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Abstract: As poly(vinyl chloride) (PVC) photodegrades with long-term exposure to ultraviolet radiation,
it is desirable to develop methods that enhance the photostability of PVC. In this study, new aromatic-rich
diorganotin(IV) complexes were tested as photostabilizers in PVC films. The diorganotin(IV) complexes
were synthesized in 79–86% yields by reacting excess naproxen with tin(IV) chlorides. PVC films
containing 0.5 wt % diorganotin(IV) complexes were irradiated with ultraviolet light for up to 300 h,
and changes within the films were monitored using the weight loss and the formation of specific
functional groups (hydroxyl, carbonyl, and polyene). In addition, changes in the surface morphologies
of the films were investigated. The diorganotin(IV) complexes enhanced the photostability of PVC,
as the weight loss and surface roughness were much lower in the films with additives than in the
blank film. Notably, the dimethyltin(IV) complex was the most efficient photostabilizer. The polymeric
film containing this complex exhibited a morphology of regularly distributed hexagonal pores, with a
honeycomb-like structure—possibly due to cross-linking and interactions between the additive and the
polymeric chains. Various mechanisms, including direct absorption of ultraviolet irradiation, radical or
hydrogen chloride scavenging, and polymer chain coordination, could explain how the diorganotin(IV)
complexes stabilize PVC against photodegradation.

Keywords: naproxen; poly(vinyl chloride) films; diorganotin(IV) complexes; photodegradation;
photostabilizer; synthesis

1. Introduction

Poly(vinyl chloride) (PVC) is one of the most important thermoplastic polymers produced on
an industrial scale [1]. PVC can be produced either as a rigid material that is stiff and has a high
resistance to chemicals, water, and weather or as a flexible material that is soft and has a low degree of
crystallinity [2]. PVC is durable, has good mechanical and chemical properties, has low production
costs, and is as a good insulator [3]. Owing to its high chlorine content, PVC can be used as a flame
retardant [3]. In addition, it can be used in window frames, indoor plumbing, shower curtains,
cable insulation, tubing, automobiles, and electronics [4,5]. However, PVC has low heat stability,
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with changes in shape and color occurring at high temperatures. Furthermore, long exposure of PVC to
ultraviolet (UV) radiation, e.g., from sunlight, and a high temperature results in undesirable changes in
its physical and chemical properties [6,7]. Therefore, considerable attention has been paid to stabilizing
PVC against irradiation to reduce its photodegradation rate [8–11].

PVC photodegradation occurs mainly through an autocatalytic dehydrochlorination process.
This rocess has reasonably high activation energy that can be achieved under sunlight at a high temperature.
In the initiation step of the photodegradation process, structural defects form within PVC [12]. In the
propagation step, the thermal degradation process leads to the formation of polyene residues owing to
the elimination of hydrogen chloride (HCl) and the formation of double-bond-containing chains [13–15].
Interactions between the polyene chains lead to a cross-linked PVC structure [16]. Various additives,
such as impact modifiers, functional agents, UV stabilizers, biocides, and antistatic agents, can be added
to PVC to allow its use for certain applications [17–19]. In addition, other additives, such as Schiff
basses [20–23], inorganic salts [24–27], aromatics [28,29], pigments [30], and flame retardants [30], can be
used to protect PVC against irradiation.

We have previously shown that various aromatic-rich Sn(IV) complexes can be used as PVC
photostabilizers [31–33]. In addition, such complexes can be used as carbon dioxide storage media
owing to their high surface areas [34]. As a continuation of our work in the field of polymers [35–41],
new Sn(IV) complexes containing naproxen, which is highly aromatic, were synthesized and their use
as efficient photostabilizers to enhance the stability of PVC against UV irradiation were investigated.
The addition of a low concentration (0.5 wt %) of these new Sn(IV) complexes to PVC films increased
the photostability against long-term UV irradiation significantly.

