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BACKGROUND: The US Veterans Affairs (VA) healthcare
system began reporting risk-adjusted mortality for inten-
sive care (ICU) admissions in 2005. However, while the
VA’s mortality model has been updated and adapted for
risk-adjustment of all inpatient hospitalizations, recent
model performance has not been published. We sought
to assess the current performance of VA’s 4 standardized
mortality models: acute care 30-day mortality (acute care
SMR-30); ICU 30-day mortality (ICU SMR-30); acute care
in-hospital mortality (acute care SMR); and ICU in-
hospital mortality (ICU SMR).

METHODS: Retrospective cohort study with split deri-
vation and validation samples. Standardized mortality
models were fit using derivation data, with coefficients
applied to the validation sample. Nationwide VA hospi-
talizations that met model inclusion criteria during fis-
cal years 2017-2018(derivation) and 2019 (validation)
were included. Model performance was evaluated using
c-statistics to assess discrimination and comparison of
observed versus predicted deaths to assess calibration.
RESULTS: Among 1,143,351 hospitalizations eligible for
the acute care SMR-30 during 2017-2019, in-hospital
mortality was 1.8%, and 30-day mortality was 4.3%. C-
statistics for the SMR models in validation data were
0.870 (acute care SMR-30); 0.864 (ICU SMR-30); 0.914
(acute care SMR); and 0.887 (ICU SMR). There were
16,036 deaths (4.29% mortality) in the SMR-30 validation
cohort versus 17,458 predicted deaths (4.67%), reflecting
0.38% over-prediction. Across deciles of predicted risk,
the absolute difference in observed versus predicted per-
cent mortality was a mean of 0.38%, with a maximum
error of 1.81% seen in the highest-risk decile.
CONCLUSIONS AND RELEVANCE: The VA’s SMR
models, which incorporate patient physiology on presen-
tation, are highly predictive and demonstrate good cali-
bration both overall and across risk deciles. The current
SMR models perform similarly to the initial ICU SMR
model, indicating appropriate adaption and re-
calibration.
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INTRODUCTION

The United States Veterans Affairs (VA) healthcare system is
the nation’s largest integrated healthcare delivery system, with
approximately 550,000 acute care hospitalizations annually to
140 acute care hospitals." Starting in 2005, the VA began to
measure and report risk-adjusted mortality for patients admit-
ted to intensive care units (ICUs) for the purpose of perfor-
mance assessment and improvement.”® Tracking risk-
adjusted mortality is helpful for evaluating changes over time,
evaluating changes in response to specific policies or perfor-
mance improvement initiatives, and identifying hospitals with
greater-than-predicted mortality for further review.

The VA’s risk-adjustment model includes data on patients’
demographics, chronic health conditions, admitting diagnosis,
and physiology within the first 24 h of admission, similar to
the Acute Physiology and Chronic Health Evaluation
(APACHE4) measure’. The development, validation, and first
re-calibration of the ICU mortality model were published
previously.>* Over the past 15 years, however, the mortality
model has been adapted for risk adjustment of all inpatient
hospitalizations, updated to incorporate additional variables,
and re-calibrated annually to account for temporal changes in
diagnosis, coding, medical management, and outcomes. Peri-
odic re-fitting of risk-adjustment models is necessary to pre-
vent model performance from degrading over time.>® Consis-
tent with Centers for Medicare and Medicaid Services, the VA
mortality models are re-calibrated annually.

Given the expansion and revision of VA mortality models
over time since publication of the original VA ICU mortality
model, we sought to evaluate the performance of VA’s mor-
tality models in a recent sample of hospitalizations. Specifi-
cally, we tested the models’ discrimination, assessed the
models’ calibration, and examined the stability of model per-
formance across quarters. While we examined all four
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mortality models in operational use, we focused on the acute
care 30-day mortality model because it is the most compre-
hensive (includes both ward and ICU patients, and captures
both in-hospital and post-discharge mortality) and therefore
the most important mortality model for overall performance
assessment.

METHODS
Setting

The VA healthcare system is an integrated healthcare delivery
system that provides comprehensive healthcare to Veterans.
The VA was among the first healthcare delivery systems to
have a universal electronic health record, and to measure and
report risk-adjusted mortality.'

