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Abstract: Previous studies described the involvement of extracellular signal-related kinase (ERK) in
systemic fibrotic diseases, but the role of ERK in cutaneous scarring is unknown. Although hypoxia
drives tissue fibrosis by activating hypoxia-inducible factor-1α (HIF-1α), the specific roles of hypoxia
and associated ERK phosphorylation in abnormal fibroblast activity during cutaneous scarring
are unclear. Here, we investigated whether pathologic myofibroblast-like keloid fibroblast activity
is promoted by hypoxia-induced epithelial–mesenchymal transition mediated by ERK activation.
ERK phosphorylation was significantly increased in keloid tissue and fibroblasts. Human dermal
fibroblasts cultured under hypoxia (1% O2) expressed phosphorylated ERK and exhibited activation
of p38 mitogen-activated protein kinase signaling. Hypoxic human dermal fibroblasts showed
increased protein and mRNA levels of epithelial–mesenchymal transition markers. Furthermore,
administration of an ERK inhibitor (SCH772984) reduced the hypoxia-induced elevation of collagen
type I levels in human dermal fibroblasts. Therefore, ERK may be a promising therapeutic target in
profibrogenic diseases.
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1. Introduction

Wound healing normally progresses through coagulation, inflammation, proliferation, and
remodeling phases. However, persistent tissue fibrosis due to abnormal dermal fibroblast activity
and excessive synthesis of extracellular matrix (ECM) components is a common manifestation in
cutaneous scarring [1,2]. Keloids and hypertrophic scars are types of excessive scarring that result from
defects in the normal wound healing process. Keloid fibroblasts (KFs) acquire fibrogenic potential
due to multiple factors, including an anomalous cellular response to mechanical strain, excessive
release of growth factors and inflammatory cytokines, alterations in cellular apoptosis, and occurrence
of the epithelial–mesenchymal transition (EMT) [2–5]. In contrast to normal fibroblasts, KFs gain a
myofibroblast-like phenotype and possess tumor-like properties, and are able to proliferate and invade
into surrounding tissue [6,7]. Despite much scientific and clinical interest, current treatment options
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are often ineffective and produce suboptimal results [1,8]. Thus, a better understanding of pathogenic
wound healing would enable the development of more targeted treatment modalities for cutaneous
scarring and fibrosis.

Previous reports demonstrate that KFs originate from the EMT of epithelial and endothelial
cell components during wound healing [6,9], and keloid tissue shows increased expression of EMT
markers [10]. Studies of progressive lung and kidney fibrosis show that inflammation and hypoxia
promote the induction of EMT [11,12]. Hypoxia-inducible factor (HIF)-1α is a crucial mediator
of cell metabolism, inflammation, and fibrosis under hypoxic conditions. Previous studies report
that ECM accumulation in keloid tissue results from constant hypoxia and that HIF-1α is highly
expressed in keloid tissue [13,14]. Although hypoxia-induced cutaneous fibrosis and the associated
EMT process are known to be involved in keloid formation, the underlying molecular mechanisms are
not well understood.

Transforming growth factor (TGF)-β1 regulates the healing response, and is implicated in
tissue fibrosis and related diseases. Cellular stress activates extracellular signal-regulated kinase
(ERK) [15], which is part of the mitogen-activated protein kinase (MAPK) signaling cascade. Among
the MAPK pathways implicated in TGF-β1 responses [13], aberrant activation of the ERK pathway
has been confirmed in systemic organ fibrosis, with ERK phosphorylation modulating fibroblast
differentiation [16,17]. In tumor models, hypoxia stimulates ERK in different cell types [18], and
hypoxia-induced ERK activation contributes to apoptosis resistance [19]. However, the link between
hypoxia-induced ERK activation and ECM accumulation in cutaneous wound healing has not
been investigated.

We hypothesize that HIF-1α induces abnormal fibroblast activity via activation of the ERK
signaling pathway, thereby leading to abnormal cutaneous scarring. Therefore, we elucidated the
molecular mechanisms of ERK activation in cultured fibroblasts under hypoxia.