2. Results and Discussion

2.1. Synthesis of Sn(IV) Complexes 1–3

Three naproxen Sn(IV) complexes (1–3) were synthesized in high yields (79–86%) via the reaction
of excess naproxen (2 mol equivalents) and diorganotin(IV) chlorides (Figure 1). The physical properties
and elemental analysis of Sn(IV) complexes 1–3 are reported in Table 1.
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The absorption of C–Sn bond in the FT-IR spectra is highly dependent on the number and the
nature of the substituents attached to the tin central atom. Selected FT-IR spectral data for Sn(IV)
complexes 1–3 are reported in Table 2. In the FT-IR spectra of Sn(IV) complexes 1–3 (Figure 2), the bands
in the 1651–1541 cm−1 region can be accounted for by the symmetric and asymmetric modes of the
carboxylate carbonyl group (COO) [42]. The strong absorption peaks in the 1643–1651 cm−1 region
are due to the asymmetric stretching vibration of COO, which is in agreement with the literature [43].
Furthermore, the COO asymmetric stretching vibration appeared within the 1541–1548 cm−1 region.
The interaction between the tin atom and carboxylate oxygen can be established from the FT-IR
stretching frequency, ∆υ (COO) [44]. The ∆υ [vas (COO) − vs. (COO)] values of 1–3 were found to be
in the range of 102 cm−1, which indicates a bidentate mode of interaction between the Sn and oxygen
atoms [33], as a ∆υ value of less than 200 cm−1 is commonly observed for bidentate interactions [33].
The FT-IR spectra of 1–3 also show new absorption bands in the range of 524–526 and 445–449 cm−1

regions, corresponding to the vibrations of Sn–C and Sn–O, respectively [45]. The observation of Sn–C
and Sn–O peaks is an indication that coordination has occurred between Sn(IV) and the oxygen of the
carboxylate group [46,47]. Based on the FT-IR spectral data, an octahedral geometry was proposed for
the synthesized Sn(IV) complexes.

Table 2. Selected FT-IR spectral data for Sn(IV) complexes 1–3.

Sn(IV) Complex FT-IR (ν, cm−1)

C=O (as) C=O (s) C=C Sn–C Sn–O

1 1643 1541 1458 526 445
2 1643 1541 1456 524 449
3 1651 1548 1454 524 447

The NMR chemical shifts are highly dependent on the geometry of Sn(IV) complexes [48,49].
The chemical shifts are expected to be affected by coordination between the ligand and the tin atom via
an effect known as a metal nuclear shielding [50]. The 1H-NMR spectra of 1–3 show characteristic
doublets in the 1.42–1.47 ppm region owing to the methyl protons attached to the CH protons.
In addition, the spectra exhibited quartet signals (3.87–3.77 ppm) corresponding to the CH protons.
Moreover, the methoxy protons appeared as singlets at ca. 3.93 ppm. The 1H-NMR spectral data of 1–3
are reported in Table 3.

Table 3. 1H-NMR spectral data for Sn(IV) complexes 1–3.

Sn(IV) Complex 1H-NMR (300 MHz; DMSO-d6, ppm)

1 7.78–7.71 (m, 6H, Ar), 7.35 (d, J = 7.8 Hz, 2H, Ar), 7.27 (s, 2H, Ar), 7.13 (d, J = 7.8 Hz,
2H, Ar), 3.93 (s, 6H, 2OMe), 3.77 (q, J = 7.1 Hz, 2H, 2CH), 1.42 (d, J = 7.1 Hz, 6H, 2Me),

1.22–1.19 (m, 8H, 4CH2), 1.00 (m, 4H, 2CH2), 0.57 (t, J = 7.4 Hz, 6H, 2Me)
2 7.82–7.46 (m, 16H, Ar), 7.40 (d, J = 7.6 Hz, 2H, Ar), 7.29 (s, 2H, Ar), 7.15 (d, J = 7.6 Hz,