Mortality Models

As part of routine performance assessment, the VA measures
and reports four standardized mortality ratios (SMRs) for each
VA hospital on a quarterly basis: (1) acute care 30-day mortal-
ity (acute care SMR-30); (2) ICU 30-day mortality (ICU SMR-
30); (3) acute care in-hospital mortality (acute care SMR); and
(4) ICU in-hospital mortality (ICU SMR). The mortality
models are each developed on a rolling 2-year look-back of
VA hospitalizations, then applied to the current fiscal year. The
inclusion criteria, definitions, and key differences of each SMR
model are presented in Appendix 1 and Supplemental Table 1.
A summary of key changes to the models since their last
description is presented in Supplemental Table 2.

For the acute care models, predicted mortality is estimated
using a logistic regression model that includes the following
predictors: age, admitting diagnosis category, major surgical
procedure category, 29 comorbid conditions, physiologic var-
iables (sodium, BUN, creatinine, glucose, albumin, bilirubin,
white blood cell count, and hematocrit), immunosuppressant
status, ICU stay during hospitalization, medical or surgical
diagnosis-related grouping (DRG), source of admission (e.g.,
inter-hospital transfer, nursing facility), and marital status. For
physiologic variables, the most deranged value within a spec-
ified time frame is included in this statistical model. For non-
operative patients, this time frame is between 24 h prior to
hospital admission and 24 h after hospital admission. For
operative patients, this time frame is between 14 days prior
to hospital admission and 24 h after hospital admission. Nor-
mal values are imputed for missing physiologic variables, as is
conventional for risk adjustment.” The admitting diagnosis
category assigns all possible admitting diagnoses to one of
51 mutually exclusive groupings, which were consolidated
from the Healthcare Cost and Utilization Project’s Clinical
Classification Software categories® based on clinical similarity
and on the observed mortality rate. Similarly, the major sur-
gical procedure category includes 24 mutually exclusive
groupings based on major surgical procedures within 24 h of

presentation. Comorbid conditions are identified from diag-
nostic codes during hospitalization, using the methods of
Elixhauser et al., adapted for ICD-10 coding.”'® Immunosup-
pressant status is defined based on use of immunosuppressive
medications in the 90 days prior to hospitalization.'" The ICU
models include additional physiologic variables (PaO,,
PaCO,, and pH) as well as hospital length of stay prior to
ICU admission.

Model Performance

For this study, the SMR models were developed using hospi-
talizations from fiscal years (FY) 2017-2018, and model
performance was assessed using hospitalizations in FY 2019.
Thus, the study examines a recent, but pre-pandemic, cohort of
hospitalizations. We evaluated model performance using c-
statistics to assess discrimination and comparison of observed
vs predicted deaths by decile of predicted risk to assess cali-
bration (i.e., the agreement between observed outcomes and
predictions).®'*"'* The c-statistic is a measure of goodness of
fit for binary outcomes of a logistic regression model, and tells
the probability that a randomly selected hospitalization that
had mortality had a higher predicted risk than a randomly
selected hospitalization that did not experience mortality.'>'®
Additionally, we report Hosmer-LemeshowGoodness-of-
Fitchi-square and Brier scores (to harmonize with a prior study
of the VA’s mortality model® ), as well as mean and maximum
difference in observed versus predicted percent mortality
across deciles of risk to summarize the model calibration'?.
We considered model discrimination to be strong when c-
statistic was >0.8, consistent with standard practice.'>'® We
are not aware of any generally accepted threshold for grading
model calibration,'*'*>!” but considered overall and mean
calibration errors of <1.0% to reflect good model calibration.

We assessed model performance in the derivation cohort,
the validation cohort, and by quarter for the validation cohort.
For the ICU models, we also assessed model performance by
level of intensive care, as defined by availability of subspe-
cialty services.'® Finally, for the acute care SMR-30 model,
we evaluated c-statistics in a series of nested models to under-
stand the incremental impact of administrative and clinical
data on model discrimination.

