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Abstract: A library of isopulegol-based bi-, tri- and tetrafunctional chiral ligands has been developed
from commercially available (−)-isopulegol and applied as chiral catalysts in the addition of diethylzinc
to benzaldehyde. Michael addition of primary amines towardsα-methylene-γ-butyrolactone, followed
by reduction, was accomplished to provide aminodiols in highly stereoselective transformations.
Stereoselective epoxidation of (+)-neoisopulegol, derived from natural (−)-isopulegol, and subsequent
oxirane ring opening with primary amines afforded aminodiols. The regioselective ring closure
of N-substituted aminodiols with formaldehyde was also investigated. Hydroxylation of
(+)-neoisopulegol resulted in diol, which was then transformed into aminotriols by aminolysis
of its epoxides. Dihydroxylation of (+)-neoisopulegol or derivatives with OsO4/NMO gave
neoisopulegol-based di-, tri- and tetraols in highly stereoselective reactions. The antimicrobial
activity of aminodiol and aminotriol derivatives as well as di-, tri- and tetraols was also explored.
In addition, structure–activity relationships were examined by assessing substituent effects on the
aminodiol and aminotriol systems.
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1. Introduction

In recent years, the discovery of aminodiols and their applications as building moieties of
complex bioactive molecules have attracted significant attention due to their biological activities.
The aminodiol moieties possess a cardiovascular, cytostatic, and antiviral effect [1]. For example,
aristeromycin, first isolated from Streptomyces citricolor, and its modified derivatives belong to
an important group of carbocyclic nucleosides that exhibit a wide range of pharmacological
properties such as antiviral, anticancer and antitoxoplasma activities. Aristeromycin analogues,
in particular, are widely used as antiviral agents against a range of viruses, including the human
immunodeficiency, hepatitis B, herpes simplex, varicella-zoster, influenza and hepatitis C viruses [2–4].
(2R,3R,7Z)-2-Aminotetradec-7-ene-1,3-diol, a new sphingosine derivative of the Caribbean sponge
Haliclona vansoesti, is a potent antimicrobial metabolite [5]. The Abbott aminodiol, found to be a
useful building block for the synthesis of the potent renin inhibitor Zankiren®, and Enalkiren®, was
introduced into the therapy of hypertension [6,7]. Aminodiols can also exert antidepressive activity.
For example, (S,S)-reboxetine, a selective norepinephrine reuptake inhibitor, was approved in many
countries for the treatment of unipolar depression [8], while some aminodiols have been investigated
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as selective antagonists on receptor P2X1 [9]. Other aminodiols may serve as starting materials for the
synthesis of biologically active natural compounds. For example, cytoxazone, a microbial metabolite
isolated from Streptomyces species, is a selective modulator of the secretion of TH2 cytokine [10,11].
Some bicyclic aminodiol-based carbocyclic nucleoside analogues exert antiviral activity [12].

Besides their biological interest, aminodiols have also been applied as starting materials in
asymmetric syntheses or as chiral auxiliaries and ligands in enantioselective transformations [13]. To
develop new, efficient and commercially available chiral catalysts, chiral natural products including
(+)- and (−)-α-pinene [14,15], (+)-carene [16,17], (-)-menthone [18], (−)-fenchone [19], (+)-sabinol [20],
(−)-nopinone [21] or (−)-pulegone [22] can serve as important starting materials for the synthesis of
aminodiols. Monoterpene-based aminodiols have been demonstrated to be excellent chiral auxiliaries
in a wide range of stereoselective transformations including intramolecular radical cyclisation [23],
intramolecular [2+2] photocycloaddition [24] and Grignard addition [25,26].

Monoterpene-based diols or triols have also proved to be good chiral auxiliaries and
catalysts [27,28]. They also possess marked biological properties; e.g., antimicrobial, antifungal
or enzyme inhibitor activities [29–31].

In the present contribution, we report the preparation of a new library of isopulegol-based chiral
bi-, tri- and tetrafunctional synthons, such as aminodiols, aminotriols, di-, tri- and tetraols, starting
from commercially available natural (−)-isopulegol. Our study also involved the evaluation of the
resulting ligands as catalysts in the asymmetric transformation and antimicrobial activity on multiple
bacterial and fungal strains of new isopulegol derivatives.

2. Results

2.1. Synthesis of (−)-α-methylene-γ-butyrolactone 4

The key intermediate (−)-α-methylene-γ-butyrolactone 4 was prepared from commercially
available (−)-isopulegol 1 by oxidizing its hydroxy group, followed by stereoselective reduction of the
resulting carbonyl group providing (+)-neoisopulegol 2. Regioselective allylic hydroxylation of 2 gave
diol 3, which was transformed to 4 by oxidation and ring closure of the obtained γ-hydroxy-substituted
α,β-unsaturated carboxylic acid applying literature methods [32–37] (Figure 1).
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over Pd/C. In order to study the regioselectivity of ring closure of the aminodiol function, we 
attempted to incorporate the hydroxy groups of aminodiols into products with 1,3-oxazine or 1,3-
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Figure 1. Synthesis of (−)-isopulegol-based α-methylene-γ-butyrolactone 4.

2.2. Synthesis of Isopulegol-based Aminodiols

Nucleophilic addition of primary amines to α-methylene-γ-butyrolactone 4 has proved to be an
efficient method for the preparation of a highly diversified library of β-aminolactones 5–8 [38–40].
Treatment of β-aminolactones with LiAlH4 resulted in secondary aminodiols 9–12 [16]. Secondary
aminodiols 9–11 were transformed into primary diol 13 with debenzylation through hydrogenolysis
over Pd/C. In order to study the regioselectivity of ring closure of the aminodiol function, we attempted
to incorporate the hydroxy groups of aminodiols into products with 1,3-oxazine or 1,3-oxazepine
ring [16,22,41]. When aminodiols 9–12 were reacted with HCHO under mild conditions, 1,3-oxazine
14–17 were obtained in highly regioselective ring closure (Scheme 1).
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Epoxidation of 2 with t-BuOOH in the presence of vanadyl acetylacetonate (VO(acac)2) as 
catalyst furnished epoxide 19 in a stereospecific reaction [35,42–44]. Since our earlier results clearly 
demonstrated that substituents at nitrogen of aminodiols exerted definite influence on the efficiency 
of their catalytic activity, aminodiol library 20–23 was prepared by aminolysis of 19 with different 
primary amines and LiClO4 as catalyst [17,41,45,46], whereas exposure of 19 to NaOH furnished 29 
with retention of stereochemistry [47]. Debenzylation via hydrogenolysis of compounds 20–22 over 
Pd/C in MeOH resulted in primary aminodiol 24 in moderate yield. When aminodiols 20–23 were 
treated with HCHO at room temperature, oxazolidines 25–28 were obtained in highly regioselective 
ring closures, similarly to the regioisomeric oxazine analogues (Scheme 2). 

Scheme 1. (i) RNH2 (1 equivalent), dry EtOH, 25 ◦C, 20 h, 60–70%; (ii) LiAlH4 (2 equivalent), dry Et2O,
25 ◦C, 4 h, 74–99%, (iii) 5% Pd/C, H2 (1 atm), 25 ◦C, 24 h, 50%, (iv) 35% HCHO, Et2O, 25 ◦C, 1 h, 64–83%;
(v) 2% OsO4/t-BuOH, 50% NMO/H2O, acetone, 25 ◦C, 24 h, 50%.

Dihydroxylation of 4 with OsO4 and NMO (4-Methylmorpholine N-oxide) furnished 18 in an
acceptable yield [16,22] (Scheme 1). The relative configuration of compound 18 was determined
by means of NOESY (Nuclear Overhauser Effect SpecroscopY) experiments: clear NOE (Nuclear
Overhauser Effect) signals were observed between the OH-7 and H-3 as well as OH-7 and H-4 protons
(Figure 2).
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Figure 2. Determination of the structure of diol 18 by NOESY.

Epoxidation of 2 with t-BuOOH in the presence of vanadyl acetylacetonate (VO(acac)2) as
catalyst furnished epoxide 19 in a stereospecific reaction [35,42–44]. Since our earlier results clearly
demonstrated that substituents at nitrogen of aminodiols exerted definite influence on the efficiency
of their catalytic activity, aminodiol library 20–23 was prepared by aminolysis of 19 with different
primary amines and LiClO4 as catalyst [17,41,45,46], whereas exposure of 19 to NaOH furnished 29
with retention of stereochemistry [47]. Debenzylation via hydrogenolysis of compounds 20–22 over
Pd/C in MeOH resulted in primary aminodiol 24 in moderate yield. When aminodiols 20–23 were
treated with HCHO at room temperature, oxazolidines 25–28 were obtained in highly regioselective
ring closures, similarly to the regioisomeric oxazine analogues (Scheme 2).
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The syn-selective dihydroxylation of compound 2 with OsO4 in the presence of a stoichiometric 
amount of the co-oxidant NMO furnished product 29 as a single diastereomer in moderate yield 
(Scheme 2). The relative configuration of compound 29 was determined by means of NOESY 
experiments: clear NOE signals were observed between the H-9 and H-3, H-4 as well as H-8 and H-
3, H-4 protons (Figure 3). 