2. Results

2.1. p-ERK and HIF-1α Levels Are Elevated in Keloid Tissue and Fibroblasts

We immunohistochemically examined keloid tissue from three patients, and found that
phosphorylated ERK (p-ERK) levels were 2.8-fold higher in keloid tissue than in normal tissue
(Figure 1a). We also measured basal p-ERK levels in different cell types using Western blot analysis,
and found that patient-derived KFs had higher levels of p-ERK than those of normal human dermal
fibroblasts (HDFs; Figure 1b). When we compared the expression of HIF-1α between KFs and HDFs
after 12 h of hypoxia (1% O2), we found that KFs showed more nuclear translocation of HIF-1α
compared with HDFs (Figure 1c).
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Figure 1. Phosphorylated extracellular signal-regulated kinase (p-ERK) levels in keloid tissue and 

fibroblasts. (A) Immunohistochemical analysis showed that the appearance of p-ERK was higher in 

keloid tissue than in adjacent normal tissue. Semi-quantitative analysis using Metamorph image 

analysis software revealed that the p-ERK levels were increased by 2.8-fold in keloid tissue compared 

with normal tissue. 100× magnification, scale bar = 200 μm. ** p < 0.01. (B) Western blot analysis 

showed that patient-derived keloid fibroblasts (KFs) had higher levels of p-ERK than human dermal 

fibroblasts (HDFs). ** p < 0.01. (C) Hypoxia-inducible factor-1α (HIF-1α) nuclear translocation in KFs 

was increased after exposure to 12 h of hypoxia; DAPI (blue), HIF-1α (green), scale bar = 50 μM. 

2.2. Hypoxia Activates TGF-β Signaling and Induces EMT in HDFs 

Next, we investigated the effect of hypoxia on HDFs. Quantitative reverse transcription 

polymerase chain reaction (qRT-PCR) analyses showed increased levels of connective tissue growth 

factor (CTGF), HIF-1α, TGF-β1, and type I collagen mRNA after 48 h of hypoxia, as compared with 

a normoxia control group (Figure 2a–d). TGF-β1 signaling is a pivotal fibrogenic factor that is 

responsible for EMT-like changes and causes abnormal ECM accumulation in keloid tissue [9]. CTGF 

is a fibrogenic cytokine expressed in several cell types, including fibroblasts and smooth muscle cells, 

and is induced by stimulation with TGF-β [20]. Immunofluorescence revealed that type I collagen 

deposition gradually increased for up to 48 h after hypoxia exposure (Figure 2e). These results 

suggest that HIF-1α triggered by hypoxia induces TGF-β1 signaling, leading to CTGF mRNA 

transcription and associated collagen deposition. 

Figure 1. Phosphorylated extracellular signal-regulated kinase (p-ERK) levels in keloid tissue and
fibroblasts. (A) Immunohistochemical analysis showed that the appearance of p-ERK was higher
in keloid tissue than in adjacent normal tissue. Semi-quantitative analysis using Metamorph image
analysis software revealed that the p-ERK levels were increased by 2.8-fold in keloid tissue compared
with normal tissue. 100× magnification, scale bar = 200 µm. ** p < 0.01. (B) Western blot analysis
showed that patient-derived keloid fibroblasts (KFs) had higher levels of p-ERK than human dermal
fibroblasts (HDFs). ** p < 0.01. (C) Hypoxia-inducible factor-1α (HIF-1α) nuclear translocation in KFs
was increased after exposure to 12 h of hypoxia; DAPI (blue), HIF-1α (green), scale bar = 50 µM.

