 615 160.67 ± 1.25

31 Myricetin-O-pentoside 6.59 281, 349 449, 317 48.81 ± 2.22

32 Kaempferol-hexoside isomer 6.61 264, 348 447, 285 17.08 ± 0.35 14.53 ± 0.44

33 Myricetin-O-rhamnoside 6.65 260, 357 463, 317 153.65 ± 1.13

34 Quercetin-O-hexoside 6.68 255, 353 463, 301 64.25 ± 1.47 2.82 ± 3.24

35 Myricetin-O-(6”-
benzoyl)hexoside 6.70 265,316, 358 583, 316 200.83 ± 0.20

36 Methyl-ellagic acid hexoside 6.72 283 477 Nq

37 Myricetin-O-rhamnoside 6.72 260, 357 463, 317 232.98 ± 0.35
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Table 1. Cont.

Peak No Compound tR (min) UV max
(nm)

[M-H]-

E. multiflora
(mg/Kg ± RSD%)

E. scoparia
(mg/Kg ± RSD%)

C. vulgaris
(mg/Kg ± RSD%)

Leaves Aerial
Parts Leaves Aerial

Parts Leaves

38 Unknown 6.97 344 649 Nq

39 Quercetin-O-
(malonyl)hexoside 7.03 356 549 18.52 ± 0.27

40 Quercetin-O-pentoside 7.06 255, 354 433, 301 9.44 ± 0.28

41 Unknown 7.11 358 599, 507, 463 Nq

42
Quercetin-O-(6”-p-
hydroxybenzoyl)

hexoside
7.17 269, 356 583, 316 91.34 ± 1.22

43 Unknown 7.22 350 723, 677, 477 Nq

44 Quercetin-O-rhamnoside 7.22 255, 342 447, 301 32.30 ± 0.02

45 Kaempferol-O-rhamnoside 7.77 263, 341 431, 285 18.77 ± 0.55

46 Unknown 7.89 312 731 Nq

47 Myricetin-O-(6”-
cinnamoyl)hexoside 8.14 265, 359 609, 317, 301 757.33 ± 1.96

48 Unknown 8.22 288, 308 289 Nq

49 Unknown 8.30 309 483, 289 Nq

50 Quercetin-O-(6”-
cinnamoyl)hexoside 8.41 281 593, 447, 301 3.72 ± 1.10

51 Quercetin 8.66 268, 370 301 3.34 ± 2.11 1.39 ± 5.97

52 Myricetin-O-(6”-p-
coumaroyl)hexoside 8.77 265, 360 624 509.39 ± 0.94

53 Isorhamnetin-O-(6”-
caffeoyl)hexoside 9.45 264, 359 639 111.98 ± 0.50
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Table 1. Cont.

Peak No Compound tR (min) UV max
(nm)

[M-H]-

E. multiflora
(mg/Kg ± RSD%)

E. scoparia
(mg/Kg ± RSD%)

C. vulgaris
(mg/Kg ± RSD%)

Leaves Aerial
Parts Leaves Aerial

Parts Leaves

54 Dimethylquercetin 9.46 227, 344 329, 301 0.86 ± 8.95 1.38 ± 0.62

55 Myricetin-O-(6”-
cinnamoyl)hexoside 9.53 264, 359 609, 317, 301 23.46 ± 1.49

56 Kaempferol 10.22 366 285 0.49 ± 1.89 0.91 ± 1.84

57 Isorhamnetin-O-hexoside-O-
rhamnoside 10.22 264, 359 623 9.76 ± 0.34

58 Quercetin-O-(6”-
cinnamoyl)hexoside 10.40 356 593, 447, 301 0.79 ± 1.12

59 Unknown 10.97 356 637, 347 Nq

Total 399.01 ± 1.46 227.6 ± 0.15 527.6 ± 1.55 9528.93 ± 54.32 1567.78 ± 13.01

Nq: Not quantified.
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Figure 3. The correlation between phenolic compounds (variables) and plant parts of Ericaceae taxa
(observations) through PCA. (A) represents the first two factorials F1xF2. (B) represents the second
two factorials F1xF3.

