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Abstract

The investigation of associations between rare genetic variants and diseases or phenotypes has two goals. Firstly, the
identification of which genes or genomic regions are associated, and secondly, discrimination of associated variants from
background noise within each region. Over the last few years, many new methods have been developed which associate
genomic regions with phenotypes. However, classical methods for high-dimensional data have received little attention.
Here we investigate whether several classical statistical methods for high-dimensional data: ridge regression (RR), principal
components regression (PCR), partial least squares regression (PLS), a sparse version of PLS (SPLS), and the LASSO are able to
detect associations with rare genetic variants. These approaches have been extensively used in statistics to identify the true
associations in data sets containing many predictor variables. Using genetic variants identified in three genes that were
Sanger sequenced in 1998 individuals, we simulated continuous phenotypes under several different models, and we show
that these feature selection and feature extraction methods can substantially outperform several popular methods for rare
variant analysis. Furthermore, these approaches can identify which variants are contributing most to the model fit, and
therefore both goals of rare variant analysis can be achieved simultaneously with the use of regression regularization
methods. These methods are briefly illustrated with an analysis of adiponectin levels and variants in the ADIPOQ gene.
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Introduction

New methods for the analysis of rare genetic variants are

appearing rapidly. Resequencing efforts are identifying numerous

new variants but the majority of the new variants are seen only in a

very small number of individuals [1]. Hence, the new methods for

rare variants, in general, look for association between phenotypes

and the collection of all rare variants in a defined set, such as all

variants in or near a gene [2].

Hoffman [3], and Lin and Tang [4] framed the goal of rare

variant statistical analysis as a problem of distinguishing which (if

any) of a set of genetic variants are associated with the phenotype.

Let xij be a genotype coding for the jth variant in individual i,

where j~1, . . . p, and i~1, . . . n. For example, xij[(0,1,2) for

additive allele coding. Suppose that a phenotype y is related to a

set of genetic variants by

g mið Þ~a0z
Xp

j~1

bjxij ð1Þ

for an appropriate function g(:), where mi~E½yi� is the mean of yi.

The parameters bj reflect the effect of variant j on the phenotype.

In this framework, therefore, rare variant analysis is used to answer

two questions: (1) Are any of the parameters bj nonzero? (2) If

some parameters are nonzero, which ones?

Usually there are very few individuals carrying the minor allele

at the majority of the identified variants, and therefore it is

extremely challenging to estimate the parameters bj using single

marker tests. Joint analysis of a set of genetic variants has therefore

been proposed as an alternative strategy to get around this issue of

very sparse data. The many proposed methods encompass a wide

variety of approaches [5–7]. Some approaches assume a ‘‘burden’’

hypothesis where the count of rare variants is associated with

increased risk [4,8,9]. Others methods assume an increased

variance of the phenotype or in the risk distribution in the

presence of one or more causal rare variants [9–11]. A third group

examines genotypic or haplotypic similarities between individuals

[9,12].

Conceptually, the problem of how best to model the relation-

ship between a phenotype and a large set of rare genetic variants is

a problem of variable selection (or feature selection) and/or

dimension reduction (or feature extraction) in a sparse covariate

space. There are many well-studied statistical methods for feature
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selection and extraction when the number of predictor variables is

large. However, for the analysis of rare genetic variation, such

approaches have only recently been explored. There were several

groups at the GAW17 workshop in 2010 who implemented feature

extraction or penalization methods, using a wide variety of

different approaches [13–18], and a few other publications have

appeared recently using such methods (e.g. [19–21]). Some groups

first collapsed the rare variants, and then implemented a LASSO

or PLS model using the common variants and the collapsed rare

variants [14,16,21]. Others addressed the question of simultaneous

modelling across multiple regions or genes, combining methods

such as LASSO or PLS first at the gene level, and then across

genes [13,15]. A few publications described innovative approaches

specifically developed for the sequencing context: Ayers et al. [17]

built a LASSO with three custom penalties encouraging different

aspects of shrinkage; Luo et al. [20] combined LASSO with local

linear embedding. Each of these papers featured a different

multiple regression method.