2.2. Hypoxia Activates TGF-β Signaling and Induces EMT in HDFs

Next, we investigated the effect of hypoxia on HDFs. Quantitative reverse transcription polymerase
chain reaction (qRT-PCR) analyses showed increased levels of connective tissue growth factor (CTGF),
HIF-1α, TGF-β1, and type I collagen mRNA after 48 h of hypoxia, as compared with a normoxia control
group (Figure 2a–d). TGF-β1 signaling is a pivotal fibrogenic factor that is responsible for EMT-like
changes and causes abnormal ECM accumulation in keloid tissue [9]. CTGF is a fibrogenic cytokine
expressed in several cell types, including fibroblasts and smooth muscle cells, and is induced by
stimulation with TGF-β [20]. Immunofluorescence revealed that type I collagen deposition gradually
increased for up to 48 h after hypoxia exposure (Figure 2e). These results suggest that HIF-1α
triggered by hypoxia induces TGF-β1 signaling, leading to CTGF mRNA transcription and associated
collagen deposition.
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Figure 2. Effect of hypoxia on transcription factor-beta (TGF-β) signaling and epithelial–mesenchymal 

transition (EMT) marker expression in HDFs. Quantitative reverse transcription polymerase chain 

reaction (qRT-PCR) analyses of (A) HIF-1α, (B) TGF-β1, (C) connective tissue growth factor (CTGF), 

and (D) type I collagen mRNA 48 h after hypoxia exposure, as compared to a normoxia control group. 

(E) The amount of deposited collagen relative to total protein concentration was elevated in HDFs 0, 

12, and 48 h after hypoxia exposure; DAPI (blue), α-SMA (green), type I collagen (red). Results are 

representative of three independent experiments, scale bar = 50 μM. Data are shown as mean ± SD. * 

p < 0.05, ** p < 0.01. 

2.3. The ERK/MAPK Pathway Is Involved in Hypoxia-Induced EMT  

To examine the effect of hypoxia on the expression of HIF-1α in HDFs, cells were cultured under 

hypoxic conditions for varying amounts of time. Hypoxia increased HIF-1α protein levels (Figure 

3a), which peaked after 4 h and returned to basal levels after 24 h (data not shown). Previous reports 

show that MAPK/ERK signaling is activated by hypoxia and that HIF-1α is phosphorylated by an 

ERK-dependent mechanism [19,21]. To determine the downstream effector of HIF-1α activation, we 

examined the effect of hypoxia on ERK phosphorylation in HDFs within a time period of one hour 

using Western blot analysis. ERK phosphorylation gradually increased starting after exposure to 

hypoxia for 5 min (Figure 3b).  

Figure 2. Effect of hypoxia on transcription factor-beta (TGF-β) signaling and epithelial–mesenchymal
transition (EMT) marker expression in HDFs. Quantitative reverse transcription polymerase chain
reaction (qRT-PCR) analyses of (A) HIF-1α, (B) TGF-β1, (C) connective tissue growth factor (CTGF),
and (D) type I collagen mRNA 48 h after hypoxia exposure, as compared to a normoxia control group.
(E) The amount of deposited collagen relative to total protein concentration was elevated in HDFs 0,
12, and 48 h after hypoxia exposure; DAPI (blue), α-SMA (green), type I collagen (red). Results are
representative of three independent experiments, scale bar = 50 µM. Data are shown as mean ± SD.
* p < 0.05, ** p < 0.01.

2.3. The ERK/MAPK Pathway Is Involved in Hypoxia-Induced EMT

To examine the effect of hypoxia on the expression of HIF-1α in HDFs, cells were cultured under
hypoxic conditions for varying amounts of time. Hypoxia increased HIF-1α protein levels (Figure 3a),
which peaked after 4 h and returned to basal levels after 24 h (data not shown). Previous reports
show that MAPK/ERK signaling is activated by hypoxia and that HIF-1α is phosphorylated by an
ERK-dependent mechanism [19,21]. To determine the downstream effector of HIF-1α activation, we
examined the effect of hypoxia on ERK phosphorylation in HDFs within a time period of one hour
using Western blot analysis. ERK phosphorylation gradually increased starting after exposure to
hypoxia for 5 min (Figure 3b).