Scheme 2. (i) VO(acac)2, 70% t-BuOOH (2 equivalent), dry toluene, 25 ◦C, 12 h, 76%; (ii) RNH2 (2
equivalent), LiClO4 (1 equivalent), MeCN, 70–80 ◦C, 6 h, 40–88%; (iii) 5% Pd/C, H2 (1 atm), MeOH, 25
◦C, 24 h, 72%; (iv) 35% HCHO, Et2O, 25 ◦C, 1 h, 60–70%; (v) 2% OsO4/t-BuOH, 50% NMO/H2O, acetone,
25 ◦C, 24 h, 61%; (vi) triphosgene (0.5 equivalent), dry pyridine (4 equivalent), dry CH2Cl2, 25 ◦C, 2 h,
60%; (vii) LiAlH4 (2 equivalent), dry ether, 25 ◦C, 4 h, 80%, (viii) 3 M NaOH, DMSO, 80 ◦C, 2 h, 60%.

The syn-selective dihydroxylation of compound 2 with OsO4 in the presence of a stoichiometric
amount of the co-oxidant NMO furnished product 29 as a single diastereomer in moderate yield
(Scheme 2). The relative configuration of compound 29 was determined by means of NOESY
experiments: clear NOE signals were observed between the H-9 and H-3, H-4 as well as H-8 and H-3,
H-4 protons (Figure 3).

The structure of compound 29 was confirmed by its five-membered cyclic carbonate 30 synthesized
from 29 by the reaction with triphosgene (Scheme 2) [48]. It is well known that this carbonation reaction
maintains the stereochemical configuration of 29 [49,50]. The stereochemical structure of carbonate 30
was identified by NOESY analyses: characteristic NOE signals were observed between the protons H-8
and H-3, H-4 together with the protons H-10 and H-3, H-4 (Figure 3).

Reduction of 30 with LAH (Lithium aluminum hydride) proceeded smoothly giving 29 in an
excellent yield (Scheme 2). It has been reported that reduction of the cyclic carbonate moiety of 30 with
LAH gave the corresponding diol with the same stereochemical configuration at the carbon atoms as
of the original 29 moiety [51–53].
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2.3. Synthesis of Isopulegol-based Aminotriols

Stereospecific epoxidation of allylic diol 3 with t-BuOOH and VO(acac)2 was successfully applied
to prepare epoxy diol 31 [35,43,44] (Scheme 3). The relative configuration of epoxide 31 was determined
by means of NOESY experiments. Significant NOE signals were shown between the H-8 and H-3, H-4
as well as the H-3 and H-9 protons (Figure 4).

The oxirane ring of 31 was opened with primary amines and LiClO4 as catalyst to give aminotriol
library 32–35 [45,46]. Primary aminotriol 36 was obtained by debenzylation of the corresponding
aminotriols 32–34 under standard condition by hydrogenation in the presence of a Pd/C catalyst.
The synthesis of tetraol 37 was effectively performed by selective dihydroxylation of compound 3 with
the OsO4/NMO system [16,22] (Scheme 3).

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 6 of 19 

 

 
Figure 4. Determination of the structure of epoxide 31 by NOESY. 

The oxirane ring of 31 was opened with primary amines and LiClO4 as catalyst to give aminotriol 
library 32–35 [45,46]. Primary aminotriol 36 was obtained by debenzylation of the corresponding 
aminotriols 32–34 under standard condition by hydrogenation in the presence of a Pd/C catalyst. The 
synthesis of tetraol 37 was effectively performed by selective dihydroxylation of compound 3 with 
the OsO4/NMO system [16,22] (Scheme 3). 

 
Scheme 3. (i) VO(acac)2, 70% t-BuOOH (2 equivalent), dry toluene, 25 °C, 12 h, 80%; (ii) RNH2 (2 
equivalent), LiClO4 (1 equivalent), MeCN, 70−80 °C, 6 h, 60−80%; (iii) 5% Pd/C, H2 (1 atm), MeOH, 25 
°C, 24 h, 72%; (iv) 2% OsO4/t-BuOH, 50% NMO/H2O, acetone, 25 °C, 24 h, 40%. 

2.4. Application of Aminodiol Derivatives and Aminotriols as Chiral Ligands for Catalytic Addition of 
Diethylzinc to Benzaldehyde 

Aminodiol derivatives 9–17 and 20–28 together with aminotriols 32–36 were applied as chiral 
catalysts in the enantioselective addition of diethylzinc to benzaldehyde 38 to form (S)- and (R)-1-
phenyl-1-propanol 39 (Scheme 4). 

 
Scheme 4. Model reaction for enantioselective catalysis. 

The enantiomeric purity of 1-phenyl-1-propanols (S)-39 and (R)-39 was determined by GC on a 
CHIRASIL-DEX CB column using literature methods [14,54]. Low to moderate enantioselectives 
were observed. The results obtained (see Table 1) clearly show that all aminodiol derivatives 
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enantiomer. Aminodiol 10 afforded the best ee value (ee = 60%) with an (R)-selectivity, while 
aminotriol 34 showed the best ee value (ee = 28%) with an (S)-selectivity. Other compounds were also 
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2.4. Application of Aminodiol Derivatives and Aminotriols as Chiral Ligands for Catalytic Addition of
Diethylzinc to Benzaldehyde

Aminodiol derivatives 9–17 and 20–28 together with aminotriols 32–36 were applied as chiral
catalysts in the enantioselective addition of diethylzinc to benzaldehyde 38 to form (S)- and
(R)-1-phenyl-1-propanol 39 (Scheme 4).
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2.4. Application of Aminodiol Derivatives and Aminotriols as Chiral Ligands for Catalytic Addition of 
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Aminodiol derivatives 9–17 and 20–28 together with aminotriols 32–36 were applied as chiral 
catalysts in the enantioselective addition of diethylzinc to benzaldehyde 38 to form (S)- and (R)-1-
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The enantiomeric purity of 1-phenyl-1-propanols (S)-39 and (R)-39 was determined by GC on a 
CHIRASIL-DEX CB column using literature methods [14,54]. Low to moderate enantioselectives 
were observed. The results obtained (see Table 1) clearly show that all aminodiol derivatives 
favoured the formation of the (R)-enantiomer, whereas aminotriols led to the corresponding (S)-
enantiomer. Aminodiol 10 afforded the best ee value (ee = 60%) with an (R)-selectivity, while 
aminotriol 34 showed the best ee value (ee = 28%) with an (S)-selectivity. Other compounds were also 
examined but their selectivities were less than 10% when applied as chiral ligands. 

Scheme 4. Model reaction for enantioselective catalysis.

The enantiomeric purity of 1-phenyl-1-propanols (S)-39 and (R)-39 was determined by GC on
a CHIRASIL-DEX CB column using literature methods [14,54]. Low to moderate enantioselectives
were observed. The results obtained (see Table 1) clearly show that all aminodiol derivatives favoured
the formation of the (R)-enantiomer, whereas aminotriols led to the corresponding (S)-enantiomer.
Aminodiol 10 afforded the best ee value (ee = 60%) with an (R)-selectivity, while aminotriol 34 showed
the best ee value (ee = 28%) with an (S)-selectivity. Other compounds were also examined but their
selectivities were less than 10% when applied as chiral ligands.

Table 1. Addition of diethylzinc to benzaldehyde, catalyzed by aminodiol derivatives and aminotriols.

Entry Ligand Yield a (%) ee b (%) Configuration c

1 9 90 18 (R)
2 10 92 60 (R)
3 11 95 43 (R)
4 12 95 17 (R)
5 22 97 18 (R)
6 25 93 37 (R)
7 32 86 19 (S)
8 34 87 28 (S)
9 35 80 16 (S)

a After silica column chromatography. b Determined using the crude product by GC (Chirasil-DEX CB column). c

Determined by comparing the tR of GC analysis and optical rotations with literature data [14,54].

2.5. Antimicrobial Effects

Since several aminodiols [5], as well as polyols [29–31], exerted antimicrobial activities on various
bacterial and fungal strains, antimicrobial activities of the prepared aminodiol analogues and polyols



Int. J. Mol. Sci. 2019, 20, 4050 7 of 19

were also tested against two yeasts as well as two Gram-positive and two Gram-negative bacteria
(Table 2, only the outstanding results are shown). Compounds 10 and 20 inhibited over 20% against
the applied Gram-negative bacteria, while other derivatives showed weak activities. Furthermore,
11 showed an inhibition activity over 40% for P. aeruginosa, while it had no effect against E. coli.
All compounds presented low to moderate inhibitions against the Gram-positive bacteria in the range
of 5%–55% and 9%–35% for B. subtilis and S. aureus, respectively. In the case of B. subtilis, 24 showed
much more potential antimicrobial activity, while for S. aureus, 18 and 29 proved to be the most effective
agents. In the yeast assays, only 24 exhibited moderate inhibition against C. albicans, whereas significant
effects were observed against C. krusei almost in all cases reaching up to 50% with analogue 16.