In this paper, we explore whether several classic approaches for

feature selection or extraction (ridge regression (RR) [22], LASSO

[23], principal components regression (PCR) [24], partial least

squares (PLS) regression [25,26], or sparse PLS (SPLS) [27]) can

effectively identify associations between a genetic region and a

continuous trait. Features of the five chosen methods are shown in

Figure 1 and Table 1, respectively. All penalized regression

methods minimize a penalized log-likelihood, so that the

regression coefficients are shrunk toward zero. However, methods

differ in which penalty functions are used. RR uses the L2-norm

penalty, which minimizes the sum of squares of deviations, while

LASSO uses L1-norm penalty, minimizing the absolute value of

the deviations. Since the L1 LASSO shrinks some of the

coefficients to be exactly zero, it can be considered as a variable

selection method (Figure 1). PCR and PLS reduce the dimension

of the variable space by constructing linear combinations of the

original variables, but the methods differ in how the linear

combinations are constructed. In PCR, the transformed variables

are chosen to explain as much variance as possible in the predictor

variable space. In contrast, PLS features are chosen to have high

correlation with the response variable. In both PCR and PLS, the

number of transformed variables or features included in the

regression model must be chosen. Therefore, these methods can be

considered as feature selection methods; the feature selection

occurs in the transformed variable space. A sparse PLS model was

proposed by adding an L1 penalty to PLS regression [27]. In

SPLS, there is variable selection in the original variable space due

to the penalization of the log-likelihood and feature selection in the

transformed variable space when choosing the number of

components in the regression model. Details about and compar-

isons of the various regularization methods may be found in

[28,29] and in Methods.

Since the extreme rarity of most resequencing variants could

lead to computational and inferential challenges with feature

selection and extraction methods, we also implemented and

investigated adaptations of these methods specifically for rare

variant analysis. Each method is implemented using two different

model choice criteria, both with and without our rare variant

adaptation. Using genetic variants identified by Sanger sequencing

on three genes in 1998 individuals, we simulated phenotypes

under a range of models, and then compared the ability to identify

the causal variants using these regression regularization methods.

We have also compared performance with three popular methods

recently developed for rare variant analysis: the weighted count of

Madsen and Browning (WE) [8], the variable threshold method

(VT) [30], and the sequence kernel association test (SKAT) [9].

Many methods have been developed for rare variant analysis; we

chose these methods for comparison since they represent both the

burden methods and the variance-based methods, and have been

shown to have good power [7].

In fact, we show that RR, PLS, LASSO and sparse PLS usually

outperform WE, VT and SKAT as long as the causal variants are

not singletons or extremely rare. Our comparison is timely, since

there is great interest in methods for rare variant detection. One

additional advantage of feature selection methods is that they can

not only identify associations, but can also point towards which

variants are likely the truly-associated ones.

Results

Commonly-used methods for rare variants often pool rare

alleles and fit simple regression models relating the phenotype to

rare allele counts. However, the choice of threshold below which a

variant is pooled or collapsed for rare-variant analysis is, of course,

arbitrary. Although a 1% threshold is the traditional standard for

Figure 1. Characteristics of the regression regularization
methods compared. The methods are characterized by whether
there is variable selection, penalization of parameter estimates, or
dimension reduction.
doi:10.1371/journal.pone.0041694.g001

Table 1. Characteristics of the five regression regularization
methods.

Method Dimension reduction Penalization Variable selection

PCR H { H (on transformed

variables)

PLS H { H (on transformed

variables)

SPLS H L1 H

LASSO { L1 H

RR { L2 |

doi:10.1371/journal.pone.0041694.t001

Multiple Regression for Rare Variant Association
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differentiating between a polymorphism and a mutation [31], this

may not be the optimal threshold for rare variant analysis.

In contrast, we are using multiple regression methods to look for

rare variant associations. The five statistical models for feature

selection and extraction were fit using well-known R packages [32]

(see Methods). However, in each of these models, consideration

must be given to model size. For the penalty methods, this is

achieved by choosing the penalty parameter l. For the feature

extraction methods, we chose the number of features to enter the

model by using three well-known approaches for model selection

or choice, AIC [33], BIC [34] and GIC [35]. (See Methods for

details.)

To combine our chosen multiple regression methods with the

concepts of pooling and collapsing, we propose an approach

motivated by the variable threshold idea [30]. We defined a set of

thresholds for defining rarity, starting at 5% and including all

minor allele frequency observed (MAF) values smaller than this.

For each threshold, we created a new variable that contained the

unweighted count of minor alleles for all variants with MAF below

the threshold, and we then added the entire set of new variables to

the set of variables being analyzed. Hence, we have combined the

feature selection methods with a generalized pooling strategy, and

we have evaluated the performance of these hybrid approaches for

detection of rare genetic variants.

For our evaluations, we used genotype data on three genes

where the exons and flanking regions were Sanger sequenced in

1,998 individuals (courtesy of GlaxoSmithKline (GSK)) [36,37].