2H, Ar), 3.94 (s, 6H, 2OMe), 3.87 (q, J = 7.2 Hz, 2H, 2CH), 1.47 (d, J = 7.2 Hz, 6H, 2Me)
3 7.81–7.71 (m, 6H, Ar), 7.39 (d, J = 7.6 Hz, 2H, Ar), 7.28 (s, 2H, Ar), 7.14 (d, J = 7.6 Hz,

2H, Ar), 3.93 (s, 6H, 2OMe), 3.83 (q, J = 7.2 Hz, 2H, 2CH), 1.42 (d, J = 7.2 Hz, 6H, 2Me),
0.57 (s, 6H, 2Me)
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The 13C-NMR spectra of 1–3 show that the carbonyl carbon and the aromatic carbon attached to
the methoxy group appeared at very low field (174.8–175.9 and 157.5–157.7 ppm, respectively). The CH
carbons appear within the 43.7–45.0 ppm region. All other carbons appeared at the expected chemical
shifts region [47]. The 13C-NMR spectral data of 1–3 are reported in Table 4.

Table 4. 13C-NMR spectral data for Sn(IV) complexes 1–3.

Sn(IV) Complex 13C-NMR (75 MHz; DMSO-d6, ppm)

1 175.9 (C=O), 157.5, 133.7, 133.1, 129.5, 129.1, 128.0, 127.5, 125.9, 119.0, 106.2, 55.6
(OMe), 43.7 (CH), 31.5 (CH2), 26.0 (CH2), 25.6 (CH2), 15.9 (Me), 15.0 (Me)

2 175.8 (C=O), 157.7, 136.7, 136.2, 133.8, 133.6, 129.6, 129.4, 128.9, 128.7, 128.0, 127.8,
126.9, 119.1, 106.2, 55.6 (OMe), 44.7 (CH), 18.9 (Me)

3 174.8 (C=O), 157.6, 136.8, 133.7, 129.6, 128.9, 127.5, 126.9, 126.0, 119.3, 106.2, 55.6
(OMe), 45.0 (CH), 18.9 (Me), 18.5 (Me)

Previous reports have indicated that the most desirable photostabilization effect is obtained when
additives are added to PVC at a concentration of 0.5 wt % [32,33]. Therefore, Sn(IV) complexes 1–3 (0.5
wt %) were mixed with PVC and the corresponding polymeric films (with a thickness of 40 µm) were
produced. Energy-dispersive X-ray spectroscopy (EDX) can be used to obtain information about the
elemental composition of the polymeric films. The EDX spectra of the PVC films (Figure 3) show strong
absorption peaks corresponding to the chlorine atom of PVC. The EDX spectra of the PVC containing
complexes 1–3 also show a new band that is related to the tin atoms of complexes 1–3. The assignment
of the Sn peak is in agreement with previous reports [51].
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2.2. Weight Loss of PVC Films

The weight loss of PVC during an irradiation process can be used as a measure of the level of
photodegradation. Upon irradiation, a dehydrochlorination process occurs, resulting in the elimination
of HCl from the PVC chains and the formation of polyene residues [52]. The PVC films containing
complexes 1–3 were irradiated with a UV light for up to 300 h, and the PVC weight loss (%) was
calculated using Equation (1), where W1 is the PVC weight before irradiation and W2 is the PVC
weight after irradiation. The color of the PVC (blank) film and those containing Sn(IV) complexes 1–3
were almost identical before and after irradiation. The PVC films were colorless and darkened upon
irradiation. After long term (300 h) of irradiation, the PVC films turned brown and less transparent,

Weight loss % = [(W1 −W2)/W1] × 100. (1)

The effect of irradiation time on PVC weight loss is shown in Figure 4. The PVC weight loss
in the presence of 1–3 is reduced significantly compared with that in the blank PVC film. All the
diorganotin(IV) complexes reduced the photodegradation of PVC significantly, but complex 3 was
more effective than complexes 1 and 2. For complex 3, the weight loss over 300 h was less than 0.4%,
whereas, for the blank PVC film, it was 0.7%.
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2.3. FT-IR Spectroscopy of PVC Films