Table 2. Antimicrobial activities of the synthesized compounds.

Inhibitory Effect (%) ± RSD (%)

Yeast Gram-negative Gram-positive

Analogue Conc.
(µg/mL) C. albicans C. krusei E. coli P. aeruginosa B. subtilis S. aureus

9
10 − 38.2 ± 4.2 − − − −

100 − 41.8 ± 1.2 24.8 ± 1.3 − − −

10
10 − − 21.1 ± 8.0 − − −

100 − − 25.8 ± 10.1 19.5 ± 0.5 − −

11
10 0.2 ± 0.9 0.9 ± 0.5 − 22.6 ± 2.1 18.4 ± 0.7 8.5 ± 0.6

100 2.2 ± 2.3 3.3 ± 4.7 0.2 ± 1.8 41.6 ± 12.2 21.0 ± 7.5 9.8 ± 4.0

12
10 − − − 5.4 ± 0.3 − 8.5 ± 6.3

100 − − − 14.3 ± 4.5 − 9.4 ± 5.4

13
10 − − − − 26.1 ± 8.3 24.5 ± 15.6

100 − 40.4 ± 2.4 − − 42.9 ± 20.0 25.2 ± 1.1

14
10 − 8.4 ± 4.1 − 3.2 ± 7.1 − −

100 − 6.7 ± 2.0 25.6 ± 2.1 4.4 ± 5.8 − 12.6 ± 4.5

15
10 − 1.9 ± 0.7 − 8.6 ± 2.5 − 3.6 ± 1.4

100 − 2.8 ± 4.2 18.0 ± 1.8 20.1 ± 0.2 − 10.4 ± 1.5

16
10 − − − 4.4 ± 5.8 − −

100 − 48.9 ± 0.1 15.7 ± 1.7 8.4 ± 5.1 4.6 ± 12.5 −

17
10 − − − 15.2 ± 10.4 − −

100 − 33.1 ± 0.4 8.5 ± 2.06 16.7 ± 7.2 − −

18
10 − − − − 16.9 ± 17.7 34.4 ± 11.7

100 − − − − 27.1 ± 16.0 34.2 ± 2.6

20
10 − − − 2.0 ± 0.9 10.6 ± 6.4 −

100 4.1 ± 1.6 − 35.4 ± 0.8 19.9 ± 4.8 11.5 ± 1.3 19.7 ± 7.2

24
10 − 34.6 ± 3.3 − − 47.6 ± 10.6 30.0 ± 2.0

100 23.6 ± 1.2 37.8 ± 3.6 − − 55.1 ± 19.9 33.9 ± 4.0

29
10 − − − − − 32.4 ± 4.1

100 − − − − 21.2 ± 5.2 34.7 ± 6.6

32
10 − − − − − −

100 − − − − − 24.6 ± 11.9

10 − − − − 14.9 ± 13.8 31.2 ± 7.9
36 100 39.9 ± 4.1 − − 43.1 ± 2.6 33.3 ± 2.1

37
10 − − − − − 31.6 ± 15.1

100 − 26.8 ± 7.9 − − 40.9 ± 16.6 32.8 ± 8.2

Comparing the antimicrobial activities of the two families of aminodiols, our results suggest that
both 3-aminomethyl-1,4-diols 9–13 and 4-amino-1,3-diols 20–24 have moderate antifungal activity
against C. krusei and Gram-negative and Gram-positive bacteria. An interesting difference was observed
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between 1,3-oxazines and oxazolidines. Namely, oxazines 14–17 possess moderate antifungal and
antibacterial activity, whereas oxazolidines 25–28 proved ineffective.

Polyols 29 and 37 have antibacterial effect only against the examined Gram-positive bacteria.
From aminotriol library only primary aminotriol 36 has substantial antifungal and antibacterial effect.
In contrast, N-substitution led to the loss of antimicrobial activity.

3. Discussion

Starting from the commercially available (−)-isopugeol, a new family of isopulegol-based chiral
aminodiol and aminotriol libraries were prepared through chiral (+)-neoisopulegol as key intermediate
via stereoselective transformations. Moreover, isopulegol-based chiral di-, tri- and tetraols, promising
chiral substrates for the synthesis of chiral crown ethers were synthesized.

The resulting aminodiols exert moderate antimicrobial action on a panel of bacterial and fungal
strains. The in vitro pharmacological studies have clearly shown that these primary aminodiols have
significant microbiological effects. In addition, aminodiol and aminotriol derivatives were applied
as chiral catalysts in the enantioselective addition of diethylzinc to benzaldehyde with moderate but
significantly opposite stereoselectivity.

4. Materials and Methods

4.1. General Methods

Commercially available compounds were used as obtained from suppliers (Molar Chemicals
Ltd, Halásztelek, Hungary; Merck Ltd., Budapest, Hungary and VWR International Ltd., Debrecen,
Hungary), while applied solvents were dried according to standard procedures. Optical rotations were
measured in MeOH at 20 ◦C with a Perkin-Elmer 341 polarimeter (PerkinElmer Inc., Shelton, CT, USA).
Chromatographic separations and monitoring of reactions were carried out on Merck Kieselgel 60
(Merck Ltd., Budapest, Hungary). Elemental analyses for all prepared compounds were performed on
a Perkin-Elmer 2400 Elemental Analyzer (PerkinElmer Inc., Waltham, MA, USA). GC measurements for
direct separation of commercially available enantiomers of isopulegol to determine the enantiomeric
purity of starting material 1 and separation of O-acetyl derivatives of enantiomers were performed on
a Chirasil-DEX CB column (2500 × 0.25 mm I.D.) on a Perkin-Elmer Autosystem XL GC consisting
of a Flame Ionization Detector (Perkin-Elmer Corporation, Norwalk, CT, USA) and a Turbochrom
Workstation data system (Perkin-Elmer Corp., Norwalk, CT, USA). Melting points were determined
on a Kofler apparatus (Nagema, Dresden, Germany) and are uncorrected. 1H- and 13C-NMR were
recorded on Brucker Avance DRX 500 spectrometer [500 MHz (1H) and 125 MHz (13C), δ = 0 (TMS)].
Chemical shifts are expressed in ppm (δ) relative to TMS as the internal reference. J values are given by
Hz. Supplementary material, all 1H/13C NMR spectra, in addition to NOESY, also 2D-HMBC and
2D-HMQC spectra are involved in Supporting Information file.

4.2. Starting Materials

(−)-Isopulegol 1 is available commercially from Merck Co with ee = 95%. (+)-Neoisopulegol
2, diol 3 and (−)-α-methylene-γ-butyrolactone 4 were prepared according to literature procedures,
and all spectroscopic data were similar to those described therein [35]. The nucleophilic addition of
α-methylene-γ-butyrolactone to amines were carried out according to our literature procedures with
all spectroscopic data of compounds 5–7 being consistent with literature values [38].

(3S,3aS,6R,7aS)-3-((Isopropylamino)methyl)-6-methylhexahydrobenzofuran-2(3H)-one (8)

Yield: 70%, white crystals, m.p.: 192–195 ◦C. [α]20
D = +42.0 (c 0.22, MeOH). 1H NMR (500 MHz,

CDCl3): δ = 0.91 (3H, d, J = 6.5 Hz), 0.95–1.01 (2H, m), 1.20–1.26 (1H, m), 1.47 (6H, d, J = 6.5 Hz),
1.53–1.54 (1H, m), 1.67–1.70 (1H, m), 1.82–1.92 (1H, m), 2.22 (1H, d, J = 15.0 Hz), 2.72–2.76 (1H, m),
3.12–3.16 (1H, m), 3.22–3.26 (1H, m), 3.41–3.47 (1H, m), 3.62 (1H, q, J = 6.4 Hz), 4.60 (1H, d, J = 2.0 Hz),
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8.69 (1H, brs), 10.04 (1H, brs). 13C NMR (125 MHz, CDCl3): δ = 18.9, 19.4, 21.9, 23.2, 26.1, 31.6, 35.7,
37.5, 40.5, 45.0, 51.5, 79.5, 177.1. Anal. Calcd for C13H23NO2: C, 69.29; H, 10.29; N, 6.22. Found: C,
69.30; H, 10.27; N, 6.25.

4.3. General Procedure for Reduction with LiAlH4

To a stirred suspension of LiAlH4 (8 mmol) in dry ether (16 mL), a solution of compounds 5–8
(4 mmol) in dry ether (20 mL) was added at 0 ◦C. The reaction mixture was stirred for 4 h at room
temperature, while the reaction progress was monitored by TLC. A mixture of H2O (1.0 mL) and THF
(10 mL) was then added dropwise with cooling. The inorganic material was filtered off and washed
with Et2O (for compounds 9–12) or EtOAc (for compound 29). The filtrate was dried (Na2SO4) and
evaporated to dryness. The crude product was purified by column chromatography on silica gel using
CHCl3:MeOH = 9:1 (for compounds 9–12) or n-hexane:EtOAc = 1:4 (for compound 29).