We then simulated phenotypes following six simulation scenarios

based on these genotypes. For simplicity, the missing values were

imputed independently at each variant by randomly generating

the missing genotype using the computed MAF. The three genes

sequenced (anonymized data, called genes A, B and C) had

respectively 98, 28 and 122 variant sites.

Continuous phenotypes were generated assuming a normal

distribution N(0,1) among individuals not carrying any causal

genetic variants. From each gene, some rare variants (and possibly

some common variants) were selected to be associated with the

phenotype, and for carriers of these variants, the normal

distributions were shifted. In our first set of simulations (Scenario

set I), the shift is independent of allele frequency; however in a

second set of simulations (Scenario set II), the size of the effect of

the causal variants depends inversely on the MAF. The parameters

used in the simulations are described in Table 2, and more details

about the simulation design are given in Methods.

When fitting the models, a single measure of model fit was

chosen for each method, after choosing all the parameters of the

model (see Methods). Empirical power was calculated by

comparing this test statistic to its distribution under 1000

permutations. In the analysis of permuted data, the parameters

controlling model size and complexity were chosen independently

within each permutation.

Labelling and Nomenclature
Each of our five chosen methods was used to analyze 1000

simulated data sets, and the results are used to calculate empirical

power at significance level a~0:01. Permutation was used to

assess significance for all methods, since the feature selection

inherent in each method will lead to biased estimates of

significance using asymptotic techniques. Using QQ-plots, the

distribution of the empirical p-values under the null hypothesis is

demonstrated in Figure S6 for most of the methods. Variability is

within the expected error bounds. Power comparisons across the

different methods are illustrated in Figure 2 for scenario set I and

gene A, and in Figure 3 for scenario set II and gene C. Additional

results (for genes B and C from Scenario set I, and for genes A and

B from Scenario set II) are in Figures S1, S2, S3, and S4. Results

in numeric form are also given in Table S1 and Table S2.

Methods are colour coded and labelled across the top of each

figure. Several different options were used for fitting each of the

multiple regression methods. For PCR and PLS, models with one

component are denoted ‘‘Comp1’’. The label ‘‘Compk’’ denotes

models with k components, where k represents the number of

features that explained 80% of the variance in the response. For

RR, RR:0 represents ridge regression with l~0, or equivalently

an ordinarily linear regression. RR:10 implies RR with a penalty

parameter of 10. For the LASSO and SPLS methods, the labels

AIC, BIC, or GIC indicate the method used for selecting penalty

parameters. Finally, if the label terminates with ‘‘.p’’, as in

‘‘Comp1.p’’ or ‘‘AIC.p’’, then the pooled rare variant set was

added to the set of predictor variables.

Power Comparisons
With a few exceptions, any of the 5 multiple regression methods

had better power than the three approaches developed specifically

for rare variant analysis (WE, VT, SKAT), and furthermore,

performance was often very similar across different variants of the

multiple regression methods.

Consider first two situations where causal variants had clear

large effects (I.1:Large10 and I.5:Bidirectional in Figure 2 for gene

A, and Figure S2 for gene C). In these scenarios, the best powers of

each of the 5 regularization methods were very comparable. A few

specific choices for feature selection performed poorly: notably

PCR with only one component showed poor power, as did PLS

with one component (particularly when the pooled rare variants

were included in the predictor space). LASSO, RR and SPLS

showed very similar powers, and neither the variable selection

technique nor the addition of pooled predictor variables altered

power in these cases. When the effect size depends on MAF

(Figure 3 and Figure S3), there is comparable performance for all

multiple regression methods (apart from PCR and PLS with one

component), and more power than VT, WE or SKAT.

When the causal variants had smaller effects (I.3:Modest10,

I.4:Modest20 in Figure 2, similar models in Figure 3), there is

slightly more variability between the different multiple regression

methods. The LASSO, in particular, seems to have better power

than other approaches. When 20% of the rare variants were

causal, WE or VT sometimes had good power too.

With a mixture of rare and common variants, the LASSO again

had better power than most other multiple regresion methods.

Comparing this scenario across the three genes for scenario set I

(Figures 2, S1 and S2), WE, VT and PCR had the best power for

gene A but not for genes B and C. It seems that the common

causal variants are aligned with the rare causals such that the first

principal component captures the association identified by the

burden methods.

When the effect size depends on the MAF (Scenario set II), the

relative performances of the multiple regression methods were

similar to Scenario set I; we saw very little alteration in the relative

performances of the various algorithms. The multiple regression

methods continued to perform well in comparison with VT, WE

and SKAT. However, all methods had excellent power for the

models with a mixture of rare and common variants (I.2 and II.2).

This is due to the definition of the effect sizes in this scenario,

where the average effect size was defined across all causal variants

(see Table 2 and Methods).