UV radiation alters the physical and chemical properties of polymers [53]. Photo-oxidation of PVC
produces small fragments containing hydroxyl, carbonyl, and polyene moieties [53]. The intensities of
the peaks corresponding to the hydroxyl (3500 cm−1), carbonyl (1722 cm−1), and polyene (1602 cm−1)
groups in the FT-IR spectra of the PVC films can be monitored upon irradiation and compared with
the intensity of a reference peak (1328 cm−1), which corresponds to the C–H bonds within the PVC
chains. Such a comparison provides useful information about the rate of PVC photodegradation [54].
Therefore, the PVC films were irradiated, and the FT-IR spectra were recorded every 50 h up to 300 h.
The index of each functional group (IS) was calculated from the absorbance of the functional group
(As) and the reference group (Ar) using Equation (2),

Is = As/Ar. (2)

The changes in the FT-IR spectra of PVC (blank) film and PVC/3 blend upon irradiation (300 h) are
shown in Figures 5 and 6, respectively. The indices for the carbonyl (IC=O), polyene (IC=C), and hydroxyl
(IOH) groups were calculated for each PVC film at 50 h intervals and plotted versus irradiation time. As
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shown in Figures 7–9, these indices were much smaller for the PVC films containing Sn(IV) complexes
1–3 than for the blank film. Evidently, complexes 1–3, and in particular 3, inhibit the photodegradation
of PVC significantly. For example, IC=O, IC=C, and IOH for the PVC film containing 3 after irradiation
for 300 h were 0.09, 0.14, and 0.18, respectively, whereas those of the blank PVC film were 0.26, 0.28,
and 0.40, respectively.

2.4. Molecular Weight of PVC Films

The intrinsic viscosity ([η]) of a polymeric solution can be used as a simple tool to determine the
PVC average molecular weight (MV). The photodegradation of PVC films leads to branching and
cross-linking of the polymeric chains following the elimination of HCl, and, therefore, a decrease in
MV [55]. The PVC MV can be calculated using Equation (3) based on constants α and K [56],

[η] = KM
α
V. (3)

After irradiation for 300 h, the PVC films were dissolved in tetrahydrofuran, and the MV values
were calculated in the presence and absence of each Sn(IV) complex. The effect of irradiation (300 h) on
the MV values is shown in Figure 10. It is evident that the decrease in MV was much greater for the
blank PVC film than for the films containing the Sn(IV) complexes. After irradiation for 300 h, the MV

value of the blank PVC film decreases to 35,000 from 250,000 before irradiation. Irradiation had a much
smaller effect on MV in the PVC films containing the Sn(IV) complexes. For example, the MV value of
the PVC film containing complex 3 only decreased to 153,000 after irradiation for 300 h.
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2.5. Surface Morphology of PVC Films

Optical microscopy provides evidence about the roughness and irregularity of the surface
of a polymer film. In addition, it reveals defects, cracks, damage, decomposition, chain scission,
and other changes that might occur within the polymer surface when irradiated with a UV light [20].
Such undesirable changes can be attributed to the dehydrochlorination process [57]. The surface
morphology images (400× magnification) of the PVC films (Figure 11) after 300 h of continuous
irradiation showed discoloration, rough surfaces, grooves, cracks, and white spots within the surface.
However, the surface irregularities within the PVC films containing Sn(IV) complexes 1–3 were less
noticeable than those appearing within the surface of the blank PVC film. This observation suggests
that these complexes can reduce the rate of the dehydrochlorination process and therefore enhance the
photostability of the irradiated PVC films.
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2.6. Scanning Electron Microscopy (SEM) of PVC Films