Data management and analysis were completed in SAS
Enterprise Guide 8.3 (SAS Institute Inc., Cary, NC).
Figures were produced in R. This study was approved by the
Ann Arbor VA Institutional Review Board with a waiver of
informed consent.

RESULTS
Cohort Characteristics

Among 1,996,645 inpatient stays during fiscal years 2017—
2019, there were 1,143,351 acute care hospitalizations meet-
ing criteria for the Acute Care SMR-30. Of 1,996,645
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inpatient stays, 673,813 (33.7%) were excluded due to a non-
acute care treating specialty (e.g., nursing, psychiatry, and
rehabilitation care), 114,068 (5.7%) because they occurred
within 30 days of a prior hospitalization, 1,280 because they
involved specialized treatments (organ transplantation of left
ventricular assist device) (0.1%), 415 patients who died within
4 h ofarrival (0.02%), and 20,011 with hospice care during the
calendar day of admission or the preceding year (1.0%). Study
flow diagrams showing the application of model exclusions
for each SMR model are presented in Supplemental Tables 3
and 4, while Supplemental Table 5 shows the number of
unique patients in the acute care and ICU SMR 30 models.
Acute care SMR-30 cohort characteristics and outcomes
are presented in Table 1. Hospitalizations in the SMR-30
model were median age 68 years (IQR 61-74), 94.4%

male, and 70.8% White, with a median of 3 comorbid
conditions (IQR 2, 5). The majority of hospitalizations
were admitted via the emergency department or directly,
while 15.1% were admitted from the operating room, 2.4%
were transferred in from another hospital, and 1.9% were
admitted from nursing facilities. The most common admis-
sion diagnosis categories were musculoskeletal injuries
(7.5%), congestive heart failure (5.7%), non-sepsis/non-
pneumonia infections (5.6%), neurological diseases
(5.2%), and sepsis (4.5%). In-hospital mortality was
1.8%, and 30-day mortality was 4.3%. Patient characteris-
tics were similar between the derivation (FY 2017-2018)
and validation (FY 2019) cohorts. For the acute care SMR-
30 validation cohort, predicted risk of 30-day mortality
was median 1.6% (IQR 0.6%, 4.4%), mean 4.7% (Fig. 1).

Table 1 Patients and Hospitalization Characteristics for Derivation, Validation, and Full Cohort for the Acute Care SMR-30 Model

Total cohort Derivation cohort Validation
FY 2017-2019 FY 2017-2018 cohort
FY 2019
Hospitalizations, N 1,143,351 769,924 373,727
Unique patients, N 702,866 512,868 198,998
Male, % of hospitalizations 94.4% 94.5% 94.2%
Self-reported race, % of hospitalizations
White 70.8% 71.1% 70.1%
Black or African American 21.5% 21.3% 22.1%
Other, unknown, or not reported 7.7% 7.6% 7.8%
Age, median (IQR) 68 (61,74) 68 (61,74) 68 (61,75)
Number of comorbid conditions, median (IQR) 3(2,5) 224 3(2,5)
Select comorbid conditions, % of hospitalizations
Congestive heart failure 12.7% 12.2% 13.7%
Chronic pulmonary disease 23.9% 23.6% 24.7%
Liver disease 7.7% 7.6% 8.0%
Metastatic cancer 2.4% 2.4% 2.6%
Immunosuppressed status (indicator in SMR models) 22.5% 22.2% 23.1%
Admission Source
Other hospital (VA or non-VA) 2.4% 2.3% 2.5%
Nursing home (VA or non-VA) 1.9% 1.8% 2.0%
Operating Room 15.1% 15.3% 14.7%
Other (Emergency Department, Direct Admission) 80.6% 80.6% 80.8%
Admitting diagnosis category*, % of hospitalizations
Musculoskeletal (besides hip fracture) 7.5% 7.5% 7.5%
Congestive heart failure 5.7% 5.7% 5.9%
Infections (besides sepsis or pneumonia) 5.6% 5.7% 5.3%
Neurologic diseases 52% 52% 5.1%
Sepsis 4.5% 4.2% 5.1%
Substance-related disorders 4.3% 4.2% 4.4%
Chronic obstructive pulmonary disease 4.0% 4.1% 3.9%
Cardiac dysrhythmias 3.7% 3.6% 3.7%
Other gastrointestinal disease 3.7% 3.8% 3.7%
Complications of surgical/medical care 3.5% 3.5% 3.6%
All other diagnosis categories 52.3% 52.5% 51.8%
DRG grouping, % of hospitalizations
Medical 77.4% 76.8% 78.5%
Surgical 21.6% 21.7% 21.3%
Major surgical procedure within 24 h, % 15.5% 15.7% 15.1%
Length of hospitalization in days, median (IQR) 2(1,4) 3(1.4) 2(1.4)
ICU admission, % of hospitalizations
Directly admitted directly to ICU 14.4% 14.4% 14.2%
Ever admitted to ICU 18.0% 18.1% 17.8%
Mortality, % of hospitalizations
In-hospital 1.8% 1.7% 1.8%
30-day 43% 43% 43%