In scenario I.6 and II.6, only variants with frequency less than

1/1000 were selected as causal. Power is substantially lower in this

situation for all methods and the patterns of performance differ. In

Multiple Regression for Rare Variant Association
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Table 2. Parameters for Simulation Scenarios.

Scenario

Causal rare variant
threshold Direction of effect

Percentage of variants
that are causal

Average effect size in
standard deviations

Scenario set I: Effect size constant across MAF

I.1 Large10 MAF ƒ 0.01 deleterious 10% rare 1.64

I.2 Rare/Common MAF ƒ 0.01 deleterious 4 rare, 4 common 1.64, 0.07

I.3 Modest10 MAF ƒ 0.01 deleterious 10% rare 1

I.4 Modest20 MAF ƒ 0.01 deleterious 20% rare 1

I.5 Birectional MAF ƒ 0.01 7.5% deleterious, 7.5%
protective

15% 1.64, 1.64

I.6 VeryRare MAF ƒ 0.001 deleterious 20% rare 1.64

Scenario set II: Effect size dependent (inversely) on MAF

II.1 Large10 MAF ƒ 0.01 deleterious 10% rare 1.64

II.2 Rare/Common MAF ƒ 0.01 deleterious 4 rare, 4 common 1.64, 0.07

II.3 Modest10 MAF ƒ 0.01 deleterious 10% rare 1

II.4 Modest20 MAF ƒ 0.01 deleterious 20% rare 1

II.5 Birectional MAF ƒ 0.01 7.5% deleterious, 7.5%
protective

15% 1.64, 1.64

II.6 VeryRare MAF ƒ 0.001 deleterious 20% rare 1.64

doi:10.1371/journal.pone.0041694.t002

Figure 2. Test power for gene A with 98 variant sites under simulation scenarios I.1 to I.6. Power is shown for several different methods,
including several options within each of the regularization methods. WE, VT and SKAT are shown in red, PCR in purple, PLS in green, RR in turquoise,
LASSO in royal blue and SPLS in pink. Simulation scenarios are shown in Table 2.
doi:10.1371/journal.pone.0041694.g002
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Scenario set I (Figures 2, S1 and S2), PCR (with one component

and pooled predictors), PLS or RR have better power than

LASSO and SPLS. In addition, VT performs well in this context

for genes B and C. In contrast, when the magnitude of the effect is

inversely dependent on MAF (scenario set II), all the multiple

regression methods perform comparably to or better than VT; in

particular, the LASSO or SPLS with AIC show good perfor-

mance. It is interesting to note that SKAT performed very poorly

in this scenario.

The addition of pooled variables to the predictor space did not

seem to alter power in the simulations using Scenario set I.

However as previously noted, PCR with one component and

pooled predictor variables performed better than other approaches

in scenario I.6:VeryRare, and is presumable capturing the causal

rare variants through one or more of the pooled variables. Since in

most cases, the pooled predictors made no difference, the figures

for Scenario set II do not include pooled predictors.

When effects could act in both directions (I.4) VT and WE did

very poorly, but these approaches are known to look only for

variants acting in one direction [7,11]. In contrast, the power of

SKAT is much better than WE and VT in the bidirectional

situation, since this test looks for changes in variances rather than

means. Nevertheless, the regression-based approaches all have

greater power than SKAT. As the percentage of variants that are

causal increases, it has been shown that SKAT loses power relative

to VT and WE [7], but this parameter has a less important effect

on power than the effect size or the causal MAF distribution.

Gene B contains only 28 variant sites, and as a result the power

for detecting association is low for all methods (Supplemental

Figures S2 and S3). Our multiple regression implementions

perform just as well (or just as poorly) as WE, VT or SKAT for

this gene. Power is slighly better when the model includes a

mixture of both rare and common variants (I.2 and II.2), and then

the multiple regression methods perform better than the rare

variant methods.

Finally, we did not see consistent changes in performance when

comparing variable selection using AIC, BIC or GIC for the

LASSO and SPLS. There are a couple of situations where power

seemed better when using AIC, and other situation were BIC or

GIC appeared to be the best. Given that these power estimates are

based on 1000 simulations, the standard error of the power

estimates is 1.6% or less, depending on the magnitude of the

power.

Causal Variable Identification
After identifying whether a gene is associated with a phenotype,

there is interest in finding which variants are strongly associated.