4.3.1. (1S,2S,5R)-2-((S)-1-(Benzylamino)-3-hydroxypropan-2-yl)-5-methylcyclohexanol (9)

Yield: 98%, white crystals, m.p.: 101–103 ◦C. [α]20
D = +8.0 (c 0.29, MeOH). 1H NMR (500 MHz,

CDCl3): δ = 0.86 (3H, d, J = 6.4 Hz), 0.88–0.94 (1H, m), 1.05–1.10 (1H, m), 1.32–1.36 (1H, m), 1.40–1.43
(1H, m), 1.53–1.58 (1H, m), 1.66–1.73 (2H, m), 1.78–1.87 (2H, m), 2.78 (1H, dd, J = 3.8, 12.1 Hz), 2.87 (1H,
dd, J = 5.7, 12.2 Hz), 3.60 (1H, q, J = 7.7 Hz), 3.72–3.75 (1H, m), 3.77 (2H, s), 3.94 (1H, s), 7.25–7.34 (5H,
m). 13C NMR (125 MHz, CDCl3): δ = 22.5, 25.2, 26.2, 35.4, 42.1, 42.3, 43.7, 49.1, 54.2, 64.6, 66.5, 127.5,
128.5, 128.7, 138.8. Anal. Calcd for C17H27NO2: C, 73.61; H, 9.81; N, 5.05. Found: C, 73.65; H, 9.80;
N, 5.10.

4.3.2. (1S,2S,5R)-2-((S)-1-Hydroxy-3-(((R)-1-phenylethyl)amino)propan-2-yl)-5-methylcyclohexanol (10)

Yield: 74%, colorless oil. [α]20
D = +33.0 (c 0.26, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.85 (3H,

d, J = 6.5 Hz), 0.82–0.95 (1H, m), 1.05–1.10 (1H, m), 1.25–1.29 (1H, m), 1.39 (3H, d, J = 6.6 Hz), 1.42–1.48
(1H, m), 1.57–1.59 (1H, m), 1.68 (1H, d, J = 12.9 Hz), 1.78–1.87 (2H, m), 2.57 (1H, dd, J = 4.9, 12.1 Hz),
2.76 (1H, dd, J = 5.6, 12.1 Hz), 3.16 (2H, brs), 3.57 (1H, q, J = 7.4 Hz), 3.71–3.75 (2H, m), 3.96 (1H, s),
7.24–7.35 (5H, m). 13C NMR (125 MHz, CDCl3): δ = 22.5, 23.8, 25.1, 26.1, 35.3, 41.9, 42.4, 43.8, 48.3, 59.0,
65.3, 66.8, 126.8, 127.4, 128.7, 144.3. Anal. Calcd for C18H29NO2: C, 74.18; H, 10.03; N, 4.81. Found: C,
74.20; H, 10.05; N, 4.85.

4.3.3. (1S,2S,5R)-2-((S)-1-Hydroxy-3-(((S)-1-phenylethyl)amino)propan-2-yl)-5-methylcyclohexanol (11)

Yield: 74%, white crystals, m.p.: 144–146 ◦C. [α]20
D = −16.0 (c 0.25, MeOH). 1H NMR (500 MHz,

CDCl3): δ = 0.86 (3H, d, J = 6.3 Hz), 0.88–0.94 (1H, m), 1.06 (1H, t, J = 12.5 Hz), 1.30–1.34 (1H, m), 1.39
(3H, d, J = 6.6 Hz), 1.38–1.42 (1H, m), 1.56–1.64 (2H, m), 1.71–1.74 (1H, m), 1.75–1.90 (2H, m), 2.60 (1H,
dd, J = 6.0, 12.2 Hz), 2.66 (1H, dd, J = 3.3 Hz, 12.2 Hz), 3.11 (2H, brs), 3.58 (1H, q, J = 3.0 Hz), 3.69–3.72
(2H, m), 3.86 (1H, s), 7.26–7.35 (5H, m). 13C NMR (125 MHz, CDCl3): δ = 22.5, 23.7, 25.4, 26.2, 35.4,
42.0, 42.2, 44.1, 47.0, 58.9, 64.5, 66.2, 126.8, 127.5, 128.7, 144.2. Anal. Calcd for C18H29NO2: C, 74.18; H,
10.03; N, 4.81. Found: C, 74.15; H, 10.00; N, 4.79.

4.3.4. (1S,2S,5R)-2-((S)-1-Hydroxy-3-(isopropylamino)propan-2-yl)-5-methylcyclohexanol (12)

Yield: 99%, white crystals, m.p.: 155–160 ◦C. [α]20
D = +18.0 (c 0.275, MeOH). 1H NMR (500 MHz,

CDCl3): δ = 0.85 (3H, d, J = 6.4 Hz), 0.85–0.95 (1H, m), 1.09 (1H, t, J = 12.8 Hz), 1.43 (6H, dd, J = 5.9,
11.6 Hz), 1.41–1.54 (3H, m), 1.72–1.79 (2H, m), 1.91 (1H, d, J = 13.3 Hz), 2.17 (1H, s), 3.25–3.30 (2H,
m), 3.71 (1H, t, J = 9.9 Hz), 3.85–3.87 (1H, m), 4.06 (1H, s), 8.96 (1H, brs), 9.04 (1H, brs). 13C NMR
(125 MHz, CDCl3): δ = 19.1, 19.5, 22.3, 24.8, 25.9, 35.0, 41.0, 42.1, 42.2, 43.6, 51.3, 62.1, 65.6. Anal. Calcd
for C13H27NO2: C, 68.08; H, 11.87; N, 6.11. Found: C, 68.10; H, 11.90; N, 6.15.
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4.4. General Procedure of Epoxidation

To a stirred pale red solution of 9 or 31 (5.87 mmol) and vanadyl acetylacetonate (10 mg) in
dry toluene (30 mL) t-BuOOH (70% solution in H2O, 11.8 mmol) dried briefly (Na2CO3) was added
dropwise at 25 ◦C. The red colour of the solution darkened during the addition then faded to brownish
yellow. Stirring was continued (12 h), whereupon KOH (9.8 mmol) in brine (25 mL) was added.
The mixture was extracted with toluene (3 × 100 mL) and the organic layer was washed with brine
before drying (Na2SO4) and evaporation. Compounds 10 and 32 were isolated after flash column
chromatography (n-hexane:EtOAc = 4:1 for 10 and n-hexane:EtOAc = 1:1 for 32).

4.4.1. (1S,2R,5R)-5-Methyl-2-((S)-2-methyloxiran-2-yl)cyclohexanol (19)

Yield: 76%, white crystals, m.p.: 38–41 ◦C. [α]20
D = +69.0 (c 0.25, MeOH). All spectroscopic data of

compound 19 was consistent with literature data [35,42].

4.4.2. (1S,2R,5R)-2-((R)-2-(Hydroxymethyl)oxiran-2-yl)-5-methylcyclohexanol (31)

Yield: 80%, colorless oil. [α]20
D = +36.0 (c 0.275, MeOH). 1H NMR (500 MHz, CDCl3): δ= 0.77 (3H,

d, J = 6.3 Hz), 0.81–0.86 (1H, m), 1.00 (1H, t, J = 12.9 Hz), 1.26 (1H, d, J = 12.4 Hz), 1.43–1.46 (1H, m),
1.60–1.72 (4H, m), 2.67 (2H, dd, J = 4.5, 19.8 Hz), 3.18 (1H, d, J = 11.7 Hz), 3.81 (1H, d, J = 11.7 Hz), 4.04
(1H, s), 4.14 (1H, s), 4.62 (1H, brs). 13C NMR (125 MHz, CDCl3): δ = 22.0, 22.1, 25.6, 34.4, 41.7, 45.5,
50.4, 61.6, 63.2, 68.0. Anal. Calcd for C10H18O3: C, 64.49; H, 9.74. Found: C, 64.45; H, 9.70.

4.5. General Procedure for Ring-Opening of Epoxide with Primary Amines

To a solution of epoxide 10 or 32 (2.94 mmol) in MeCN (30 mL) was added a solution of the
appropriate amine (5.88 mmol) in MeCN (10 mL) and LiClO4 (2.94 mmol). The mixture was kept
at reflux temperature for 4 hours. When the reaction completed (indicated by TLC), the mixture
was evaporated to dryness, the residue was dissolved in water (15 mL) and extracted with CH2Cl2
(3 × 50 mL). The combined organic phase was dried (Na2SO4), filtered and concentrated. The crude
product was purified by column chromatography on silica gel with an appropriate solvent mixture
(CHCl3:MeOH = 19:1). Purification by recrystallization from a mixture of n-hexane:Et2O resulted in
compounds 20–23 or 32–35, respectively.