*Hospitalizations were each assigned to one of 51 mutually exclusive diagnosis categories based on their admitting diagnosis. These diagnosis
categories each include one or more clinical classification software®(CCS) diagnosis categories. The consolidation of CCS categories into admission
diagnosis categories was informed by clinical rationale, as well as by the observed mortality rates for CCS categories. For example, the musculoskeletal
category is relatively large because it combines several low-risk CCS categories including diagnoses related to back, knee, facial, and extremity injury
or illness, but hip fracture is kept as a separate category due to its higher associated mortality
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Figure 1 Histogram showing the distribution of predicted risk of 30-day mortality for the Acute Care SMR-30 Validation Cohort. Predicted 30-
day mortality for the SMR-30 derivation cohort was a median of 1.5%, mean 4.3%, IQR 0.5%, 4.1%. For the validation cohort, median 1.6 %,
mean 4.7%, IQR 0.6%, 4.4%. They-axis uses a pseudo-log transformation with a smooth transition to linear scale around 0.

Model Performance

In total, across the 4 SMR models, we assessed model
performance for 24 different scenarios in the validation
data, as defined by the model of interest, time-period of
interest, and (for the ICU models only) level of intensive
care available (Table 2). Overall, the c-statistic ranged
from 0.848 to 0.918 across the 24 scenarios, indicating
that model performance was consistently strong. When
examining nested models for the SMR-30 model, c-
statistic was 0.840 in a basic administrative model, 0.853
in an enhanced administrative model, and 0.870 in the full
model—showing the added benefit of including physio-
logical data (Supplemental Table 6).

The calibration plot (Fig. 2) and Table 3 show that the
acute care SMR-30 model was well-calibrated in the
validation cohort. There were 16,036 deaths (4.29% mor-
tality) in the SMR-30 validation cohort versus 17,458
predicted deaths (4.67%), reflecting 0.38% over-predic-
tion. Across deciles of predicted risk, the absolute differ-
ence in observed versus predicted percent mortality was a
mean of 0.38%, with a maximum error of 1.81% seen in
the highest-risk decile. Calibration plots and tables for the
acute care SMR, ICU SMR, and ICU SMR-30 models are
presented in Supplemental Figures 1-3 and Supplemental
Tables 7-9. Similar to the acute care SMR-30 model,
observed versus predicted mortality was within 1.0% for
the acute care SMR, ICU SMR, and ICU SMR-30 vali-
dation cohorts. Additionally, mean error across risk dec-
iles was <1.0%, and error greater than 1.0% was seen in
only the highest risk decile of each model.

DISCUSSION

The VA was among the first healthcare systems to measure
and report risk-adjusted ICU mortality. And, over the past 15
years, the VA’s mortality model has been updated, re-
calibrated annually, and adapted for risk-adjustment of all
VA acute care hospitalizations. In this study, we show that
the VA’s mortality models (acute care SMR-30, acute care
SMR, ICU SMR-30, and ICU SMR) can strongly discriminate
in-hospital and 30-day mortality. Furthermore, the models are
well-calibrated, with observed versus predicted mortality
within 1% for all but the highest risk decile. Overall, the
performance of each of the four VA mortality models is
similar to the initial VA ICU mortality model,'"'® similar to
other physiology-based mortality models such as APACHE,
47:2021 and superior to risk models using administrative data
only*>**. Likewise, the relatively lower calibration for the top
risk-decile is consistent with other physiologic risk-adjustment
models.”