Pooling and collapsing rare variant methods do not provide this

kind of information. However, parameter estimates from the

LASSO and SPLS methods can be helpful for this inference, since

the final models can be examined to see whether the true causal

Figure 3. Test power for gene C with 122 variant sites under simulation scenarios II.1 to II.6. Power is shown for several different
methods, including several options within each of the regularization methods. WE, VT and SKAT are shown in red, PCR in purple, PLS in green, RR in
turquoise, LASSO in royal blue and SPLS in pink. Simulation scenarios are shown in Table 2.
doi:10.1371/journal.pone.0041694.g003
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variants were selected and retained. Figure 4 demonstrates

whether the truly-associated variants were captured by LASSO

or SPLS in the simulations using Scenario set I, averaged over the

three genes. This figure shows three different aspects of variable

selection. Firstly, the left (pink) bar in each set shows the the

average numbers of variants selected across the 1000 simulations.

In the centre (green) bar of each set is the average number of

causal variants selected by the LASSO and SPLS methods. Finally

the third (purple) bar shows the number of the pooled variables

included in the final models.

AIC variable selection included more variables than BIC or

GIC, for both LASSO and SPLS, and included a large proportion

of the causal variants in each generating model. However, these

AIC methods also selected a large number of non-associated

variants. The number of non-associated variants was much smaller

for BIC or GIC, but as a consequence, many truly-associated

variants were missed. Power does depend on the degree of

penalization, and when there is insufficient penalization or too

many variants in the regression models, the power tends to be

lower (Figure S5). Usually only one or fewer pooled variables were

retained in the models, but occasionally there could be 2 different

pooled variables (with different thresholds) kept in the same model

(Figure 4).

Adiponectin and ADIPOQ
Adiponectin levels are controlled by the ADIPOQ gene, and

genetic variants in this gene are known to influence adiponectin

levels [38]. Therefore, we compared the results for our tests of

association between rare genetic variants at ADIPOQ and

adiponectin in two data sets. The first data set included individuals

from Twins UK data [39,40] who were selected from the extremes

of a pain phenotype; 175 out of 500 samples have available

adiponectin values and had undergone exome sequencing. The

exomes were captured by Nimblegen technologies and were

resequenced by Beijing Genomics Institute (BGI) (unpublished

data); 5 rare variants were identified in the gene and were

analyzed together. The second analysis included 1375 individuals,

again from the Twins UK data who were explicitly genotyped at

two rare variants within ADIPOQ, and the analysis included only

these 2 variants (unpublished data). These two SNPs were

genotyped by Taqman in KBioscience, UK; 113 individuals were

in both analyses.

Table 3 shows the results of the analyses of these two data

sets. For the small data set of 175 individuals, several methods

give rise to estimates of significance near 0.05, but among these,

PCR and RR with a penalty of 10 show the smallest p-values.

The WE method shows no relationship with phenotype in this

context. Three of the 5 SNPs showed some univariate

association with adiponectin. When using SPLS with AIC, all

three of these markers were included in the chosen model. For

LASSO with AIC, two of the three markers were selected.

When using GIC or BIC, the marker with the strongest

univariate significance was always included. In the analysis of

the larger data set, all of the methods showed strong

significance with the minimum possible p-value for 106

permutations, and the p-values obtained are smaller than the

p-values for the comparison methods WE, VT or SKAT. Both

variants were included by the LASSO and SPLS methods.

Discussion

Resequencing efforts identify many extremely rare or private

genetic variants, often of unknown function. Analysis of association

of such variants is difficult due to the sparsity of the data. Although

any statistical inference about an event seen only once is

impossible, we hypothesized that modern multiple regression

methods might be able to find some associations between high-

dimensional sparse data and phenotypes, and we demonstrated

that this is, in fact, the case using Sanger sequencing data on

almost 2000 individuals at three genes. Our analysis of adiponectin

and the ADIPOQ locus confirmed this potential for increased

power using multiple regression methods. Furthermore, we

showed that we have the ability to identify a substantial proportion

of the causal variants within each gene.

Performance of the multiple regression methods was not as good

in a few situations. Dimension reduction methods (PCR, PLS) with

only one component tended to perform poorly. In fact, this could

probably be expected. These methods are normally used together

with a rule for determining the best number of components, and so

choosing only one component is not the normal implementation.

Multiple regression methods also performed poorly in a simulation

where the causal variants were very rare; in that situation there

was a large discrepancy between the frequency of the causal

variants (0.001) and the largest threshold we used for pooling rare

alleles (0.05). Therefore, refining our combined regression and

pooling approach may improve performance in this case. For

example, we could reduce the number of MAF thresholds that we

included, or use counts weighted by the inverse of MAF.