We next examined the degree of ERK phosphorylation with prolonged exposure to hypoxia.
We also evaluated the levels of activated phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) and
p38 in hypoxic HDFs by Western blot analysis of phosphorylated Protein Kinase B (Akt) (Ser473;
p-Akt), a downstream target of PI3K, and phosphorylated p38 (p-p38). In prolonged hypoxia, p-ERK
levels peaked at 8 h after hypoxia exposure, whereas the total ERK protein level remained unaltered.
We also found that the p-Akt level peaked 4 h after hypoxia exposure. Lastly, the hypoxia-induced
phosphorylation of p38 peaked 8 h after hypoxia exposure (Figure 4).
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Figure 3. The effects of hypoxia on HIF-1α activation and extracellular signal-related kinase (ERK)
phosphorylation in HDFs were analyzed by Western blot. (A) HIF-1α protein levels were increased in
HDFs cultured under hypoxia for the indicated times. Data are shown as mean ± SD. ** p < 0.01 (B)
Phosphorylation levels of ERK under hypoxia were assessed. Graphs show the optical density ratios
between the bands representing the phosphorylated and total protein. Data are shown as mean ± SD.
* p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 4. Involvement of the ERK/mitogen-activated protein kinase (MAPK) pathway in hypoxia-
induced HIF-1α transcription. ERK phosphorylation was noted up to 8 h exposure to hypoxia. The
AKT and p38 pathways were activated upon exposure to hypoxia for 12 h. Graphs show the optical
density ratios between the bands representing the phosphorylated and total protein. Data are shown as
mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001.

2.4. Phenotypic EMT Markers Are Expressed in HDFs under Hypoxia

Hypoxia can induce phenotypic changes in HDFs that are mediated by HIF-1α and TGF-β signaling.
We cultured HDFs under hypoxia for 12 h and evaluated the expression of phenotypic markers of EMT
related to ECM accumulation. We found that the expression of vimentin, which is associated with the
invasive phenotype of fibroblasts [22], as well as α-tubulin showed a gradual increase for up to 48 h
after hypoxia exposure (Figure 5a). The expression of cytoskeletal proteins that contribute to EMT,
including alpha-smooth muscle actin (α-SMA) [9] and actin filament-associated protein 1 (AFAP), were
also increased by hypoxia (Figure 5b). The expression of α-SMA in fibroblast stress fibers contributes
to their increased contractile ability, and is critical to tissue remodeling [23,24]. Additionally, as the
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exposure to hypoxia increases, we observed cortical organization of AFAP representing the increase of
stress fibers in HDF [25]. The increased expression of AFAP can be suggestive of phenotypic change of
HDF to a myofibroblast phenotype in response to hypoxia [24].Int. J. Mol. Sci. 2017, 18, x FOR PEER REVIEW  6 of 15 
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Figure 5. Expression of phenotypic markers of EMT under hypoxia. (A) Immunofluorescence analysis
of vimentin and α-tubulin in HDFs under hypoxia for 12 h. (B) Immunofluorescence analysis of
alpha-smooth muscle actin (α-SMA) and actin filament-associated protein 1 (AFAP) under hypoxia for
12 h; DAPI (blue), vimentin (green, upper), α-SMA (green, lower), α-tubulin (red, upper), AFAP (red,
lower). Results are representative of three independent experiments, scale bar = 50 µM.

