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Abstract: Early detection of ovarian cancer promises to reduce mortality. While serum CA125 can
detect more than 60% of patients with early stage (I–II) disease, greater sensitivity might be observed
with a panel of biomarkers. Ten protein antigens and 12 autoantibody biomarkers were measured
in sera from 76 patients with early stage (I–II), 44 patients with late stage (III–IV) ovarian cancer
and 200 healthy participants in the normal risk ovarian cancer screening study. A four-biomarker
panel (CA125, osteopontin (OPN), macrophage inhibitory factor (MIF), and anti-IL-8 autoantibodies)
detected 82% of early stage cancers compared to 65% with CA125 alone. In early stage subjects the
area under the receiver operating characteristic curve (AUC) for the panel (0.985) was significantly
greater (p < 0.001) than the AUC for CA125 alone (0.885). Assaying an independent validation set of
sera from 71 early stage ovarian cancer patients, 45 late stage patients and 131 healthy women, AUC in
early stage disease was improved from 0.947 with CA125 alone to 0.974 with the four-biomarker
panel (p = 0.015). Consequently, OPN, MIF and IL-8 autoantibodies can be used in combination with
CA125 to distinguish ovarian cancer patients from healthy controls with high sensitivity. Osteopontin
appears to be a robust biomarker that deserves further evaluation in combination with CA125.

Keywords: ovarian cancer; osteopontin (OPN); macrophage migration inhibitory factor (MIF); CA125;
IL-8 autoantibodies (IL-8 AAb); early detection

1. Introduction

Ovarian cancer is diagnosed at late stage (III, IV) in more than 70% of cases, contributing to poor
patient outcomes. Over 22,530 women in the US will be diagnosed with ovarian cancer this year and
about 13,980 women will die from the disease [1]. While five-year survival has improved over the
last three decades, long term survival has changed little over the same interval and less than 30% for
patients with late stage disease can be cured [2]. By contrast, when ovarian cancer is diagnosed in
stage I, up to 90% of patients can be cured with conventional surgery and chemotherapy. Even in Stage
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II, up to 70% of patients survive five years with currently available therapy [2]. Consequently, survival
might be significantly improved by detecting early stage ovarian cancer in a larger fraction of patients.

Attempts to detect ovarian cancer have utilized serum biomarkers, notably CA125, and imaging
with transvaginal sonography (TVS). Used individually, neither CA125 nor TVS is sufficiently
sensitive or specific for cost-effective screening [3]. Two-stage strategies have proven more promising,
where rising CA125, judged by the risk of ovarian cancer algorithm (ROCA), has triggered TVS in a
small fraction of participants, prompting surgery when imaging suggests possible cancer. Two clinical
screening trials—the normal risk ovarian cancer screening study (NROSS) [4] and the United Kingdom
Collaborative Study of Ovarian Cancer Screening (UKCTOCS) [5]—have achieved adequate specificity
with three to four operations for each case of ovarian cancer detected. Both trials have detected a
larger fraction of early stage (I–II) cases (40–64%) than observed at the time of conventional diagnosis
(20–25%). With 200,000 participants, the UKCTOCS was powered to detect a survival advantage and in
one pre-specified subset of women screened for seven years a 20% reduction in mortality was observed,
although additional follow-up will be required to assure the accuracy of this estimate.

Whatever the outcome of the UKCTOCS, there is room for improvement in both phases of the
two-stage strategy. CA125 is expressed by only 80% of ovarian cancers and is elevated in sera from
approximately 65% of patients with early stage disease. Additional biomarkers will be required to
detect a larger fraction of cases. Several serum biomarkers have shown promise for early detection
in blood samples from ovarian cancer patients at the time of clinical diagnosis [4–8]. Both HE4 and
CA72.4 can detect up to 16% of cases missed by CA125 [9].