Both statistical analyses confirmed the presence of four different clusters: the first
cluster regrouped both parts of E. multiflora, and the second and the third clusters were
attributed to E. scoparia parts, while a completely distinguished fourth cluster was ascribed
to C. vulgaris leaves. According to the principal components F1 and F2, the leaves of
E. scoparia and C. vulgaris showed a false positive correlation, resulting in a unique cluster,
whereas F1 and F3 led to the rejection of the previous correlation and the presence of two
different clusters.
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2.2. Antioxidant and Cytotoxic Activities
2.2.1. Antioxidant Activity

The human body is constantly dealing with the formation of free radicals. When
produced in excess, the latter trigger oxidative stress, causing serious tissue injuries. It is
well known that many diseases are closely related to oxidative stress, mainly cancer and
neurodegenerative disorders (Alzheimer’s, Parkinson’s, etc.). To cope with these health
issues, plants provide a cheap and affordable source of natural antioxidants to prevent free
radical-induced diseases, especially in countries with low incomes and limited healthcare
resources [28]. Many primary antioxidant chemistry reactions can be grouped into the
categories of hydrogen-atom transfer (HAT) and single-electron transfer (SET). The HAT
mechanism occurs when an antioxidant compound scavenges free radicals by donating
hydrogen atoms; the SET mechanism is based on the transfer of a single electron to reduce
any compound, including metals, carbonyls, and free radicals [29,30]. It has been reported
that, even if many antioxidant reactions are characterized as following either HAT or SET
chemical processes, these reaction mechanisms can simultaneously occur [29,31,32].

Due to the complex nature of phytochemicals and their interactions, the importance of
using various methods based on different mechanisms for a comprehensive study of the
antioxidant properties of plant extracts has been argued. Therefore, the antioxidant activity
of Em-L, Em-A, Es-L, Es-A, and Cv-L extracts was investigated by three different in vitro
methods: in order to establish the primary antioxidant properties, the 1,1-diphenyl-1-
picrylhydrazyl (DPPH) test, involving HAT and SET mechanisms, and the reducing power,
a SET-based assay, were used. The secondary antioxidant properties were determined
through the estimation of the ferrous ion (Fe2+) chelating activity.

The DPPH test is a rapid, simple, inexpensive, and widely used method to measure the
free radical scavenging ability of pure compounds or phytocomplexes. Based on the results
shown in Figure 4, all extracts, except for Em-A, demonstrated valuable radical scavenging
activity, reaching approximately 90% of inhibition at the concentration of 0.5 mg/mL.
Among the tested extracts, Es-A was the most active, as confirmed also by the lowest IC50
value (p < 0.001); at the concentration of 0.25 mg/mL, it showed activity higher than that of
BHT, used as a standard drug, displaying radical scavenging activity superimposable to
that of the standard (around 100%) at the concentrations of 1 and 2 mg/mL (Figure 4).
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Figure 4. Free radical scavenging activity (DPPH test) of hydroalcoholic extracts from leaves and
aerial parts of 3 different Ericaceae taxa: C. vulgaris leaves (Cv-L), E. scoparia leaves (Es-L), E. scoparia
aerial parts (Es-A), E. multiflora leaves (Em-L), E. multiflora aerial parts (Em-A). Data are expressed as
the mean ± SD of three independent experiments (n = 3) and were analyzed by one-way ANOVA
followed by Dunnett’s post-hoc test. **** p < 0.0001, *** p < 0.001, ** p < 0.05 vs. BHT.

Based on the IC50 values, the efficacy of the extracts and the standard decreases in the
order Es-A > BHT > Es-L > Em-L > Cv-L > Em-A (Table 2); however, at 1 mg and 2 mg/mL,
Es-L, Em-L and Cv-L exhibited radical scavenging activity close to that of BHT, while only
Em-A reached about 80% of inhibition (Figure 4).
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Table 2. Free radical scavenging activity (DPPH test), reducing power, and ferrous ion (Fe2+) chelating
activity of hydroalcoholic extracts from leaves and aerial parts of 3 different Ericaceae taxa.