It is difficult to understand why some models would include

multiple pooled variables with different thresholds, as was seen in

Figure 4. Due to the rarity of the variants, many of the pooled

variables may be highly collinear with the original data as well as

with other pooled variables. We believe this is why the

performance of the models with the pooled predictors was so

similar to the performance without this set of variables.

Furthermore, the selection of more than one pooled variable

may also suggest that pooled variables at distinct allele frequency

intervals could be useful.

Since permutations are required, the computational overhead of

some of these regression approaches can be quite high. Supple-

mental Table S3 shows average run times on a 2.8 GHz blade,

and demonstrates that PLS, LASSO and SPLS are much slower

than the other methods. Taking the largest of our 3 genes, the

LASSO would need 108 days of computer time to do an exome-

wide analysis of 20,000 genes, with 1000 permutations. This would

require the use of a processor with multiple compute nodes. In

contrast, for RR, only 27 hours of CPU time would be needed to

use this method with our code. Computation times could be

substantially improved by using an incremental number of

permutations, with more precision for smaller p-values.

It is interesting to speculate on why these methods work. Some

of the rare causal variants in our simulations could have been

observed in up to 20 individuals out of the 2000 in the sample, and

hence there would be adequate power to identify these variants. It

is also possible that the presence of long-range correlation between

variants could provide information to PCR or PLS methods.

Long-range correlation between common and rare variants can

occur due to patterns of ancestral recombinations and co-

occurrence of rare variants in some parts of a gene genealogy

[41]. Power was lower across all methods for the smallest gene, but

this gene contained only 2 variants with MAF over 1%, and so our

strategy may have been unable to capture additional signals

through linkage disequilibrium.

Nevertheless, these multiple regression methods were not

designed for data as sparse as data from resequencing studies.

We therefore proposed augmenting the variable space with new

variables defined by pooling rare variants together. Instead of

choosing a single threshold, we augmented the predictor space by

Multiple Regression for Rare Variant Association
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a set of pooled counts based on a range of thresholds. These

variables would, of course, be highly correlated with each other.

We did not find an improvement in power in most situations when

we added the pooled variables, and we believe that this is due to

the increase in the parameter space, so that the models had more

difficulty identifying the best predictors.

Any division of genetic variants into ‘‘common’’ and ‘‘rare’’ is

arbitrary. Our choice of 5% for the upper threshold of rarity for

pooling may also have an impact on the performance of the

models including pooled variable sets. It would be interesting to

investigate whether considerations of population history could be

used to set more appropriate thresholds distinguishing rare

variants from common ones.

Simulations can be designed to favour one analytic strategy over

another. When we modelled a constant effect of the causal variants

(Scenario set I), as expected the VT method usually outperformed

the WE method. In contrast, in Scenario set II where the effect

depended on MAF, performance of WE was improved. Our

simulations did not explicitly select correlated genetic variants to

be causal, and therefore the dimension reduction approaches of

PCR and PLS would not necessarily be expected to outperform

other approaches. However, the idea that a small percentage of

the rare genetic variants in a gene are causal underlies most of the

methods developed for rare variant analysis, and therefore the

better performance of multiple regression methods is a pleasant

surprise.

All simulations were based on the genotype data from three

Sanger sequenced genes. The variants chosen as causal were

randomly selected for each simulated data set and therefore there

was variability across the simulations in the rarity of the causal

variants. However, evaluation of performance on a larger set of

genotypes may provide additional insight into performance of

these methods.

Predictions of changes in amino acids in proteins, or predictions

of sequence conservation have been used with success to

distinguish potentially causal variation from variation that is

unlikely to be causal [30]. Any of the methods evaluated here

could be combined with such predictions to improve the variable

selections, by implementing an appropriate weighting of the

variants. Similarly, covariates could easily be included into these

Figure 4. Number of variants selected by the LASSO and SPLS methods for Scenario set I. Numbers of variants selected are averaged
across the three genes and across the simulations for AIC, GIC and BIC variable selection techniques. Within each set of three bars, the left (pink) bar
shows the total number of variants selected, the middle (green) bar shows the number of causal variants selected, and the right bar (purple) shows
the number of pooled variables selected.
doi:10.1371/journal.pone.0041694.g004
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multiple regression models. However, our current implementation

measures the strength of the genetic association through a global

model fit statistic; this would therefore need alteration so that the

summary statistic excludes the effects of covariates and focuses

only on the genetic variants.

Theoretically, such methods could simultaneously model all the

genetic variants in more than one gene, such as all variants in a

pathway, or conceivably all exome-identified variants. Genome-

wide simultaneous modeling has been suggested by several

authors, in particular using Bayesian methods [42]. We have not

attempted such models using these multiple regression methods,

however, we anticipate that the penalty needed as a result of the

substantial model selection steps would overwhelm power.