While serum proteins have been studied extensively [10], most biomarkers are also expressed by
normal tissues and are found at low levels in sera from healthy women. Depending upon antigen
expression in ovarian cancers and the rate of release into blood, a substantial volume of ovarian cancer
may be required to shed sufficient amounts of protein antigen to elevate serum levels. Smaller volumes
of cancer might, however, evoke an immune response resulting in the production of autoantibodies
(AAb) against ovarian cancer-associated antigens [11]. Virtually all high grade serous ovarian cancers
have mutations of p53 with overexpression of TP53 protein in a majority of cases. Autoantibodies
reactive with TP53 are associated with at least 20% of high grade serous ovarian cancers. Titers of
anti-TP53 AAb rise eight months prior to CA125 and 22 months prior to clinical diagnosis of cancers
that do not elevate serum CA125 levels [4].

The objective of this study is to evaluate 10 candidate antigens [6,12–21] and 12 potential AAb
biomarkers [5,6,22–28] that have been cited in the world literature for their ability to distinguish patents
with early stage ovarian cancer from healthy individuals, seeking biomarkers that would detect cases
missed by CA125. Serum specimens have been analyzed from patients with early stage (I–II) and late
stage (III–IV) ovarian cancer and from healthy women who participated in the NROSS study. In both
discovery and validation sets, a four-biomarker panel of osteopontin, macrophage migration inhibitory
factor, IL-8 AAb and CA125 exhibited greater sensitivity than CA125 alone in detecting early stage
ovarian cancer.

2. Results

2.1. Osteopontin (OPN), Macrophage Migration Inhibitory Factor (MIF) and Anti-IL-8 Autoantibodies (AAb)
Provide the Highest Sensitivity at 98% Specificity Among 22 Potential Ovarian Cancer Biomarkers

Using Luminex-based Magplex/xMAP assays [4], we measured levels of 10 ovarian cancer
associated protein antigens (Osteopontin (OPN), Macrophage Migration Inhibiting Factor (MIF),
Human Epididymis Protein 4 (HE4), Leptin, Interleukin-6 (IL-6), Interleukin-8 (IL-8), Tumor Necrosis
Factor α (TNFα), Fibroblast Growth Factor 2 (FGF2), Transforming Growth Factor alpha (TGFα),
and Vascular Endothelial Growth Factor (VEGF) and 12 autoantibodies reactive with cancer-associated
proteins (anti-IL-8, E3 ubiquitin-protein ligase Mdm2 (MDM2), Myc proto-oncogene protein (c-MYC),
Tissue-type Plasminogen Activator (PLAT), Epithelial Cell Adhesion Molecule (EpCAM), Homeobox
Protein Hox-A7 (HOXA7), Alpha-enolase (ENO1), Protein Disulfide-isomerase (PDI), Endoplasmic
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Reticulum Chaperone BiP (HSPA5), Heat Shock Cognate 71 kDa Protein (HSPA8), Annexin A2
(ANXA2), and cathepsin D) in sera from 76 patients with early stage (I–II) ovarian cancer, 44 patients
with late stage (III–IV) ovarian cancer, and 200 healthy controls who participated in the NROSS study.
Characteristics of the cancers are listed in Table 1.

Table 1. Characteristics of the patient population.

Sample set Stage No.
Histology Age (Years)

Serous Endometrioid Clear Cell Mucinous Other Median Mean

Discovery
set

I 50 15 13 7 7 8 56 55
II 26 12 4 2 2 6 61 60
III 34 33 0 1 0 0 63 61
IV 10 9 0 0 0 1 60 58

Healthy 200 62 63

Discovery
set

I 41 19 5 4 6 7 55 54
II 30 23 2 1 0 4 60 61
III 39 39 0 0 0 0 62 61
IV 6 6 0 0 0 0 54 59

Healthy 131 66 66

For cost-effective two-stage screening strategies, no more than 2% of patients with elevated serum
biomarkers should be referred for imaging with TVS [29,30]. Consequently, we have measured the
sensitivity of biomarker candidates at 98% specificity. Among the 22 biomarkers, the highest sensitivity
was observed with OPN, MIF and anti-IL-8 AAb (Figures S1–S6, Table S1). OPN was elevated in 50%
of early stage and 46% of late stage cases (Figure 1A). Elevated MIF was detected in 21% of early stage
and 39% of late stage ovarian cancers (Figure 1B). Anti-IL-8 autoantibodies were detected in 7% of
both early and late stage cases (Figure 1C). CA125, measured with a Roche assay had the highest
sensitivity, detecting 65% of early stage and 89% of late stage ovarian cancer cases with a cut-off of
35 U/mL (Figure 1D).