2.5. Hypoxia Induces a Phenotypic Switch of Fibroblasts to Myofibroblasts

HIF-1α regulates the expression of genes involved in ECM remodeling, including matrix
metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) [26]. During the
granulation phase of wound healing, activated fibroblasts acquire a myofibroblast phenotype associated
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with increasedα-SMA expression [23]. In cutaneous wound healing, the phenotypic switch of fibroblasts
to myofibroblasts is mediated by the MMP pathway [6]. The hypoxia-induced phenotypic switch
of fibroblasts to myofibroblasts through MMPs/TIMPs is observed in systemic organ fibrosis [26,27].
We examined MMP-9 and MMP-2 production in hypoxic and normoxic fibroblasts. qRT-PCR analysis
showed significant increases in MMP-2 (Figure 6a) and MMP-9 (Figure 6b) expression in HDFs exposed
to hypoxia. The activation of MMPs is regulated by TIMPs, with TIMP-1 being a natural inhibitor of
MMP-9. In keratinocytes, hypoxia increases cell motility via changes in MMP-9/TIMP-1 activity [26].
We found decreased expression of TIMP-1 in hypoxic fibroblasts compared with normoxic controls
(Figure 6c). These results indicate that hypoxia induces changes in the expression of MMP-9 and
TIMP-1 that contribute to collagen remodeling.
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Figure 6. Effect of an ERK-specific inhibitor (SCH 772984) on MMP/TIMP and collagen levels in
hypoxic HDFs. Effect of ERK inhibitor treatment on (A) MMP-2, (B) MMP-9, (C) TIMP-1, and (D) type
1 collagen levels in HDFs cultured with (+) or without (-) under 72 hour-hypoxia exposure or SCH
772984 treatment. Data are shown as mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001.

2.6. ERK Inhibition Reduces Hypoxia-Induced ECM Deposition

ERK signaling controls cellular processes associated with fibrosis and myofibroblast
transformation [28]. Recently developed inhibitors of the ERK pathway can reduce tumor invasion and
organ fibrosis [29]. SCH772984 is a potent inhibitor that selectively prevents ERK1/2 phosphorylation.
Unlike earlier MAPK/ERK-targeting agents, SCH772984 does not bind or inhibit MEK phosphorylation,
and thus selectively targets ERK1/2 phosphorylation [30]. We found that the hypoxia-induced changes
in MMP-2,9 and TIMP-1 levels were inhibited by SCH772984 (Figure 6a–c). Additionally, SCH772984
reduced the transcriptional level of type I collagen by 38.3% in hypoxic HDFs (Figure 6d).

To further demonstrate that hypoxia-induced ERK phosphorylation mediates ECM remodeling,
we analyzed the expression of phenotypical markers of EMT in hypoxia-exposed HDFs using an ERK
inhibitor. The hypoxia-induced increase in AFAP and α-SMA were reduced after treatment with an
ERK inhibitor (Figure 7).
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that phosphorylated ERK is a key mediator in the hypoxia-induced EMT of fibroblasts during wound 

healing. Hypoxia-induced ERK signaling was associated with increased levels of EMT markers, TGF-

Figure 7. Effect of an ERK-specific inhibitor (SCH 772984) on phenotypic markers of EMT under
hypoxia; DAPI (blue), vimentin (green, upper), α-SMA (green, lower), AFAP (red, upper), α-tubulin
(red, lower). (A) Increased expression of AFAP under hypoxia for 12 h were reduced after the treatment
of ERK inhibitors. (B) Increased expression of α-tubulin under hypoxia for 12 h were reduced after the
treatment of ERK inhibitors. Results are representative of three independent experiments, scale bar =

50 µM.

3. Discussion

We examined the downstream molecular mechanisms of cutaneous fibrosis associated with wound
healing by performing an in vitro assay of fibroblasts exposed to hypoxia. Our results suggest that
phosphorylated ERK is a key mediator in the hypoxia-induced EMT of fibroblasts during wound
healing. Hypoxia-induced ERK signaling was associated with increased levels of EMT markers, TGF-β,
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CTGF, and type 1 collagen in HDFs. Thus, ERK phosphorylation is a potential therapeutic target for
cutaneous fibrosis.

Keloid pathogenesis is associated with abnormal fibroblast activity and tissue fibrosis [31] that
involves enhanced fibroblast migration and invasion [32]. Hypoxia stimulates fibroblasts to undergo
proliferation and differentiation, resulting in ECM deposition [11,17]. HIF-1α is a critical mediator of
the EMT process and induces TGF-β and CTGF expression [20]. TGF-β contributes to skin fibrosis
during abnormal cutaneous wound healing [9,33], and CTGF mediates myofibroblast differentiation
and disease progression in kidney and lung fibrosis [34,35]. Moreover, previous reports show increased
HIF-1α and CTGF expression in various conditions involving skin fibrosis [9,20]. In the present study,
we confirmed that hypoxia increases TGF-β and CTGF expression in HDFs. Therefore, our observations
show that hypoxia can induce phenotypic markers of EMT related to ECM accumulation.