We obtained excellent power over a variety of simulation

scenarios with many of our implementations of these multiple

regression methods. Therefore, the choice of best method may be

partially the preference of the data analyst. PLS or SPLS methods

may be beneficial for modelling jointly covariates and genotypes.

We like ridge regression since it is computationally fast, but where

computation time is less of a concern or the variable selection

aspect is of importance, the LASSO could be an excellent choice

since the power is often slightly better.

Conclusions
Methods developed for high-dimensional data may outperform

other approaches for rare variant analysis. These methods will

simultaneously model the effects of all genetic variants in a gene,

common or rare. Furthermore, unlike collapsing, counting, or

variance-based methods for rare variant association analysis, some

of these regression methods can identify the most likely causal

variants.

Methods

Ethical Statement
The genotype data used for our simulations represents a re-use

of data and no new human interventions were conducted. No

additional IRB approvals were sought for the simulation studies.

The Committee on Ethics in Clinical Research, CHUV, Lausanne

University, Lausanne, Switzerland approved the original protocols

for sample collection for the genotype data used in simulations. All

participants in Twins UK provided informed written consent, and

the research protocol was approved by institutional ethics review

committees at Kings College London. Again, the data used for our

analyses represents a re-use of data that has been previously

analyzed and no further IRB approvals were sought.

Model Details
Suppose we have a sample of n independent individuals who

have been sequenced to identify genetic variation in at least one

candidate gene, and measured for a continuous trait. Assume that

equation (1) describes the true relationship between the phenotype

and genotypes, where the set of genotypes includes all identified

locations that vary between individuals in the sample. We fit

several multiple regression methods including variable selection or

feature extraction methods. These methods have been previously

compared, but not for analysis of rare genetic variants [43]. An R

package (RVtests) containing the implementation of the tests

described below is available from the authors or at www.mcgill.ca/

statisticalgenetics/.

Feature Extraction Methods
In PCR [24], the original predictor variables xj~(x1j , . . . ,xnj)’,

j~1, . . . p, are transformed to principal components that explain

variance in the predictor space, without considering the relation-

ship to the response variable. Specifically, let UDV ’ be the singular

value decomposition of X~fxijg. Then the fitted response for

PCR with k components is ŷy~
Pk

j~1 UjUj’y [29], where Uj is the

jth column of U , and y~(y1, . . . ,yn)’.
In PLS [25,26], orthogonal scores are created that have both

high variance and high correlation with the response, y. Let Tj ,

j~1, . . . ,k, be the orthogonal scores in a PLS model with k
components. Then the fitted response can be written

ŷy~âa0zT1âa1z . . . zTkâak, where âaj~Tj’y=Tj’Tj .

The fitted values for PCR and PLS depend on the number of

components, k, which is also referred to as the size of the model.

Although k is often chosen by the use of cross-validation, in the

rare variant context, we wanted to identify algorithms that are

computationally efficient, and therefore, we compared perfor-

mance for two values of k, k~1, and k�, where k� is chosen so

that 80% of variance in the response is explained by the model.

We also fit models with a large value of K(K~30), but results

were not as good and are not shown. All our simulations were

implemented with the R statistical programming language [32].

We used the R package ‘pls’ [44] for getting the PLS scores, Tj ,

and R function ‘svd’ for calculating the PCR scores, Uj .

L2 Penalization Method (Ridge Regression)
Parameters in RR models [22] are shrunk towards zero by

adding to the regression model a penalty parameter which is a

function of the squared regression coefficients, i.e., L2 norm.

Following the notation used above, where D is a matrix

containing the singular values of X , and Uj are the singular

vectors, the RR fitted response is ŷy~
Pp

j~1 UjUj’yfd2
j =(d2

j zl)g
[29], where dj is the jth diagonal element of D. The penalty

parameter l, where l§0, controls the degree of shrinkage; for

large values of l all parameters become close to zero and the

effective dimension of the model is reduced. In contrast, when

l~0, RR reduces to an ordinary linear regression model.

Results are shown for l~0 and l~10. We also completed

simulations with l~100 but performance was comparable to

l~10 and results are not shown. We used the correlation

between the observed y and the fitted values ŷy, r~cor(y,ŷy), as

our measure of goodness of fit.

Table 3. P-values for association tests between Adiponectin
levels and the ADIPOQ gene.