2.2. OPN, MIF and Anti-IL-8 Autoantibody Levels Are Elevated in an Independent Validation Set

OPN, MIF, anti-IL-8 AAb and CA125 levels were measured in an independent validation set of
sera from 71 patients with early stage ovarian cancer, 45 patients with late stage ovarian cancer and
131 healthy participants in the NROSS trial. Patient characteristics are provided in Table 1. OPN was
elevated in 20% of early stage and 16% of late stage disease (Figure 2A). MIF was elevated in 3% of early
stage cases and 7% of late stage cases (Figure 2B). Elevated anti-IL-8 AAb levels were detected 10% of
sera from early stage and 9% from late stage cases (Figure 2C). CA125 was elevated in 78% of early and
98% of late stage cases (Figure 2D). When control values in the validation and discovery sets were
compared, controls in the validation set exhibited higher levels of OPN and MIF, but similar levels of
anti-IL-8 AAb, contributing to the decrease in sensitivity observed for OPN and MIF at 98% specificity.
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Figure 1. Serum levels of osteopontin (OPN), macrophage inhibitory factor (MIF) anti-IL-8 autoantibody
and CA125 are elevated in the discovery set from ovarian cancer patients and healthy controls. (A) OPN
antigen; (B) MIF antigen; (C) anti-IL-8 autoantibodies (AAb) and (D) CA125 antigen. In the upper
panels, each symbol represents the average of duplicate serum samples from individual early stage
ovarian cancer cases (green), late stage ovarian cancer cases (red) or controls (blue). The middle panels
contain a scatter plot where the blue line represents the median value in early and late stage case
and control groups, respectively. The red dashed lines in each plot represent the cut-off value at 98%
specificity for OPN, MIF and anti-IL-8 AAb, and cut-off value of 35 U/mL for CA125. The lower panel
is a table displaying the sensitivity for early and late stage ovarian cancer cases and controls near
98% specificity.
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Figure 2. Serum levels of OPN, MIF anti-IL-8 autoantibody and CA125 are elevated in the validation
set from ovarian cancer patients and healthy controls. (A) OPN antigen; (B) MIF antigen; (C) anti-IL-8
autoantibody and (D) CA125 antigen. In the upper panels, each symbol represents the average of
duplicate serum samples from individual early stage ovarian cancer cases (green), late stage ovarian
cancer cases (red) or controls (blue). The middle panels contain a scatter plot where the blue line
represents the median value in early and late stage case and control groups, respectively. The red
dashed lines in each plot represent the cut-off value at 98% specificity for OPN, MIF and anti-IL-8 AAb,
and cut-off value of 35 U/mL for CA125. The lower panel is a table displaying the sensitivity for early
and late stage ovarian cancer cases and controls near 98% specificity.
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2.3. OPN, MIF and IL-8 Autoantibody Complement CA125 for Detecting Ovarian Cancer

Statistical tests based on bootstrap were used to compare AUCs and partial AUCs (pAUCs) to
identify the most sensitive combination of biomarkers. Early stage cases had significantly different
AUCs between different pairs of models (Table 2).

Table 2. Comparison of AUC and pAUC for biomarker models in the discovery set.