Ericaceae Taxa DPPH Test
IC50 (mg/mL)

Reducing Power
ASE/mL

Fe2+ Chelating
Activity

IC50 (mg/mL)

Cv-L 0.212 ± 0.061 a 2.790 ± 0.100 a NA
Es-L 0.189 ± 0.051 a 2.721 ± 0.062 a NA
Es-A 0.142 ± 0.014 b 1.898 ± 0.056 b >2
Em-L 0.200 ± 0.001 a 3.814 ± 0.091 c NA
Em-A 0.611 ± 0.017 c 5.538 ± 0.148 d >2

Standard BHT
0.154 ± 0.001 b

BHT
1.131 ± 0.037 e

EDTA
0.0067 ± 0.0003

C. vulgaris leaves (Cv-L), E. scoparia leaves (Es-L), E. scoparia aerial parts (Es-A), E. multiflora leaves (Em-L),
E. multiflora aerial parts (Em-A). NA: no activity. Data are expressed as the mean ± SD of three independent
experiments (n = 3) and were analyzed by one-way ANOVA followed by Tukey–Kramer multiple comparisons
test. a–e Different letters within the same column indicate significant differences between mean values (p < 0.001).

The reducing power reflects the ability to stop the radical chain reaction. In this assay,
the presence of antioxidant compounds in the sample determines the reduction of Fe3+ to
the ferrous form (Fe2+). As shown in Figure 5, all the extracts, except Em-A, displayed good
reducing power, which was dose-dependent. Among the tested extracts, those of E. scoparia
were the most active. In fact, at the concentration of 1 mg/mL, Es-A showed activity close
to that of BHT; at 2 mg/mL, the reducing power of both Es-A and Es-L was higher than that
of the standard. Based on the ASE/mL values, the efficacy of the extracts and the standard
decreases in the order BHT > Es-A > Es-L > Cv-L > Em-L > Em-A (Table 2).
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Figure 5. Reducing power of hydroalcoholic extracts from leaves and aerial parts of 3 different Eri-
caceae taxa evaluated by spectrophotometric detection of Fe3+-Fe2+ transformation method. C. vulgaris
leaves (Cv-L), E. scoparia leaves (Es-L), E. scoparia aerial parts (Es-A), E. multiflora leaves (Em-L),
E. multiflora aerial parts (Em-A). Data are expressed as the mean ± SD of three independent ex-
periments (n = 3) and were analyzed by one-way ANOVA followed by Dunnett’s post-hoc test.
**** p < 0.0001, *** p < 0.001, vs. BHT.

The Fe2+ chelating activity of Em-L, Em-A, Es-L, Es-A, and Cv-L extracts was estimated
by monitoring the formation of the Fe2+-ferrozine complex. In this assay, only Es-A and
Em-A displayed weak chelating properties, whereas all the other extracts were not active
(Table 2).

From our findings, it is evident that all the extracts possess strong primary antioxidant
properties; interestingly, that obtained from the aerial parts of E. scoparia is the most power-
ful. HPLC analysis revealed, for this extract, the highest content of flavonoid compounds,
represented mainly by flavonols such as several myricetin glycosides, but also kaempferol,
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quercetin, and isorhamnetin glycosides. The flavonols, containing more hydroxyl groups
(one to six OH groups), have a very strong ability to scavenge DPPH radicals and they
are well-known, potent antioxidants. These compounds have a 3-hydroxyl group in the
C-ring and 3′,4′-dihydroxy groups (catechol structure) in the B-ring, but also possess the
2,3-double bond in conjugation with the 4-oxo function in the C-ring, which are the essential
structural elements for potent radical scavenging activity [33].

Erica scoparia aerial part extract is rich in myricetin glycosides, which have been
shown to possess strong primary antioxidant activity [34,35]. Thus, the best activity
observed for Es-A could be correlated primarily to these compounds, but also to kaempferol,
isorhamnetin, and quercetin glycosides.