MAPK/ERK signaling is involved in both normal wound healing and pathogenic fibrosis. Upon
tissue injury, ERK phosphorylation participates in the transcriptional response to hypoxia, and its
mediators directly contribute to HIF-1α activation. In mesenchymal cells, hypoxia triggers cell
proliferation and the activation of ERK1/2 and AKT [36,37]. We also observed that KFs and keloid tissue
exhibit increased levels of p-ERK, and that hypoxia increases AKT and p38 phosphorylation in HDFs.
There are several reports indicating the PI3K/AKT pathway induces HIF-1α transcription, stabilization,
and recruitment of coactivators [38]. Additionally, p38 MAPK is activated by oxidative stress, and is
involved in cell differentiation, survival, and apoptosis [39]. In tumor models, endogenous p38 MAPK
activity is correlated with cancer cell invasiveness [40]. AmoI g various mediators of cell signaling
triggered by hypoxia, direct phosphorylation of ERK 1/2 is known to affect the nuclear localization and
transcriptional activity of HIF-1α [38].

We observed acute activation of ERK signaling gradually increasing within 30 min of exposure
to hypoxia, which was in concordance with the results of studies of cells from different origins or
diseases [13,41]. In vitro tumor models show that p-ERK is required for TGF-β-induced EMT, and
exogenous TGF-β can cause ERK phosphorylation upon SMAD3 phosphorylation [42,43]. In prolonged
exposure to hypoxia, we observed sustained ERK phosphorylation up to 8 h. Additionally, the activation
of AKT and p38 peaked at 4 and 8 h, respectively, after exposure to hypoxia. AKT plays a major role
in hypoxia-induced HIF-1α activation, yet its regulation is cell-type dependent [44]. In the wound
healing process and associated fibrosis, we observed a similar upregulation pattern of p-AKT [45].
Further studies using AKT inhibitors will be necessary to determine the downstream effects of AKT in
response to hypoxia-induced tissue fibrosis. Therefore, we speculate that prolonged exposure to a
hypoxic microenvironment triggers sequential activation of fibrosis mediators via p-ERK-triggered
HIF-1α activation in cutaneous fibrosis.

To confirm the role of ERK phosphorylation in ECM deposition and skin fibrosis, we treated
hypoxic HDFs with a selective inhibitor of ERK1/2, SCH772984. MEK/ERK signaling is a promising
therapeutic target for cancer stemness and cutaneous fibrosis [27,46]. We found that selective inhibition
of ERK phosphorylation attenuated collagen production and ECM remodeling triggered by HIF-1α,
which was supported by the assessment of MMP and TIMP expression profiles. Moreover, inhibition
of ERK phosphorylation resulted in reduced expression of phenotypic markers of EMT. Therefore,
ERK inhibitors could potentially be clinically applied to treat abnormal fibrosis, and further research is
needed to identify safe candidates.

In conclusion, our results suggest that hypoxia triggers the transition of fibroblasts into myofibroblasts
during cutaneous wound healing. We found that ERK phosphorylation is a critical mediator of
hypoxia-mediated abnormal wound healing, and we provide evidence that selective inhibition of ERK
signaling ameliorates hypoxia-induced fibrogenesis of HDFs. Additional understanding of the role of
ERK signaling in skin fibrosis could help lead to a new clinical approach to treating and preventing
abnormal wound healing.
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4. Materials and Methods

4.1. Cell Culture and Keloid-Derived Fibroblasts

Keloid tissue was collected from three patients with active-stage keloids after obtaining informed
consent in accordance with the Declaration of Helsinki. Normal HDFs and KFs were derived from
patient tissue and purchased from the American Type Culture Collection (Manassas, VA, USA). After
separation, cells were cultured in Dulbecco’s modified Eagle’s medium (Gibco, Grand Island, NY, USA)
to which 10% heat-inactivated fetal bovine serum, actinomycin, penicillin (30 U/mL), and streptomycin
(300 µg/mL) were added. We replaced the culture medium every 2–3 days. Hypoxia exposure was
conducted using Hypoxystation H35 (Don Whitley Scientific, Shipley, UK) with 1% O2, 5% CO2 and
94% N2 at 37 ◦C at specific time points. All experiments were approved (16 May 2017) by the Yonsei
University College of Medicine Institutional Review Board (IRB No. 4-2017-0259).