Stage Marker AUC pAUC

Early stage
CA125 0.885

(0.833, 0.937)
0.013

(0.011, 0.015)
CA125 MIF

OPN
0.985 *

(0.974, 0.996)
0.015

(0.012, 0.018)
CA125 MIF

OPN IL8AAb
0.985 #

(0.975, 0.995)
0.015

(0.012, 0.018)

Late stage
CA125 0.969

(0.931, 1.000)
0.018

(0.016, 0.020)
CA125 MIF

OPN
0.999

(0.998, 1.000)
0.019

(0.018, 0.020)
CA125 MIF

OPN IL8AAb
0.999

(0.998, 1.000)
0.019

(0.017, 0.020)

Compared to CA125 alone, * p < 0.001; # p < 0.001.

The model that contained all four biomarkers CA125, OPN, MIF and anti-IL-8 AAb had the
highest AUC = 0.985 (95% CI: 0.975–0.995) which differed significantly (p < 0.001) from the AUC = 0.885
(95% CI: 0.833–0.937) for CA125 alone. Late stage cases also had different AUC values with different
combinations of biomarkers. A combination of CA125, OPN and MIF had the highest AUC = 0.999
(95% CI: 0.998–1.000). When assessing the receiver operating characteristic (ROC) while combining all
four markers, our AUC was 0.985 and 0.999 in early and late stage subjects respectively (Figure 3A,B).
We then applied two models that had shown the best performances (model 1: CA125, OPN and MIF;
model 2: CA125, OPN, MIF and IL-8AAb) to an independent validation data set for early and late
stage samples. The validation models had similar AUC and pAUC (Figure 3C,D and Table 3). In early
stage disease the four-biomarker combination had a significantly higher (p = 0.015) AUC = 0.974 (95%
CI 0.957–0.991) than the AUC = 0.947 (95% CI: 0.915–0.978) for CA125 alone. In the discovery set,
addition of the three biomarkers improved detection of early stage cancers from 65% with CA125 alone
to 82%. In the validation set, the addition of the three biomarkers also improved detection for early
stage disease from 78% with CA125 alone to 85%.

Table 3. Comparison of AUC and pAUC for biomarker models in the validation set.

Stage Marker AUC pAUC

Early stage
CA125 0.947

(0.915, 0.978)
0.015

(0.012, 0.017)
CA125 MIF

OPN
0.955

(0.927, 0.983)
0.015

(0.013, 0.017)
CA125 MIF

OPN IL8AAb
0.974 *

(0.957, 0.991)
0.015

(0.013, 0.017)

Late stage
CA125 0.999

(0.997, 1.000)
0.999

(0.997, 1.000)
CA125 MIF

OPN
1.000

(1.000, 1.000)
1.000

(1.000, 1.000)
CA125 MIF

OPN IL8AAb
1.000

(1.000, 1.000)
1.000

(1.000, 1.000)

Compared to CA125 alone, * p = 0.0153.
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Figure 3. Receiver operating characteristic (ROC) curves for a combination of CA125, OPN, MIF and
anti-IL-8 autoantibody biomarkers. (A) Early stage cases of discovery set. (B) Late stage cases of
discovery set. (C) Early stage cases of validation set. (D) Late stage cases of validation set. A combination
of CA125, OPN, MIF and IL-8 AAb levels had a significantly greater AUC (0.985) than did CA125 alone
in early stage cases of discovery set (AUC = 0.885, p < 0.001). Compare to CA125 alone (AUC = 0.947),
the combination also made a significant difference (AUC = 0.974, p = 0.015) in early stage cases of
validation set.

3. Discussion

In this study we have identified three biomarkers—OPN, MIF and anti-IL-8 AAb—that detect
early stage ovarian cancers missed by CA125. Addition of these three biomarkers to CA125 achieved a
sensitivity of 82–85% for detecting early stage ovarian cancer compared to 65–78% with CA125 alone
in two independent data sets. While OPN and MIF have previously been cited as potential biomarkers
for ovarian cancer [31,32], in this study we have had the opportunity for the first time to evaluate OPN
and MIF in large numbers of patients with early stage disease.