4.5.1. (1S,2R,5R)-2-((S)-1-(Benzylamino)-2-hydroxypropan-2-yl)-5-methylcyclohexanol (20)

Yield: 40%, white crystals, m.p.: 146–148 ◦C. [α]20
D = +15.0 (c 0.27, MeOH). 1H NMR (500 MHz,

CDCl3): δ = 0.83 (3H, d, J = 6.4 Hz), 0.83–0.93 (1H, m), 0.95–1.03 (1H, m), 1.07–1.17 (1H, m), 1.31 (3H, s),
1.50 (1H, d, J = 12.4 Hz), 1.64 (1H, d, J = 12.5 Hz), 1.70–1.80 (2H, m), 1.89 (1H, brs), 2.78 (1H, t, J = 11.4
Hz), 2.95 (1H, t, J = 10.6 Hz), 3.29 (1H, brs), 3.74 (1H, s), 3.92–3.96 (1H, m), 4.49–4.53 (2H, m), 6.89 (1H,
brs), 7.42 (5H, s), 10.2 (1H, s). 13C NMR (125 MHz, CDCl3): δ = 21.8, 21.9, 25.6, 29.6, 35.0, 42.2, 50.2,
51.2, 51.3, 65.2, 71.6, 129.5, 129.8, 130.2, 130.4. Anal. Calcd for C17H27NO2: C, 73.61; H, 9.81; N, 5.05.
Found: C, 73.65; H, 9.80; N, 5.10.

4.5.2. (1S,2R,5R)-2-((S)-2-Hydroxy-1-(((R)-1-phenylethyl)amino)propan-2-yl)-5-methylcyclohexanol (21)

Yield: 43%, white crystals, m.p.: 118–119 ◦C. [α]20
D = +5.0 (c 0.295, MeOH). 1H NMR (500 MHz,

CDCl3): δ = 0.85 (3H, d, J = 6.3 Hz), 0.84–0.89 (2H, m), 1.05–1.15 (2H, m), 1.25–1.33 (1H, m), 1.28 (3H, s),
1.52 (1H, d, J = 9.3 Hz), 1.63–1.65 (1H, m), 1.70–1.88 (3H, m), 1.79 (3H, s), 2.56 (1H, s), 2.97 (1H, s), 4.06
(1H, brs), 4.26 (1H, s), 4.59 (1H, s), 6.99 (1H, s), 7.30–7.50 (5H, m), 10.3 (1H, s). 13C NMR (125 MHz,
CDCl3): δ = 20.7, 21.8, 22.0, 25.8, 29.8, 35.1, 42.3, 50.3, 51.1, 59.4, 65.4, 71.6, 127.9, 129.6, 129.9, 135.8.
Anal. Calcd for C18H29NO2: C, 74.18; H, 10.03; N, 4.81. Found: C, 74.20; H, 10.05; N, 4.80.
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4.5.3. (1S,2R,5R)-2-((S)-2-hydroxy-1-(((S)-1-phenylethyl)amino)propan-2-yl)-5-methylcyclohexanol (22)

Yield: 43%, white crystals, m.p.: 160–161 ◦C. [α]20
D = −9.0 (c 0.255, MeOH). 1H NMR (500 MHz,

CDCl3): δ = 0.87 (3H, d, J = 6.3 Hz), 0.87–0.95 (1H, m), 1.04 (1H, t, J = 14.5 Hz), 1.19 (3H, s), 1.34 (2H, d,
J = 10.5 Hz), 1.42 (3H, d, J = 6.87 Hz), 1.59–1.68 (1H, m), 1.75–1.77 (1H, m), 1.90–1.97 (1H, m), 2.36 (1H,
d, J = 12.1 Hz), 2.54 (1H, d, J = 12.1 Hz), 3.73 (1H, q, J = 6.6 Hz), 4.29 (1H, s), 7.26–7.36 (5H, m). 13C
NMR (125 MHz, CDCl3): δ = 22.1, 22.4, 23.1, 26.0, 29.0, 35.6, 42.3, 52.3, 52.7, 58.5, 64.6, 74.1, 126.6, 127.5,
128.8, 143.9. Anal. Calcd for C18H29NO2: C, 74.18; H, 10.03; N, 4.81. Found: C, 74.15; H, 10.02; N, 4.85.

4.5.4. (1S,2R,5R)-2-((S)-2-Hydroxy-1-(isopropylamino)propan-2-yl)-5-methylcyclohexanol (23)

Yield: 88%, yellow oil. [α]20
D = +20.0 (c 0.245, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.87 (3H, d,

J = 6.1 Hz), 0.95–1.01 (1H, m), 1.16 (1H, t, J = 13.3 Hz), 1.35 (3H, d, J = 6.5 Hz), 1.39 (3H, s), 1.389 (3H,
d, J = 6.8 Hz), 1.30–1.53 (3H, m), 1.59 (1H, d, J = 12.0 Hz), 1.78–1.87 (3H, m), 2.91 (1H, t, J = 11.1 Hz),
2.97–3.03 (1H, m), 3.39 (1H, quin, J = 6.0 Hz), 3.85 (1H, brs), 4.54 (1H, s), 6.37 (1H, s), 9.77 (1H, s). 13C
NMR (125 MHz, CDCl3): δ =19.1, 19.6, 22.0, 22.2, 25.8, 29.6, 35.1, 42.1, 49.0, 51.0., 51.2, 65.3, 71.6. Anal.
Calcd for C13H27NO2: C, 68.08; H, 11.87; N, 6.11. Found: C, 68.10; H, 11.85; N, 6.13.

4.5.5. (S)-3-(Benzylamino)-2-((1R,2S,4R)-2-hydroxy-4-methylcyclohexyl)propane-1,2-diol (32)

Yield: 60%, colorless oil. [α]20
D = +20.0 (c 0.26, MeOH). 1H NMR (500 MHz, DMSO-d6): δ = 0.81

(3H. d, J = 6.3 Hz), 0.80–0.87 (1H, m), 1.01 (1H, t, J = 13.2 Hz), 1.30–1.38 (2H, m), 1.50 (1H, t, J = 7.8 Hz),
1.63 (1H, d, J = 12.5 Hz), 1.67–1.77 (2H, m), 2.85 (1H, dd, J = 12.8, 21.0 Hz), 3.32 (1H, d, J = 11.4 Hz),
3.41 (1H, d, J = 11.3 Hz), 4.11 (1H, q, J = 12.8 Hz), 4.98 (1H, s), 7.41–7.47 (5H, m). 13C NMR (125 MHz,
DMSO-d6): δ = 21.0, 22.1, 25.3, 34.6, 41.8, 45.6, 48.4, 50.8, 64.3, 66.0, 73.7, 128.7, 128.8, 129.9, 132.4. Anal.
Calcd for C13H27NO3: C, 69.59; H, 9.28; N, 4.77. Found: C, 69.60; H, 9.25; N, 4.82.

4.5.6. (S)-2-((1R,2S,4R)-2-Hydroxy-4-methylcyclohexyl)-3-(((R)-1-phenylethyl)amino)propane-1,2-diol (33)

Yield: 60%, colorless oil. [α]20
D = +10.0 (c 0.24, MeOH). 1H NMR (500 MHz, DMSO-d6): δ = 0.81

(3H, d, J = 6.3 Hz), 0.80–0.85 (1H, m), 1.01 (1H, t, J = 12.9 Hz), 1.10–1.15 (1H, m), 1.19–1.23 (1H, m), 1.49
(1H. d, J = 12.5 Hz), 1.55 (3H, d, J = 6.7 Hz), 1.54–1.58 (1H, m), 1.67–1.75 (2H, m), 2.54 (1H, d, J = 13.0
Hz), 2.83 (1H, d, J = 12.7 Hz), 3.27 (1H, d, J = 11.3 Hz), 4.12 (1H, s), 4.32 (1H, d, J = 6.3 Hz), 5.03 (1H,
s), 5.11 (1H, brs), 6.05 (1H, brs), 7.39–7.50 (5H, m), 8.72 (1H, brs), 9.40 (1H, brs). 13C NMR (125 MHz,
DMSO-d6): δ = 19.0, 21.2, 22.1, 25.3, 34.6, 41.7, 45.6, 46.7, 57.5, 64.1, 66.2, 73.9, 127.9, 128.9, 129.0, 137.1.
Anal. Calcd for C18H27NO3: C, 70.32; H, 9.51; N, 4.56. Found: C, 70.35; H, 9.55; N, 4.52.

4.5.7. (S)-2-((1R,2S,4R)-2-Hydroxy-4-methylcyclohexyl)-3-(((S)-1-phenylethyl)amino)propane-1,2-diol (34)

Yield: 80%, colorless oil. [α]20
D = +3.0 (c 0.235, MeOH). 1H NMR (500 MHz, DMSO-d6): δ = 0.83

(3H, d, J = 6.2 Hz), 0.82–0.92 (1H, m), 1.04 (1H, t, J = 12.9 Hz), 1.31–1.44 (2H, m), 1.49–1.55 (1H, m), 1.54
(3H, d, J = 6.8 Hz), 1.65 (1H, d, J = 12.5 Hz), 1.70–1.79 (2H, m), 2.56 (1H, d, J = 12.7 Hz), 2.73 (1H, d,
J = 12.7 Hz), 3.27 (1H, d, J = 11.3 Hz), 3.33 (1H, s), 4.19 (1H, s), 4.33 (1H, q, J = 6.6 Hz), 5.02 (1H, s),
7.39–7.53 (5H, m). 13C NMR (125 MHz, DMSO-d6): δ = 19.4, 21.2, 22.1, 25.4, 34.6, 41.8, 45.6, 47.1, 57.5,
64.3, 66.0, 73.7, 127.7, 128.9, 137.2. Anal. Calcd for C18H27NO3: C, 70.32; H, 9.51; N, 4.56. Found: C,
70.30; H, 9.48; N, 4.60.