2.2.2. Artemia salina Lethality Bioassay

The toxicity of Em-L, Em-A, Es-L, Es-A, and Cv-L extracts was assessed by the Artemia
salina lethality bioassay, extensively utilized as an alternative model for toxicity evaluation.
This simple method offers numerous advantages, such as rapidity, low cost, continuous
availability of cysts (eggs), and ease of maintenance under laboratory conditions [36]. It is
a useful system for predicting the toxicity of plant extracts in order to consider their safety.
The results of the bioassay showed that the median lethal concentration values were higher
than 1000 µg/mL for all the tested extracts, thus indicating the lack of toxicity against brine
shrimp larvae based on Clarkson’s toxicity criterion [37].

3. Materials and Methods
3.1. Chemicals and Reagents

LC–MS-grade water (H2O), acetonitrile (ACN), formic acid, methanol, and DMSO
were purchased from Merck Life Science (Merck KGaA, Darmstadt, Germany). Taxifolin,
rutin, 4-caffeoylquinic acid, ishorhamnetin, quercetin, and kaempferol-3-glucoside were
also obtained from Merck Life Science (Merck KGaA, Darmstadt, Germany). Unless
indicated otherwise, all chemicals were purchased from Sigma-Aldrich (Milan, Italy).

3.2. Plant Materials

Three Ericaceae taxa, Erica multiflora, Erica scoparia, Calluna vulgaris, were collected in
December 2019 from three different places in Northern Morocco; Khemiss anjra (Tetouan
province) with longitude −5.5125257, latitude 35.6632287; Ben karrich (Tetouan province),
longitude −5.4279948, latitude 35.5068513; Souq l’qolla (Chefchouaen), longitude −5.59873,
latitude 35.12112 35, respectively. The taxonomic identification was confirmed by Prof.
Kadiri Mohamed, Abdelmalek Essaadi University, Tetouan, Morocco.

The plant material was collected in December according to their flourishing stage. The
selected samples for the preparation of the extracts consisted of leaves and aerial parts, for
both Erica species that bloomed in this month, while, for C. vulgaris, only the leaves were
used because, in the same period, this species had not yet flowered.

The selected parts were dried in darkness at room temperature for 2 weeks, and then
crushed in an electrical grinder to a particle size less than 4 mm; the grounded parts were
stored in a refrigerator under 4 ◦C in amber glass vials to avoid oxidation effects.

3.3. Extraction Procedure

One hundred milligrams of different powdered plant material of the three studied
species was extracted, in a 50 mL volumetric flask, with 10 mL of ethanol:water, 96:4
(v:v), followed by sonication (60 W, 25 ◦C, 37 Hz) for 20 min. The obtained extracts were
centrifugated for 10 min under 3000 rpm and filtered using Whatman filter paper (Merck
Life Science, Merck KGaA, Darmstadt, Germany). The extraction procedure was repeated
three times, and then the filtrates were combined, evaporated to dryness by a rotavapor
and stored at 4 ◦C. The yields of the extracts, referring to 100 g of dried plant material, were
31.37% for E. multiflora leaves (Em-L), 33.26% for E. multiflora aerial parts (Em-A), 37.97% for
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E. scoparia leaves (Es-L), 46.76% for E. scoparia aerial parts (Es-A), and 33.72% for C. vulgaris
leaves (Cv-L).

3.4. LC–DAD/ESI–MS Analyses

The hydroalcoholic extracts (Em-L, Em-A, Es-L, Es-A, and Cv-L) were analyzed through
the LC–MS technique using a Shimadzu liquid chromatography system (Kyoto, Japan),
composed of a CBM-20A controller, two LC-30AD dual-plunger parallel-flow pumps, a
DGU-20A5R degasser, a CTO-40C column oven, a SIL-40C autosampler, an SPD-M40
photo diode array detector, and an LCMS-8050 mass spectrometer, through an ESI source
(Shimadzu, Kyoto, Japan).

Separation analyses were performed on a 150 × 4.6 mm; 2.7 µm Ascentis Express RP
C18 column (Merck Life Science, Merck KGaA, Darmstadt, Germany). The mobile phase
was composed of two solvents, water (solvent A) and acetonitrile (solvent B), both acidified
with formic acid at 0.1% v/v. The flow rate was set at 1 mL/min and a simplified linear
gradient of elution program was followed: 0–5 min, 0–30% B, 5–30 min, 30–100% B, 35 min,
100% B. PDA range: 200–400; λ = 280 nm (sampling frequency: 40.0 Hz, time constant:
0.08 s).