Complementarity between CA125 and OPN, MIF and anti-IL-8 AAb was demonstrated by ROC
analysis of both the discovery set and the validation sets of sera from patients with early stage ovarian
cancer. The added values of the three biomarkers were most readily apparent in the discovery set
where CA125 detected 65% of the cases and the four-biomarker panel 82%. In the validation set,
CA125 alone detected 78% of early stage cases, a much higher fraction than anticipated, decreasing the
apparent impact of other biomarkers. Given the greater sensitivity of CA125 for the serous histotype
of epithelial ovarian cancer, detection of a larger fraction of early stage cancers with CA125 alone
may relate to the larger fraction of serous cancers in the validation set (59%) than in the discovery set
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(36%). Use of the four biomarkers increased detection in the validation set to 85%, but the greatest
contribution was provided by OPN.

OPN is a glycophosphoprotein that is secreted into body fluids by normal osteoblasts, arterial
smooth muscle cells, different epithelial cells, activated T cells and macrophages, but can also be
overexpressed by cancers that arise at different sites, including ovarian cancer [33,34]. Functionally,
OPN can promote ovarian cancer growth in cell culture and in vivo by activating the PI3K/AKT/HIF-1α
signaling pathway; OPN expression positively correlates with clinical stage, histological grade and
lymph node metastasis [35–37]. In earlier studies, we have shown that OPN can be detected in
CA125 negative ovarian cancers at the level of tissue expression, consistent with our observations with
circulating OPN in this report [32].

MIF was one of the first cytokines to be described as a product of activated T lymphocytes that
inhibited the random migration of cultured macrophages [38]. MIF is also a key regulator of immune
and inflammatory responses and is produced by a range of cells and tissues [39]. MIF expression can
increase during the evolution of several malignances [40]. MIF has been implicated in the angiogenic
switch during progression of early cancers and plays a role in macrophage-induced ovarian cancer cell
invasiveness [41,42]. Furthermore, Serum levels of MIF have been used as part of algorithms to detect
disease in women with BRCA1/2 mutations and for distinguishing malignant from benign disease [43].

IL-8, also known as C-X-C motif ligand (CXCL) 8 (CXCL8), is a small soluble protein that belongs to
the CXC chemokine family [44]. Originally identified as a potent neutrophil activator and chemotactic
factor, IL-8 is secreted by activated monocytes and macrophages and is dysregulated in a wide variety of
solid cancers including ovarian cancer [45]. It is reported to contribute to multiple hallmarks of cancer,
including increased proliferation, angiogenesis, invasion, and metastases [46–48]. While circulating
IL-8 was not found to be a useful biomarker for early stage ovarian cancer, anti-IL-8 AAb detected at
least one cancer missed by the other three markers in early and late stage. Why AAb develop against
IL-8 is not well understood.

Previously, we reported that a four-biomarker panel comprising CA125, HE4, CA72-4 and MMP-7
showed strong diagnostic performance and significant improvement over the use of CA125 alone
in distinguishing patients with early stage ovarian cancer from healthy women [49]. In subsequent
studies, MMP-7 failed to detect cases missed by CA125, whereas HE4 and CA72.4 detected 16% of
cases missed by CA125 in the UKCTOCS study [9]. The value of HE4 and CA72.4 were confirmed
in the European Prospective Investigation into Cancer (EPIC) study [50]. Using a Luminex based
assay, however, levels of HE4 were elevated in only 12% of early stage ovarian cancers and 36% of
advanced stage disease. Moreover, the same cases could be identified with OPN, MIF and anti-IL-8
AAb. Among the three additional biomarkers evaluated in this report, OPN was the most robust
for detecting early stage disease in cases missed by CA125. Future studies will evaluate potential
integration of OPN with CA125, HE4 and CA72-4.