4.2. Real-Time PCR Analysis

The TRIzol reagent (TaKaRa Sake, Berkley, CA, USA) was used to extract total RNA from cultured
cells according to the manufacturer’s instructions. cDNA was synthesized using a Maxime RT premix
kit (iNtRON Biotechnology, Seongnam, Korea). Real-time PCR was performed with SYBR Green PCR
Master Mix or TaqMan PCR Master Mix (Applied Biosystems, Foster City, CA, USA) using an ABI
detection system (Applied Biosystems, Foster City, CA, USA). Relative differences in gene expression
were calculated (∆∆Ct) and reported as fold induction (2−∆∆Ct). PCR primers are provided in Table 1.

Table 1. Primer lists.

Target Gene Primer Sequences (5′–3′) or Assay ID Reference

E-cadherin Forward: CACCACGGGCTTGGATTTTG
Reverse: TGGGGGCTTCATTCACATCC [47]

N-cadherin Forward: TCAGGCGTCTGTAGAGGCTT
Reverse: ATGCACATCCTTCGATAAGACTG [48]

Vimentin Forward: GACGCCATCAACACCGAGTT
Reverse: CTTTGTCGTTGGTTAGCTGGT [49]

TGF-beta Forward: ACCCACAACGAAATCTATGACA
Reverse: GCTGAGGTATCGCCAGGAAT [50]

HIF1A Forward: ACTCATCCATGTGACCACG
Reverse: TAGTTCTCCCCCGGCTAG [51]

COL1A1 Forward: AAGGTGTTGTGCGATGACG
Reverse: TGGTCGGTGGGTGACTCTG [50]

Beta-actin Forward: CTACCTCATGAAGATCCTCACCGA
Reverse: TTCTCCTTAATGTCACGCACGATT [52]

CTGF Hs00170014_m1
MMP9 Hs00957562_m1
MMP2 Hs01548727_m1
TIMP2 HS00234278_m1
TIMP1 Hs01092512_g1
COL1A1 Hs00164004_m1
Beta-actin Hs01060665_g1

4.3. Western Blotting Analysis

Cells were harvested and lysed in RIPA lysis buffer (Biosesang, Seongnam, Korea) containing a
protease inhibitor (PPI 1015, Quartett, Berlin, Germany), and protein concentrations were determined
using a BCA protein assay (Sigma-Aldrich, St. Louis, MO, USA). Protein (20 µg) was fractionated by
SDS-PAGE and transferred to nitrocellulose membranes. Membranes were immunoblotted with specific
primary antibodies (listed in 4.6. Antibodies and reagents) overnight at 37 ◦C, followed by secondary
antibodies conjugated to horseradish peroxidase. Immunoblots were developed with ECL reagent (Ab
Frontier, Seoul, Korea) and monitored by a luminescence image analyzer (LAS-4000 Mini, Fujifilm Life
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Sciences, Tokyo, Japan). The optical densities of the bands on the developed film were analyzed using
ImageJ software (National Institutes of Health, Bethesda, MD, USA, https://imagej.nih.gov/ij/). Protein
levels were normalized to those of actin or to the ratio of phosphorylated and total isoforms. Relative
quantitation is expressed as fold-induction compared to control conditions.