Method 175 samples, 5 SNPs 1376 samples, 2 SNPs

WE 0.7419 0.0130

VT 0.0736 0.0006

SKAT 0.1596 861026

PCR 0.0158 1026

PLS 0.0290 1026

RR l = 0 0.0290 1026

RR l = 10 0.0780 1026

LASSO 0.0846 1026

SPLS 0.0892 1026

Note: 5|103 and 106 permutations were used for the two datasets,
respectively, to obtain empirical significance levels. PCR and PLS were fitted
using only one component. When multiple components were used, the p-
values were very similar. AIC was used to select model size for LASSO and SPLS.
doi:10.1371/journal.pone.0041694.t003
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Methods Using L1 Penalization
The penalty parameter in LASSO [23] and SPLS [27] can be

chosen by classic model selection criteria [45,46]. Here we used

AIC [33], BIC [34], and GIC [35] to choose this parameter. For

SPLS, a series of models was fit, varying the number of hidden

components k between 1 and 5, as well as the thresholding

parameter g[(0:5,0:6,0:7,0:8,0:9). The best model choice over the

two-way grid of parameter values was chosen by AIC, BIC or

GIC.

To evaluate model performance for LASSO and SPLS, we used

the selected final model F-test p-value as the score measuring

model performance. The R-package ‘glmnet’ was used for LASSO

[47] and the package ‘spls’ for SPLS [27].

Pooling Rare Variants
Let MAFj , j~1, . . . ,p, be the MAF of the j-th variant. For a

chosen threshold MAF0, the set of rare variants can be defined as

the variants j with MAFjƒMAF0, and a pooled rare variant

count is vMAF0
~
P

MAFjƒMAF0
xj , where xj is the number of

minor alleles at variant j. To combine the regression methods with

the concepts of pooling and collapsing, we propose an approach

motivated by the variable threshold idea [30], and so we defined a

set of thresholds for defining rarity, starting at 5% and including all

MAF values smaller than this. Let fvTg be a new set of variables

fvT~
P

MAFjƒT xj ,T~ min (MAFj), . . . ,0:05g that pool rare

variants for a series of possible thresholds, T , on the minor allele

frequency. These new sets of variables were added as possible

predictor variables in the regression models. Since we did not

identify any benefit to including these pooled variables in the set of

predictor variables in Scenario set I, the simulaton results for

Scenario set II are presented without the inclusion of these

additional predictors.

Study Sample
The subjects used in this paper are a subset of the CoLaus study,

a population-based study of 6,188 Lausanne residents aged 35 to

75 years [37].

Sanger Sequencing Data
Sanger sequence data for the exons and flanking regions of

three genes from 1,998 individuals were provided by GlaxoSmith-

Kline (GSK) [36]. Missing values of each rare variant were

imputed independently from others based on the computed MAF,

as in [7]. All non-polymorphic base-pair markers were removed

from the sequence data. The three genes used in our simulations

contained, after removal of monomorphic variants, 98, 28 and 122

variant sites, respectively. Of these, 85, 26 and 99 variants,

respectively, were seen at allele frequencies less than 1%. Coding

lengths for these genes were 4094, 1239 and 1500 base pairs.

Phenotype Simulation
Within each simulation, a proportion of the rare variants was

randomly selected to be causal, depending on the simulation

scenario (Table 2). The threshold for ‘‘rare’’ is given in the second

column of Table 2; all variants with MAF below the threshold

could be chosen to be causal in any simulation. The phenotypes

were generated from a N(0,1) distribution for individuals not

carrying any rare variants. In Scenario set I, for carriers of one or

more rare variants, the phenotype was assumed to be distributed

as N({m,0:2) where the values of m are given in the last column of

Table 2. For Scenario set II, we define the effect of each variant as

bj~
Kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MAFj(1{MAFj)
p for a chosen constant K . This constant

was chosen so that the average effect of all J causal variants,

m~
1

J

X
j
bj , has the values shown in Table 2. For individuals

carrying more than one causal rare variant, the phenotype was

drawn from the normal distribution with mean corresponding to

the most rare causal variant carried by that individual. For

scenarios I.5 or II.5, where the effects could be bidirectional, the

mean m could be either positive or negative. Similar simulation

parameters were used by [7].

Permutations
For each simulated data set, the phenotype data was permuted

relative to all the genotype data and the analysis was repeated. For

each permutation, the analysis included all model fitting steps, so

that variable selection or identification of the best model as a

function of AIC or BIC was repeated for each permutation step.

Using the chosen measure of model fit for each method (described

above), we then compared this statistic between the permuted data

sets and the original simulated data set, and counted the number

of permutations where the model fit statistic was more extreme

than in the original data.

Software
An R package, RVtests, that uses these approaches to test for

rare variant associations, is available from the authors or from

cran-r.project.org.
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