4. Materials and Methods

4.1. Patient Serum Samples

A discovery set of preoperative sera from 76 patients with stage I–II and 44 patients with stage
III–IV invasive epithelial ovarian cancer were obtained from the MD Anderson Gynecologic Cancer
Tissue Bank. Sera from 200 healthy controls who had participated in the NROSS were also analyzed.
An independent validation set included preoperative sera from 71 patients with stage I–II ovarian
cancer, 45 preoperative sera from patients with stage III–IV ovarian cancer that had been drawn,
processed and frozen more recently than the discovery set and stored in the same bank. Additional sera
from 131 healthy controls were obtained from participants in the NROSS. This study was approved
by the University of Texas MD Anderson Cancer Center ethical committee on the date 02/11/2019,
ethical code number (LAB02-188). All participants had provided consent for use of samples in ethically
approved studies.
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4.2. Immunoassay Components

MagPlex microspheres, xMAP antibody coupling kits and reagents for the immunoassay were
purchased from Luminex Corp. (Austin, TX, USA). Recombinant human IL-8 (CXCL8) was purchased
from PeproTech (Rocky Hill, NJ, USA). Human MDM2 protein with a His-tag, human PLAT/TPA
protein with 6His-tag, human MYC/c-myc protein and human TACSTD1/EPCAM protein with a His-tag
were obtained from LifeSpan BioSciences, lnc. (Seattle, WA, USA). MYC/DDK-tagged human HOXA7
protein was obtained from Creative Biomart (Shirley, NY, USA). Human Enolase-1 protein (ENO1),
Human Annexin A2 protein (ANXA2), human protein disulfide isomerase (PDI) with his tag, human
heat shock 70 kDa protein (HSPA5) with his tag, human heat shock 70 kDa protein-8 (HSPA8) with his
tag were purchased from ProSpec-Tany TechnoGene Ltd. (Ness–Ziona, Israel). Human Cathepsin-D
protein (CTSD) was obtained from Enzo Life Sciences, lnc. (Farmingdale, NY, USA). Biotin-conjugated
mouse anti-IL-8 antibody and R-phycoerythrin conjugated F (ab’) 2-Donkey anti-Rabbit IgG antibody
were obtained from Invitrogen (Frederick, MD, USA). Biotin-conjugated mouse anti-MDM2 antibody
was purchased from R&D Systems (Minneapolis, MN, USA). Biotin-conjugated rabbit anti-PLAT
antibody was purchased from LifeSpan BioSciences, lnc. Monoclonal mouse anti-c-Myc antibody
was obtained from Thermo Fisher Scientific (Rockford, IL, USA). Biotin-conjugated mouse anti-CTSD
antibody, biotin-conjugated mouse anti-ANXA2 antibody and biotin-conjugated mouse anti-ENO1
antibody were obtained from Novus Biologicals, LLC (Centennial, CO, USA). Biotin-conjugated
mouse anti-HSC70 antibody was purchased from Enzo Life Sciences, Inc. Biotin-conjugated mouse
anti-His antibody was obtained from Abcam (Cambridge, MA, USA). Rabbit anti-Myc-Tag antibody
was purchased from Cell Signal Technology (Boston, MA, USA). Biotin-conjugated goat anti-human
IgG Fcγ fragment and anti-mouse IgG antibody were obtained from were obtained from Jackson
ImmunoResearch (West Grove, PA, USA). Streptavidin-R-phycoerythrin (SAPE) was purchased from
Life Technologies (Carlsbad, CA, USA). R-phycoerythrin (PE) conjugated goat anti-human IgG antibody
was purchased from Southern Biotech (Birmingham, AL, USA).

4.3. Antigen Immunoassays

Enzyme-linked immunosorbent assays (ELISA) for 10 potential ovarian cancer serum markers
(OPN, MIF, Leptin, IL-6, IL-8, TNFa, FGF2, HE4, TGFa, and VEGF) were performed using MILLIPLEX
MAP human circulating cancer biomarker magnetic bead panel kits purchased from MilliporeSigma
(Burlington, MA, USA). The median fluorescent intensity (MFI) was measured by the Luminex MAGPIX
system (Luminex Corp., Austin, TX, USA) with a minimum of 50 beads read per well. The data were
acquired and analyzed by xPONENT software version 4.2 (Luminex Corp.)