The applied mass spectrometry conditions were as follows: scan range, m/z 100–1200;
scan speed, 2500 amu/s; event time, 0.3 s; nebulizing gas (N2) flow rate, 1.5 L/min; drying
gas (N2) flow rate, 15 L/min; interface temperature, 350 ◦C; heat block temperature, 300 ◦C;
DL (desolvation line) temperature, 300 ◦C; DL voltage, 1 V; interface voltage, −4.5 kV.

3.5. Preparation of Calibration Curves

Calibration curves of six polyphenolic standards (R2 > 0.9989) were used for the
quantification of the polyphenolic content in sample extracts by using different concentra-
tion levels: 4-caffeoylquinic acid (y = 3450.1x − 26,363; LoD = 0.034, LoQ = 0.104), taxifolin
(y = 18,001x − 35,329; LoD = 0.071, LoQ = 0.215), rutin (y = 10,066x + 2176.5; LoD = 0.014,
LoQ = 0.042), isorhamnetin (y = 25,334x + 1890.3; LoD = 0.116, LoQ = 0.353), quercetin
(y = 20,376x + 7053.8, LoD = 0.007, LoQ = 0.022), kaempferol-3-glucoside (y = 13,848x + 2354.1,
LoD = 0.090, LoQ = 0.274). Each analysis was performed in triplicate.

3.6. Antioxidant and Cytotoxic Activities
3.6.1. Free Radical Scavenging Activity

The free radical scavenging activity of Em-L, Em-A, Es-L, Es-A, and Cv-L extracts was
determined using the DPPH (1,1-diphenyl-1-picrylhydrazyl) method [38]. The samples
were tested at different concentrations (0.0625–2 mg/mL). An aliquot (0.5 mL) of solution
containing different amounts of sample was added to 3 mL of daily prepared methanol
DPPH solution (0.1 mM). The optical density change at 517 nm was measured, 20 min
after the initial mixing, with a model UV-1601 spectrophotometer (Shimadzu). Butylated
hydroxytoluene (BHT) was used as reference.

The scavenging activity was measured as the decrease in the absorbance of the samples
versus DPPH standard solution. Results were expressed as the radical scavenging activity
percentage (%) of the DPPH, defined by the formula [(Ao − Ac)/Ao] × 100, where Ao is
the absorbance of the control and Ac is the absorbance in the presence of the sample or
standard.

The results, obtained from the average of three independent experiments, are reported
as mean radical scavenging activity percentage (%) ± standard deviation (SD) and mean
50% inhibitory concentration (IC50) ± SD. The IC50 value is a parameter calculated as the
concentration of extract needed to decrease the initial DPPH concentration by 50%. Thus,
the lower IC50 value, the higher the antioxidant activity of the sample.

3.6.2. Reducing Power Assay

The reducing power of Em-L, Em-A, Es-L, Es-A, and Cv-L extracts was evaluated by
the spectrophotometric detection of Fe3+-Fe2+ transformation method [39]. The extracts



Molecules 2022, 27, 3979 14 of 17

were tested at different concentrations ranging from 0.0625 to 2 mg/mL. Solutions of
different concentrations of extracts in 1 mL solvent were mixed with 2.5 mL of phosphate
buffer (0.2 M, pH 6.6) and 2.5 mL of 1% potassium ferricyanide [K3Fe(CN)6], and the
resulting mixture was incubated at 50 ◦C for 20 min. The solution was cooled rapidly,
mixed with 2.5 mL of 10% trichloroacetic acid, and centrifuged at 3000 rpm for 10 min.
After centrifugation, the supernatant (2.5 mL) was mixed with 2.5 mL of distilled water and
0.5 mL of 0.1% fresh ferric chloride (FeCl3). The absorbance of the solution was measured
at a wavelength of 700 nm after 10 min. An increase in the absorbance of the reaction
mixture indicates an increase in its reducing power. An equal volume (1 mL) of water
mixed with a solution prepared as described above was used as a blank. Ascorbic acid and
BHT were used as references. The results averaged from three independent experiments
were expressed as mean absorbance values ± SD. The reducing power was also expressed
as ascorbic acid equivalent (ASE/mL); when the reducing power is 1 ASE/mL, the reducing
power of 1 mL extract is equivalent to 1 µmol ascorbic acid.