4.5.8. (S)-2-((1R,2S,4R)-2-Hydroxy-4-methylcyclohexyl)-3-(isopropylamino)propane-1,2-diol (35)

Yield: 75%, colorless oil. [α]20
D = +15.0 (c 0.29, MeOH). 1H NMR (500 MHz, DMSO-d6): δ = 0.83

(3H, d, J = 6.2 Hz), 0.83–0.90 (1H, m), 1.05 (1H, t, J = 12.8 Hz), 1.20 (6H, d, J = 6.3 Hz), 1.40–1.47 (2H, m),
1.54–1.57 (1H, m), 1.65–1.80 (3H, m), 2.86 (1H, dd, J = 12.8, 25.4 Hz), 3.25 (1H, quin, J = 6.4 Hz), 3.43
(1H, d, J = 11.3 Hz), 4.19 (1H, s), 5.03 (1H, s). 13C NMR (125 MHz, DMSO-d6): δ = 18.2, 18.8, 21.2, 22.1,
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25.4, 34.7, 42.0, 45.6, 46.0, 50.0, 64.3, 65.7, 73.7. Anal. Calcd for C13H27NO3: C, 63.64; H, 11.09; N, 5.71.
Found: C, 63.63; H, 11.05; N, 4.75.

4.6. General Procedure for Ring Closure with Formaldehyde

To a solution of aminodiols 9–12 or 20–23 (1.8 mmol) in 5 mL Et2O was added 20 mL of 35%
aqueous formaldehyde and the mixture was stirred at room temperature. After 1 h, it was made
alkaline with 10% aqueous KOH (20 mL) and extracted with Et2O (3 × 50 mL). After drying (Na2SO4)
and solvent evaporation crude products 14–17 or 25–28 were purified by column chromatography
(CHCl3:MeOH = 19:1).

4.6.1. (1S,2S,5R)-2-((S)-3-Benzyl-1,3-oxazinan-5-yl)-5-methylcyclohexanol (14)

Yield: 64%, colorless oil. [α]20
D = −4.0 (c, 0.285 MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.86 (3H,

d, J = 6.4 Hz), 0.86–0.94 (1H, m), 1.07 (1H, t, J = 12.6 Hz), 1.25–1.33 (2H, m), 1.56–1.62 (1H, m), 1.70–1.73
(1H, m), 1.75–1.90 (3H, m), 2.64 (1H, s), 2.85 (1H, s), 3.58–3.67 (3H, m), 3.90 (2H, d, J = 7.4 Hz), 4.13 (1H,
s), 4.32 (1H, d, J = 8.2 Hz), 7.25–7.33 (5H, m). 13C NMR (125 MHz, CDCl3): δ = 22.5, 24.5, 26.0, 35.3,
42.3, 44.7, 52.3, 57.4, 65.9, 72.1, 85.0, 127.6, 128.6, 129.3, 136.6. Anal. Calcd for C18H27NO2: C, 74.70; H,
9.40; N, 4.84. Found: C, 74.73; H, 9.37; N, 4.85.

4.6.2. (1S,2S,5R)-5-Methyl-2-((S)-3-((R)-1-phenylethyl)-1,3-oxazinan-5-yl)cyclohexanol (15)

Yield: 65%, colorless oil. [α]20
D = +11.0 (c 0.28, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.84 (3H,

d, J = 6.3 Hz), 0.84–0.89 (1H, m), 1.03 (1H, t, J = 12.8 Hz), 1.15–1.27 (2H, m), 1.41 (3H, d, J = 6.6 Hz),
1.42–1.50 (1H, m), 1.65–1.70 (1H, m), 1.70–1.85 (3H, m), 2.43 (1H, s), 2.65 (1H, s), 3.66 (1H, s), 3.71 (1H,
s), 3.85 (1H, d, J = 8.2 Hz), 4.00 (1H, s), 4.11 (1H, brs), 4.54 (1H, d, J = 5.4 Hz), 7.26–7.36 (5H, m). 13C
NMR (125 MHz, CDCl3): δ = 20.2, 22.5, 24.3, 26.0, 35.3, 42.2, 44.5, 49.7, 59.8, 65.8, 71.9, 83.5, 127.6, 127.7,
128.6. Anal. Calcd for C19H29NO2: C, 75.21; H, 9.63; N, 4.62. Found: C, 75.25; H, 9.60; N, 4.65.

4.6.3. (1S,2S,5R)-5-Methyl-2-((S)-3-((S)-1-phenylethyl)-1,3-oxazinan-5-yl)cyclohexanol (16)

Yield: 65%, colorless oil. [α]20
D = −22.0 (c 0.27, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.88 (3H,

d, J = 6.4 Hz), 0.91–0.99 (1H, m), 1.11 (1H, td, J = 1.9, 12.9 Hz), 1.25–1.30 (1H, m), 1.35–1.45 (1H, m), 1.43
(3H, d, J = 6.7 Hz), 1.70–1.80 (3H, m), 1.90 (2H, d, J = 12.0 Hz), 2.60 (1H, brs), 3.14 (1H, d, J = 8.7 Hz),
3.54 (1H, s), 3.64 (1H, s), 3.72 (1H, d, J = 10.2 Hz), 3.79 (1H, d, J = 8.6 Hz), 4.22 (1H, s), 4.26 (1H, d, J =

8.2 Hz), 7.23–7.33 (5H, m). 13C NMR (125 MHz, CDCl3): δ = 20.3, 22.5, 24.9, 26.1, 35.5, 42.2, 45.5, 49.5,
60.5, 65.8, 72.1, 83.8, 127.4, 127.5, 128.7, 142.5. Anal. Calcd for C19H29NO2: C, 75.21; H, 9.63; N, 4.62.
Found: C, 75.20; H, 9.65; N, 4.65.

4.6.4. (1S,2S,5R)-2-((S)-3-Isopropyl-1,3-oxazinan-5-yl)-5-methylcyclohexanol (17)

Yield: 83%, colorless oil. [α]20
D = −2.0 (c 0.20, MeOH). 1H NMR (500 MHz, CDCl3): δ = 13C NMR

(125 MHz, CDCl3): δ = 0.85 (3H, d, J = 6.4 Hz), 0.85–0.90 (1H, m), 0.90–0.97 (1H, m), 1.06–1.11 (1H, m),
1.09 (3H, d, J = 4.7 Hz), 1.10 (3H, d, J = 4.8 Hz), 1.19–1.30 (3H, m), 1.40–1.45 (1H, m), 1.72–1.75 (3H, m),
1.80–1.90 (2H, m), 2.55–2.75 (1H, m), 2.83 (1H, quin, J = 6.4 Hz), 2.90 (1H, d, J = 11.1 Hz), 3.79 (2H, s),
3.98 (1H, s), 4.22 (1H, s), 4.45 (1H, d, J =7.7 Hz). 13C NMR (125 MHz, CDCl3): δ = 18.6, 18.8, 22.5, 25.0,
26.1, 29.8, 35.6, 42.2, 45.8, 47.3, 51.2, 65.7, 72.2, 82.8. Anal. Calcd for C14H27NO2: C, 69.66; H, 11.27; N,
5.80. Found: C, 69.70; H, 9.29; N, 4.78.

4.6.5. (1S,2R,5R)-2-((S)-3-Benzyl-5-methyloxazolidin-5-yl)-5-methylcyclohexanol (25)

Yield: 60%, colorless oil. [α]20
D = +29.0 (c 0.24, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.86 (3H,

d, J = 6.4 Hz), 0.85–0.90 (1H, m), 1.00–1.05 (1H, m), 1.33 (3H, s), 1.33–1.38 (2H, m), 1.52–1.56 (1H, m),
1.73 (1H, d, J = 12.8 Hz), 1.82–1.92 (2H, m), 2.06 (1H, d, J = 9.4 Hz), 3.35 (1H, d, J = 9.3 Hz), 3.53 (1H, d,
J = 12.6 Hz), 3.73 (1H, d, J = 12.6 Hz), 3.90 (1H, s), 4.26 (1H, s), 4.57 (1H, s), 5.80 (1H, brs), 7.26–7.34 (5H,
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m). 13C NMR (125 MHz, CDCl3): δ = 22.4, 23.1, 26.2, 27.2, 35.3, 41.8, 51.1, 56.5, 58.9, 65.4, 84.9, 85.8,
127.8, 128.7, 128.9, 136.9. Anal. Calcd for C18H27NO2: C, 74.70; H, 9.40; N, 4.84. Found: C, 74.68; H,
9.35; N, 4.80.