4.4. Cell Viability Analysis

Normal fibroblasts and KFs were seeded in triplicate at 5000 cells per well in 96-well plates. After
overnight incubation under normoxic or hypoxic conditions, the ERK inhibitor SCH772984 was added
to each well at the indicated concentration. Cell viability was measured using a cell counting kit
(CCK-8; Dojindo, Kumamoto, Japan). At specific time points, 10 µL CCK-8 reagent was added to the
medium in each well, and plates were incubated for 4 h at 37 ◦C. Absorbance was measured at 450 nm
using a microplate reader (Molecular Devices, Sunnyvale, CA, USA).

4.5. Immunohistochemistry

Immunohistochemistry was performed on formalin-fixed, paraffin-embedded skin tissue sections
(4 µm thick). Sections were boiled in 1× citrate buffer (Sigma-Aldrich) for 10 min for antigen unmasking.
Slides were incubated with 3% H2O2 on ice for 10 min, followed by a blocking step using 5% bovine
serum albumin. After washing with phosphate-buffered saline (PBS), a p-ERK primary antibody (1:400)
was applied to deparaffinized slides at 4 ◦C overnight. A DAKO peroxidase/(3,3-diaminobenzidin)
DAB detection kit (DAKO, Carpinteria, CA, USA) was used for detection. Slides were stained with
hematoxylin to visualize nuclei.

4.6. Antibodies and Reagents

p-p38 (9215), p38 (9212), p-ERK (4370), ERK (9102), p-AKT(S473) (4060), and AKT (4691) antibodies
were purchased from Cell Signaling Technology (Danvers, MA, USA). α-SMA (ab7817), collagen 1
(ab34710), HIF-1α (ab179483 for western blot, ab1 for immunofluorescence), alpha tubulin (ab18251),
vimentin (ab 8978), goat anti-mouse IgG H&L (HRP, ab6789), and goat anti-rabbit IgG H&L (HRP,
ab6721) antibodies were purchased from Abcam (Cambridge, UK). AFAP (NBP1-90216) antibody was
purchased from Novus (Littleton, CO, USA). Alexa Fluor 488 goat anti-mouse IgG and Alexa Fluor
555 goat anti-rabbit IgG antibodies were purchased from Invitrogen (Carlsbad, CA, USA). Beta-actin
(sc-47778) was purchased from Santa Cruz Biotechnology (Dallas, TX, USA). SCH772984 was purchased
from Selleckchem (Houston, TX, USA) and stored in 5 mM dimethyl sulfoxide (DMSO) at −20 ◦C.

4.7. Confocal Imaging

Normal fibroblasts were seeded in a 4-well culture slide (SPL, Pocheon, Korea) for 24 h, fixed with
4% paraformaldehyde in PBS for 10 min, permeabilized with 0.2% Triton X-100 in PBS for 5 min at room
temperature, and incubated with blocking solution (0.1% PBS-Tween 20 containing 1% bovine serum
albumin) for 30 min. Primary antibodies (1:500) were applied for 24 h at 4 ◦C. After washing, slides
were incubated with secondary antibodies (1:1000) for 2 h at room temperature in the dark, rinsed, and
counterstained with DAPI (Vector Laboratories Inc., Burlingame, CA, USA). All fluorescence images
were observed under a Zeiss Confocal LSM 700 microscope (Zeiss, Oberkochen, Germany).

4.8. Statistical Analysis

Data are shown as mean ± standard error of the mean (SEM) and were analyzed using paired
t-tests or one-way analysis of variance, with p < 0.05 considered statistically significant. SPSS version
23.0 (SPSS Inc., Chicago, IL, USA) was used for all statistical analyses.
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Abbreviations

AFAP Actin filament associated protein 1
CTGF Connective tissue growth factor
ECM Extracellular matrix
EMT Epithelial-mesenchymal transition
ERK Extracellular signal-regulated kinase
HDF Human dermal fibroblast
HIF-1α Hypoxia-inducible factor-1α
KF Keloid fibroblast
MAPK Mitogen-activated protein kinase
MMP Matrix metalloproteinase
PBS Phosphate-buffered saline
PI3K Phosphatidylinositol-4,5-bisphosphate 3-kinase
TGF-β Transforming growth factor-β
TIMP Tissue inhibitor of metalloproteinases
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