SEM images can be used to observe the changes caused by UV irradiation within the surface of the
PVC films. In addition, they provide information about the particle size and shape, ionic conductivity,
and thermal and mechanical stability of the polymeric matrix. Several reports have shown that SEM
images of PVC surface before irradiation are neat, smooth, and homogeneous [33,35,36]. The SEM
images of the surface of the blank PVC film and those containing Sn(IV) complexes 1–3 after 300 h of
irradiation are shown in Figure 12. The SEM images show the formation of cavities within the PVC as
a result of the photodegradation process. The lengths and depths of the cavities were larger in the
blank PVC film than in the films containing the additives. The damage that occurs within the PVC
surface is mainly a result of chain cross-linking following the elimination of HCl and other volatile
degradation products from the polymeric chains [58].
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The SEM image of the surface of the PVC film containing complex 3 shows more regular particle
aggregation with hexagonal pores in a honeycomb like-structure (Figure 13). A similar observation
has been made previously [35]. Clearly, complex 3 aids in the formation of a regular pore structure,
likely because of slower dehydrochlorination and chain cross-linking processes. This phenomenon is
possibly due to a strong interaction or coordination between the PVC chains and the Sn(IV) atom.
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2.7. Atomic Force Microscopy (AFM) of PVC Films

AFM provides information about the surface roughness and pore sizes of polymers [59]. Previous
reports have shown that nonirradiated PVC films have smooth surfaces that contain a limited number
of holes [20,37]. After irradiation, the 2D and 3D AFM images showed that the PVC films containing
the Sn(IV) complexes (Figure 14) had much smoother surfaces with fewer holes than the blank PVC
film. Indeed, after irradiation, the roughness factor (Rq) was much higher for the blank PVC film than
for the films containing the Sn(IV) complexes (Table 5). The roughness factor measures the changes in
physical properties, due to either cleavage of the C–C or C–Cl bonds or photo-oxidation process within
the polymeric chains, which is minimal in the case of PVC/3 blend.Molecules 2019, 24, 2396 14 of 16 
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Table 5. Roughness factor (Rq) for PVC after irradiation.

Photoirradiated PVC Film (300 h) Rq

PVC blank 457.6
PVC/1 130.3
PVC/2 126.6
PVC/3 87.5

2.8. Photostabilization Mechanism

Several mechanisms can be suggested to explain the role played by the diorganotin(IV) complexes
as photostabilizers against the photodegradation of PVC films. Sn(IV) is a strong Lewis acid and acts
as an efficient HCl scavenger. As photoirradiation of PVC leads to the elimination of HCl through a
dehydrochlorination process, the tin atoms in complexes 1–3 could capture the chloride ions, leading
to the formation of naproxen and Me2SnCl2. This process would eliminate the harmful effects of HCl
on the polymeric chains (Figure 15). Thus, diorganotin(IV) complexes 1–3 could induce long-term
protection of PVC against photodegradation by acting as secondary photostabilizers [28].
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Diorganotin(IV) complexes 1–3 could also stabilize PVC against photodegradation by acting as
peroxide decomposers. In the presence of oxygen, the photodegradation of PVC produces radicals,
which on reaction with oxygen lead to the formation of peroxide radicals [60]. Complexes 1–3 can
react with peroxides, such as hydroperoxides, and, therefore, enhance the photostability of polymeric
films upon photo-oxidation (Figure 16) [61].
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Figure 16. Diorganotin(IV) complex 3 acting as a peroxide decomposer.