4.6.6. (1S,2R,5R)-5-Methyl-2-((S)-5-methyl-3-((R)-1-phenylethyl)oxazolidin-5-yl)cyclohexanol (26)

Yield: 65%, colorless oil. [α]20
D = +3.0 (c 0.30, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.84 (3H, d,

J = 6.5 Hz), 0.83–0.89 (1H, m), 1.02 (1H, td, J = 2.0, 12.2 Hz), 1.19–1.30 (2H, m), 1.26 (3H, s), 1.29–1.43
(2H, m), 1.36 (3H, t, J = 6.1 Hz), 1.66 (1H, d, J = 12.8 Hz), 1.80–1.92 (2H, m), 2.92 (1H, d, J = 7.8 Hz), 3.30
(1H, d, J = 4.8 Hz), 4.20 (1H, s), 4.30 (1H, s), 4.91 (1H, s), 5.94 (1H, brs), 7.27–7.37 (5H, m). 13C NMR
(125 MHz, CDCl3): δ = 22.4, 22.5, 22.9, 26.1, 27.3, 35.3, 41.8, 51.2, 58.0, 63.4, 65.4, 85.0, 85.4, 127.0, 127.8,
129.0, 143.0. Anal. Calcd for C19H29NO2: C, 75.21; H, 9.63; N, 4.62. Found: C, 75.19; H, 9.65; N, 4.63.

4.6.7. (1S,2R,5R)-5-Methyl-2-((S)-5-methyl-3-((S)-1-phenylethyl)oxazolidin-5-yl)cyclohexanol (27)

Yield: 65%, colorless oil. [α]20
D = +28.0 (c 0.20, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.88 (3H,

d, J = 6.3 Hz), 0.89–1.08 (1H, m), 1.05 (1H, t, J = 12.8 Hz), 1.34 (3H, s), 1.41 (3H, d, J = 7.7 Hz), 1.37–1.42
(2H, m), 1.62–1.70 (1H, m), 1.75–1.82 (1H, m), 1.85–1.95 (2H, m), 2.04 (1H, d, J = 8.4 Hz), 3.27 (1H,
s), 3.59 (1H, d, J = 7.3 Hz), 3.77 (1H, s), 4.26 (2H, s), 7.26–7.34 (5H, m). 13C NMR (125 MHz, CDCl3):
δ = 22.5, 23.2, 26.3, 27.2, 35.4, 41.8, 51.2, 57.3, 62.6, 65.4, 85.2, 85.5, 126.7, 127.8, 129.0, 143.2. Anal. Calcd
for C19H29NO2: C, 75.21; H, 9.63; N, 4.62. Found: C, 75.25; H, 9.60; N, 4.60.

4.6.8. (1S,2R,5R)-2-((S)-3-Isopropyl-5-methyloxazolidin-5-yl)-5-methylcyclohexanol (28)

Yield: 70%, colorless oil. [α]20
D = +14.0 (c 0.25, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.84 (3H,

d, J = 6.4 Hz), 0.85–0.92 (1H, m), 1.00–1.06 (1H, m), 1.05 (3H, d, J = 6.2 Hz), 1.10 (3H, d, J = 6.3 Hz), 1.30
(3H, s), 1.32–1.37 (2H, m), 1.52–1.61 (1H, m), 1.71–1.74 (1H, m), 1.77–1.87 (2H, m), 1.91 (1H, d, J = 9.1
Hz), 2.40 (1H, quin, J = 6.2 Hz), 3.37 (1H, d, J = 9.1 Hz), 3.89 (1H, s), 4.22 (1H, s), 4.73 (1H, s), 6.17 (1H,
brs). 13C NMR (125 MHz, CDCl3): δ = 21.7, 21.9, 22.5, 23.1, 26.2, 27.1, 35.4, 41.9, 51.4, 52.2, 56.8, 65.3,
84.8, 85.0. Anal. Calcd for C14H27NO2: C, 69.66; H, 11.27; N, 5.80. Found: C, 69.70; H, 11.25; N, 4.84.

4.7. General Procedure for Debenzylation

To a suspension of palladium-on-carbon (5% Pd, 0.22 g) in MeOH (50 mL) was added aminodiols
9–11, 20–22 or aminotriols 32–34 (14.0 mmol) in MeOH (100 mL), and the mixture was stirred under
a H2 atmosphere (1 atm) at room temperature. After completion of the reaction (as monitored by
TLC, 24 h), the mixture was filtered through a Celite pad and the solution was evaporated to dryness.
The crude products were recrystallized in diethyl ether, resulting in primary aminodiols 13 and 24 or
aminotriol 36, respectively.

4.7.1. (1S,2S,5R)-2-((S)-1-Amino-3-hydroxypropan-2-yl)-5-methylcyclohexanol (13)

Yield: 50%, colorless oil. [α]20
D = +21.0 (c 0.25, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.85 (3H,

d, J = 5.8 Hz), 0.90–0.95 (1H, m), 1.10 (1H, t, J = 12.3 Hz), 1.24 (1H, s), 1.35–1.45 (2H, m) 1.58 (1H, t, J =

12.0 Hz), 1.60–1.87 (5H, m), 2.85–3.00 (2H, m), 3.42 (4H, brs), 3.60–3.70 (1H, m), 3.70–3.80 (1H, m), 3.98
(1H, s). 13C NMR (125 MHz, CDCl3): δ = 22.5, 24.7, 26.2, 35.4, 40.9, 42.0, 42.4, 44.7, 62.8, 63.7, 66.7. Anal.
Calcd for C10H21NO2: C, 64.13; H, 11.30; N, 7.48. Found: C, 64.15; H, 11.28; N, 7.50.

4.7.2. (1S,2R,5R)-2-((S)-1-Amino-2-hydroxypropan-2-yl)-5-methylcyclohexanol (24)

Yield: 72%, white crystals, m.p.: 139–140 ◦C. [α]20
D = +12.0 (c 0.295, MeOH). 1H NMR (500 MHz,

DMSO-d6): δ = 0.82 (3H, d, J = 6.3 Hz), 0.78–0.87 (1H, m), 1.01 (1H, t, J = 12.6 Hz), 1.17 (3H, s), 1.30–1.33
(1H, m), 1.45–1.48 (2H, m), 1.70–1.75 (3H, m), 2.62 (1H, d, J = 12.8 Hz), 2.92 (1H, d, J = 12.9 Hz), 4.10
(1H, s), 4.95 (1H, s). 13C NMR (125 MHz, DMSO-d6): δ = 20.9, 22.3, 25.1, 25.4, 34.8, 42.6, 45.1, 49.7, 64.4,
71.0. Anal. Calcd for C10H21NO2: C, 64.13; H, 11.30; N, 7.48. Found: C, 64.15; H, 11.28; N, 7.50.
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4.7.3. (S)-3-Amino-2-((1R,2S,4R)-2-hydroxy-4-methylcyclohexyl)propane-1,2-diol (36)

Yield: 72%, colorless oil. [α]20
D = +22.0 (c 0.275, MeOH). 1H NMR (500 MHz, DMSO-d6): δ = 0.82

(3H, d, J = 6.3 Hz), 0.82–0.88 (1H, m), 1.02 (1H, t, J = 13.2 Hz), 1.45–1.50 (3H, m), 1.67–1.74 (3H, m),
2.78–2.87 (2H, m), 3.31–3.47 (2H, m), 4.12 (1H, s), 4.89 (1H, brs), 5.14 (1H, brs), 5.37 (1H, brs), 7.65 (3H,
s). 13C NMR (125 MHz, DMSO-d6): δ = 20.6, 22.2, 25.4, 34.7, 45.5, 42.2, 45.2, 64.5, 65.8, 73.2. Anal. Calcd
for C10H21NO3: C, 59.08; H, 10.41; N, 6.89. Found: C, 59.10; H, 10.45; N, 6.85.

4.8. General Procedure for Dihydroxylation

To a solution of compounds 2–4 (14 mmol) in acetone (60 mL), an aqueous solution of NMO
(12 mL, 50% aqueous solution) and a solution of OsO4 in t-BuOH (6 mL, 2% t-BuOH solution) were
added in one portion. The reaction mixture was stirred at room temperature for 24 h, and then
quenched by the addition of a saturated aqueous solution of Na2SO3 (100 mL) and extracted with
EtOAc (3 x 80 mL). The organic layer was dried and evaporated. The crude products were purified
by chromatography on silica gel by using n-hexane:EtOAc (1:4 for compounds 18 and 29 and 1:9
for compound 37). The products after purification were recrystallized in diethyl ether resulting in
compounds 18, 29 and 37 as white crystals.