3.6.3. Ferrous Ion (Fe2+) Chelating Activity

The Fe2+ chelating activity of Em-L, Em-A, Es-L, Es-A, and Cv-L extracts was estimated
according to the method reported by Decker and Welch [40]. The samples were tested at
different concentrations (0.0625–2 mg/mL). Briefly, different concentrations of each sample
in 1 mL solvent were mixed with 0.5 mL of methanol and 0.05 mL of 2 mM FeCl2. The
reaction was initiated by the addition of 0.1 mL of 5 mM ferrozine. Then, the mixture was
shaken vigorously and left standing at room temperature for 10 min. The absorbance of the
solution was measured spectrophotometrically at 562 nm. The control contained FeCl2 and
ferrozine, complex formation molecules. Ethylenediaminetetraacetic acid (EDTA) was used
as a reference. The percentage of inhibition of the ferrozine—(Fe2+) complex formation was
calculated by the formula [(Ao − Ac)/Ao] × 100, where Ao is the absorbance of the control
and Ac is the absorbance in the presence of the sample or standard. The results, obtained
from the average of three independent experiments, are reported as mean inhibition of the
ferrozine—(Fe2+) complex formation (%) ± SD and IC50 ± SD.

3.6.4. Artemia salina Lethality Bioassay

The potential toxicity of Em-L, Em-A, Es-L, Es-A, and Cv-L L extracts was investigated
in brine shrimp (Artemia salina Leach) [41]. Ten brine shrimp larvae, taken 48 h after
initiation of hatching in artificial seawater, were transferred to each sample vial, and then
artificial seawater was added to obtain a final volume of 5 mL. Different concentrations
of each extract were added (10–1000 µg/mL) and the brine shrimp larvae were incubated
for 24 h at 25–28 ◦C. Then, the surviving larvae were counted using a magnifying glass.
The assay was carried out in triplicate, and median lethal concentration (LC50) values were
determined by Litchfield and Wilcoxon’s method. Extracts giving LC50 values greater than
1000 µg/mL were considered non-toxic.

3.7. Statistical Analysis

The heat map and PCA were established to provide an easier comparison of the
phenolic compounds between the plant parts; the results were expressed as mean values
± relative standard deviation (RSD). All data were processed with principal component
analysis (PCA) and collected in a heat map; the phenolic compounds were considered as
variables in these plots to identify the connections between all the plant parts as observa-
tions. Principal component analysis (PCA) and heat map were generated using XLSTAT
software ver. 2019.2.2.

Statistical comparison of the antioxidant activity data was carried out by using one-
way analysis of variance (ANOVA) (GraphPAD Prism Version 9.4.0. Software for Science).
p-values lower than 0.05 were considered statistically significant.
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4. Conclusions

In this contribution, three Moroccan Ericaceae species, namely Erica multiflora, Erica
scoparia, and Calluna vulgaris, were investigated. The phenolic profiles of the leaf and aerial
extracts revealed a quite complex pattern, with up to 52 phenolic compounds positively
identified, including phenolic acids and flavonoids. The antioxidant properties of the
extracts were evaluated by means of three different methods, namely DPPH, reducing
power, and Fe2+ chelating assays, demonstrating their high potential. On the basis of the
phenolic profile and remarkable results achieved for the antioxidant activity, such species
could be considered as a potential safe source of bioactive compounds to be advantageously
employed in traditional Moroccan medicine. Interestingly, myricetin derivates might
have important therapeutic potential, e.g., antioxidant, anti-inflammatory, anti-diabetes,
anticancer, and protective effects against Alzheimer’s disease [42]; furthermore, the efficacy
kaempferol and rutin can be exploited against doxorubicin-induced cardiotoxicity [43],
while quercetin could be employed for its interesting anticancer effects against prostate
and breast cancers [44].
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