4.4. Autoantibody Immunoassays

Immunoassays for detecting AAbs against 12 antigens (IL-8, MDM2, c-MYC, PLAT, EpCAM,
HOXA7, ENO1, PDI, HSPA5, HSPA8, ANXA2, and cathepsin D) were developed using the
MagPlex/xMAP technology (Luminex Corp.). In brief, protein antigens were coupled to one million
microspheres with an xMAP antibody coupling kit as specified by the manufacturer. Coupling
efficiency was confirmed based on the xMAP Cookbook, thirs version (Luminex Corp.). For each assay,
a suspension of antigen–microspheres was prepared by diluting the coupled microsphere stocks (one
million beads/mL) to a final concentration of 50 beads/µL in phosphate buffered saline (PBS) (Corning.
NY. US). Serum samples (2 µL) for assay were diluted in 48 µL PBS buffer. Serum samples were added
to 96-well polystyrene microplates and incubated with protein-coupled microspheres for 1 h at room
temperature with gentle shaking. Beads were washed twice with PBS with 0.05% Tween 20 (Acros
Organics, Geel, Belgium) (PBST) by clipping onto a magnetic plate separator for one minute and the
liquid was discarded. Microspheres were then incubated with biotinylated goat anti-human IgG for
30 min at room temperature protecting from light with gentle shaking. Plates were washed twice
with a PBST buffer and microspheres were incubated with a fluorescence reporter SAPE for 30 min
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at room temperature, protecting from light with gentle shaking. After a final wash, the beads were
re-suspended in a PBS buffer and fluorescence measured on the MAGPIX system with a minimum 50
beads read per well. The data were acquired and analyzed by the xPONENT software version 4.2.

For anti-IL8 assays, conditions were further optimized. A suspension of IL-8 antigen-microspheres
was diluted to a final concentration of 50 beads/µL in assay buffer (AB), which contained 1% bovine
serum albumin (BSA) and 0.05% Tween 20 in PBS. Serum samples (2 µL) for assay were diluted in
198 µL AB, from which was transferred 25 µL diluted sample to 96-well polystyrene microplates and
incubated with 25 µL IL-8-coupled microspheres for 2 h at room temperature with gentle shaking.
Beads were washed twice with AB by clipping onto a magnetic plate separator for one minute and
discarding the liquid. Microspheres were then incubated with 25 µL goat anti-human IgG antibody
with PE (4 ug/mL) for 30 min at room temperature protecting from light with gentle shaking. After a
final wash, the beads were re-suspended in AB and fluorescence measured on the MAGPIX system
with a minimum of 50 beads read per well. The data were acquired and analyzed by xPONENT
software version 4.2.

4.5. CA125 Immunoassay

CA125 levels were assayed with Roche kits on the Elecsys platform (Indianapolis, IN, USA).

4.6. Statistical Analysis

Analysis was performed separately for early and late stage data sets. CA125 detected ovarian
cancer cases with a cut-off of 35 U/mL. Other biomarkers were dichotomized based on cut-offs
that achieved 98% specificity. Logistic regression models were used to assess the discrimination of
combined markers and to assess if adding new biomarkers can have additional benefit to discriminate
cases and controls. AUC, sensitivity at specificity of 98%, and partial AUC (pAUC) were calculated
for each logistic model. Bootstrapping with 1000 bootstrap samples was used to compute 95%
confidence intervals for the AUC and pAUC, as well as P values for testing the differences in these
values. All statistical analyses performed using R software version 3.5.1 (R Foundation for Statistical
Computing, Vienna, Austria).

5. Conclusions

Our study demonstrated that OPN, MIF and IL8 AAb can enhance the sensitivity of CA125 to
distinguish ovarian cancer patients from health controls at high specificity. The development of reliable
panels of tests that can detect cancer at an early and curable stage is worth further investigation.
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