4.8.1. (3R,3aR,6R,7aS)-3-Hydroxy-3-(hydroxymethyl)-6-methylhexahydrobenzofuran-2(3H)-one (18)

Yield: 50%, white crystals, m.p.: 73–75 ◦C. [α]20
D = −63.0 (c 0.26, MeOH). 1H NMR (500 MHz,

DMSO-d6): δ = 0.86 (3H, d, J = 6.4 Hz), 0.83–0.95 (2H, m), 1.19–1.25 (1H, m), 1.34–1.39 (1H, m), 1.56 (1H,
d, J = 12.4 Hz), 1.73–1.77 (1H, m), 2.05–2.13 (2H, m), 3.46 (1H, dd, J = 6.0, 11.9 Hz), 3.54 (1H, dd, J = 4.8,
12.0 Hz), 4.77 (1H, t, J = 5.7 Hz), 4.81 (1H, q, J = 3.4 Hz), 5.84 (1H, s). 13C NMR (125 MHz, DMSO-d6):
δ = 21.1, 21.2, 25.9, 31.6, 35.4, 43.0, 61.0, 77.1, 79.5, 176.0. Anal. Calcd for C10H16O4: C, 63.80; H, 10.71.
Found: C, 63.83; H, 10.69.

4.8.2. (R)-2-((1R,2S,4R)-2-Hydroxy-4-methylcyclohexyl)propane-1,2-diol (29)

Yield: 61%, white crystals, m.p.: 137–139 ◦C. [α]20
D = +12.0 (c 0.275, MeOH). 1H NMR (500 MHz,

DMSO-d6): δ = 0.80 (3H, d, J = 6.5 Hz), 0.85–0.79 (1H, m), 0.95 (1H, t, J = 11.9 Hz), 1.05 (3H, s), 1.30–1.32
(1H, m), 1.48–1.57 (2H, m), 1.65–1.74 (3H, m), 3.11 (1H, dd, J = 5.7, 10.5 Hz), 3.43 (1H, dd, J = 5.2,
10.5 Hz), 4.12 (1H, s), 4.40 (1H, s), 4.80 (1H, t, J = 5.4 Hz), 4.83 (1H, d, J = 1.9 Hz). 13C NMR (125 MHz,
DMSO-d6): δ = 19.8, 22.4, 23.8, 25.4, 34.9, 42.4, 45.3, 65.8, 67.3, 73.9. Anal. Calcd for C10H20O3: C, 63.80;
H, 10.71. Found: C, 63.78; H, 10.75.

4.8.3. 2-((1R,2S,4R)-2-Hydroxy-4-methylcyclohexyl)propane-1,2,3-triol (37)

Yield: 40%, white crystals, m.p.: 93–95 ◦C. [α]20
D = +17.0 (c 0.235, MeOH). 1H NMR (500 MHz,

DMSO-d6): δ = 0.80 (3H, d, J = 6.5 Hz), 0.82–0.85 (1H, m), 0.96 (1H, t, J = 12.2 Hz), 1.46–1.57 (3H, m),
1.65–1.68 (2H, m), 1.73–1.75 (1H, m), 3.38–3.43 (2H, m), 4.09 (1H, s), 4.26 (1H, s), 4.49 (1H, t, J = 5.6 Hz),
4.73 (1H, t, J = 5.4 Hz), 4.95 (1H, d, J = 1.0 Hz). 13C NMR (125 MHz, DMSO-d6): δ = 19.8, 22.4, 25.4,
35.0, 42.3, 43.3, 63.1, 63.2, 65.4, 75.6, 75.6. Anal. Calcd for C10H20O4: C, 58.80; H, 9.87. Found: C, 58.83;
H, 9.85.

4.9. (S)-4-((1R,2S,4R)-2-Hydroxy-4-methylcyclohexyl)-4-methyl-1,3-dioxolan-2-one (30)

To the solution of 29 (2.00 mmol) in dry pyridine (8.22 mmol) and dry CH2Cl2 (20 mL), triphosgene
(1.00 mmol) in dry CH2Cl2 (5 mL) was added under cooling in an ice bath. After stirring at room
temperature for 2 h under Ar atmosphere, the consumption of 29 was confirmed by TLC. Then water
(20 mL) was added to the solution and then the organic layer was washed with saturated aqueous
NH4Cl solution. The organic layer was collected, dried over anhydrous Na2SO4 and filtered. The crude
product after evaporation was purified by column chromatography on silica gel (n-hexane:EtOAc =

4:1) to obtain 30 in a 60% yield.
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Yield: 60%, colorless oil. [α]20
D = +35.0 (c 0.28, MeOH). 1H NMR (500 MHz, CDCl3): δ = 0.95 (3H,

d, J = 6.2 Hz), 1.16–1.25 (1H, m), 1.57 (3H, s), 1.58–1.70 (2H, m), 1.74–1.80 (1H, m), 1.94–2.08 (2H, m),
2.13–2.20 (1H, m), 4.11 (1H, d, J = 8.2 Hz), 4.27 (1H, d, J = 8.2 Hz), 5.78 (1H, t, J = 1.8 Hz). 13C NMR
(125 MHz, CDCl3): δ = 21.6, 24.0, 24.3, 28.1, 30.6, 33.4, 74.2, 85.0, 123.4, 135.6, 154.8. Anal. Calcd for
C11H18O4: C, 61.66; H, 8.47. Found: C, 66.63; H, 10.51.

(R)-2-((1R,2S,4R)-2-Hydroxy-4-methylcyclohexyl)propane-1,2-diol (29)

Compound 19 (0.60 mmol) was treated with DMSO (3.0 mL) and 3 M NaOH (3.0 mL). The resulting
homogenous solution was stirred at 80 ◦C for 2 hours. After being cooled to room temperature, EtOAc
(20 mL) was added and the aqueous layer was washed with EtOAc (3 x 20 mL). The combined organic
layers were dried over Na2SO4, filtered and concentrated in vacuo. The crude material was purified by
column chromatography on silica gel (n-hexane:EtOAc = 1:4) then recrystallized in Et2O to provide
compound 29 (60%).

4.10. General Procedure for the Reaction of Benzaldehyde with Diethylzinc in the Presence of Chiral Catalysts

To the respective catalyst (0.1 mmol), 1 M Et2Zn in n-hexane solution (3 mL, 3 mmol) was
added under an argon atmosphere at room temperature. The solution was stirred for 25 min at
room temperature then benzaldehyde (1 mmol) was added. After stirring at room temperature for
a further 20 h, the reaction was quenched with saturated NH4Cl solution (15 mL) and the mixture
was extracted with EtOAc (2 × 20 mL). The combined organic phase was washed with H2O (10 mL),
dried (Na2SO4) and evaporated under vacuum. The crude secondary alcohols obtained were purified
by flash column chromatography (n-hexane:EtOAc = 4:1). The ee and absolute configuration of the
resulting material were determined by chiral GC on CHIRASIL-DEX CB column after O-acetylation in
Ac2O/DMPA/pyridine.

4.11. Antimicrobial Analyses

For the antimicrobial analyses, the pure compounds were first dissolved in MeOH and diluted
with H2O to two concentration levels (400 µg/mL and 40 µg/mL)—keeping the final MeOH content at
10%. Then, these solutions were investigated in microdilution assay with two Gram-positive bacteria
including Bacillus subtilis SZMC 0209 and Staphylococcus aureus SZMC 14611, two Gram-negative
bacteria Escherichia coli SZMC 6271 and Pseudomonas aeruginosa SZMC 23290, as well as two yeast strains
Candida albicans SZMC 1533 and C. krusei SZMC 1352 according to the M07-A10 CLSI guideline [55]
and our previous work [56]. Suspensions of the test microbes were prepared from overnight cultures
cultivated in ferment broth (bacteria: 10 g/L peptone, 5 g/L NaCl, 5 g/L yeast extract; yeast: 20 g/L
peptone, 10 g/L yeast extract, 20 g/L glucose) at 37 ◦C. Then the concentrations of the suspensions were
set to 2 x 105 cells/mL with sterile media. For the assay, 96-well plates were prepared by dispensing
into each well 100 µL of suspension containing the bacterial or yeast cells and 50 µL of sterile broth as
well as 50 µL of the test solutions and incubated for 24 h at 37 ◦C. The mixture of 150 µL broth and
50 µL of 10% methanol was used as the blank sample for the background correction, while 100 µL of
microbial suspension supplemented with 50 µL sterile broth and 50 µL of 10% methanol was applied
as negative control. The positive control contained ampicillin (Sigma) or nystatin (Sigma) for bacteria
or fungi, respectively at two concentration levels (100 µg/mL and 10 µg/mL). The inhibitory effects of
the derivatives were observed spectrophotometrically at 620 nm after the incubation, and inhibition
was calculated as the percentage of the positive control after blank correction.

5. Conclusions

Starting from the commercially available (−)-isopugeol, a new family of isopulegol-based chiral
aminodiol, aminotriol libraries and di-, tri- and tetraols were prepared through chiral (+)-neoisopulegol
as key intermediate via stereoselective transformations.
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The resulting aminodiols exert moderate antimicrobial action on a panel of bacterial and
fungal strains, while aminodiol and aminotriol derivatives were applied as chiral catalysts in
the enantioselective addition of diethylzinc to benzaldehyde with moderate but significantly
opposite stereoselectivity.
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Et2O Diethyl ether
EtOH Ethanol
HCHO Formaldehyde
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t-BuOOH tert-Butyl hydroperoxide
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