The photostabilization of PVC in the presence of diorganotin(IV) complexes 1–3 could also be due
to the formation of coordination bonds between the polarized oxygen atoms of the carboxylate groups
within the naproxen moieties and the polarized carbon atoms of the C–Cl bonds within the polymeric
chains. Complexes 1–3 could absorb light energy directly (e.g., act as primary photostabilizers) and
then eliminate such energy at a harmless rate over time [62]. Clearly, diorganotin(IV) complex 3 was
the most effective photostabilizer among those examined in this study. This complex contains a small
methyl substituent that has no steric hindrance compared with butyl and phenyl substituents of the
other complexes. The steric hindrance of these groups could reduce the efficiency of complexes 1 and 2
as primary stabilizers.
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3. Materials and Methods

3.1. General

Chemicals and reagents were purchased from Sigma-Aldrich (Schnelldorf, Germany). PVC
(MV = ca. 250,000, polymerization degree = 800, K value = 67) was purchased from Petkim Petrokimya
(Istanbul, Turkey). FT-IR spectra were recorded on a Shimadzu FTIR 8300 spectrophotometer (Kyoto,
Japan) in the spectral range of 400–4000 cm−1 using the KBr disc technique. Elemental analyses were
performed using a Vario EL III instrument (Analysensysteme GmbH, Hanau, Germany). The melting
points were recorded on a Mitamura Riken Kogyo MPD melting point apparatus (Tokushima, Japan).
1H- (300 MHz) and 13C-NMR (75 MHz) spectra were recorded on a Bruker DRX300 NMR spectrometer
(Bruker, Zurich, Switzerland) in DMSO-d6. The EDX measurements were carried out on Bruker
XFlash® 6|10 detector (Tokyo, Japan). The optical images of the PVC surface were obtained using
a Meiji Techno Microscope (Tokyo, Japan). The SEM images were recorded on a TESCAN FE-SEM
MIRA3 system (Kohoutovice, Czech Republic). The AFM images were recorded on a Veeco instrument
(Plainview, NY, USA). An accelerated weather-meter QUV tester (Q-Panel Company, Homestead,
FL, USA) was used for irradiation of the films with a UV light (λmax at 365 nm at a light intensity of
6.43 × 10–9 ein dm–3 s−1) at room temperature. A Digital Caliper DIN 862 micrometer (Vogel GmbH,
Kevelaer, Germany) was used to determine the thickness of the PVC films (40 µm). The PVC films
were fixed using aluminum plate stands (Q-Panel Company, Homestead, FL, USA).

3.2. Synthesis of Sn(IV) Complexes 1–3

A solution of naproxen (0.46 g, 2.0 mmol) in MeOH (30 mL) was slowly added to a stirred solution
of the appropriate dialkyltin chloride (1.0 mmol) in MeOH. The mixture was refluxed for 8 h, and then
the solvent was removed under reduced pressure. The obtained solid obtained was recrystallized from
MeOH to give the corresponding Sn(IV) complex (1–3).

3.3. Preparation of PVC Films

Diorganotin(IV) complexes 1–3 (25 mg) were added to a stirred solution of PVC (5.0 g) in
tetrahydrofuran (100 mL). The homogenous mixture was stirred at room temperature for 30 min and
then poured into glass plates containing 15 holes (ca. 40 µm). The solvent was allowed to evaporate at
room temperature for 24 h and then under vacuum for 24 h to obtain the PVC films.

4. Conclusions

New highly aromatic diorganotin(IV) complexes were synthesized, characterized, and evaluated
as photostabilizers for PVC during long-term UV irradiation. The degradation of PVC was reduced
significantly in the presence of a low concentration (0.5 wt %) of the diorganotin(IV) complexes.
In addition, the surfaces of the polymeric materials containing additives were much smoother than that
of the blank PVC film after irradiation with UV light. The diorganotin(IV) complex that contained the
smallest substituent (methyl group) was found to be the most effective additive for stabilizing the PVC
film. SEM images showed that the polymeric film containing this complex formed a honeycomb-like
structure with regularly distributed hexagonal pores. The diorganotin(IV) complexes could inhibit PVC
degradation by acting as direct absorbers of the UV irradiation, by acting as radical or HCl scavengers,
or by interacting with the polymeric chains through the formation of coordination bonds. For the
potential application of the synthesized naproxen diorganotin(IV) complexes as PVC photostabilizers,
the hazard associated with the possible leakage of naproxen and tin needs to be investigated.
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