A second major finding of our study is that the rates of
inpatient and 30-day mortality for eligible acute care hospital-
izations are relatively low (1.8% and 4.3%), which limits the
ability to differentiate hospitals statistically based on mortali-
ty.** Nonetheless, mortality monitoring is a critical component
of quality measurement given the importance of identifying
any hospitals with statistically greater-than-predicted mortali-
ty, as well as identifying numeric differences that may trigger
further review to identify and remediate any problems before
statistically significant differences in mortality arise. The
strong performance of the VA mortality models lends credi-
bility to their use in hospital evaluation and their ability to
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Table 2 Performance of the SMR Models in Derivation and Validation Cohorts

Model and Cohort N Mortality, NV (%) C stat H-L GOF chi-square Brier’s score
Acute Care SMR-30 derivation 769710 33180 (4.31) 0.871 187.7 0.035
Acute Care SMR-30 validation, full year 373791 16036 (4.29) 0.870 211.6 0.035
Acute Care SMR-30 validation, Q1 92338 4038 (4.37) 0.871 39.1 0.035
Acute Care SMR-30 validation, Q2 94640 4258 (4.50) 0.869 49.1 0.037
Acute Care SMR-30 validation, Q3 95269 4023 (4.22) 0.867 66.3 0.034
Acute Care SMR-30 validation, Q4 91544 3717 (4.06) 0.873 88.4 0.033
ICU SMR-30 derivation 151426 13635 (9.00) 0.871 155.3 0.063
ICU SMR-30 validation 72160 6638 (9.20) 0.864 110.6 0.066
ICU SMR-30 validation, ICU level 1/2 62806 5746 (9.15) 0.866 103.0 0.065
ICU SMR-30 validation, ICU level 3/4 9354 892 (9.54) 0.848 18.0 0.071
ICU SMR-30 validation, Q1 17981 1652 (9.19) 0.864 29.3 0.066
ICU SMR-30 validation, Q2 18704 1787 (9.55) 0.863 32.1 0.069
ICU SMR-30 validation, Q3 18276 1681 (9.20) 0.865 36.3 0.066
ICU SMR-30 validation, Q4 17199 1518 (8.83) 0.862 31.8 0.064
Acute Care SMR derivation 853194 15429 (1.81) 0916 247.6 0.015
Acute Care SMR validation 413329 7173 (1.74) 0914 218.6 0.015
Acute Care SMR validation, Q1 102049 1802 (1.77) 0918 57.8 0.015
Acute Care SMR validation, Q2 104446 1960 (1.88) 0911 354 0.016
Acute Care SMR validation, Q3 105513 1759 (1.67) 0912 75.0 0.014
Acute Care SMR validation, Q4 101321 1652 (1.63) 0914 77.6 0.014
ICU SMR derivation 152914 9641 (6.30) 0.895 229.7 0.046
ICU SMR validation 72752 4555 (6.26) 0.887 153.0 0.047
ICU SMR validation, ICU level 1/2 63873 4122 (6.45) 0.887 128.0 0.048
ICU SMR validation, ICU level 3/4 8879 433 (4.88) 0.887 41.7 0.039
ICU SMR validation, Q1 18125 1138 (6.28) 0.887 23.8 0.047
ICU SMR validation, Q2 18881 1259 (6.67) 0.886 494 0.050
ICU SMR validation, Q3 18451 1145 (6.21) 0.888 42.0 0.046
ICU SMR validation, Q4 17295 1013 (5.86) 0.887 61.3 0.045

ICU, intensive care unit; SMR, standardized mortality ratio; Q, quarter; C stats, C statistic; H-L GOF chi-square, Hosmer Lemeshow goodness-of-fit C
statistic chi-square value where a lower value is better and the size of the value is linearly related to the size of the cohort; all HL GOF chi-square
values were significantly different (p<0.05). Level 1/2, ICUs who can provide most subspecialty medical and surgical Care; level 3/4: ICUs in smaller
hospitals which lack some or many medical and surgical subspecialty care

account for differences in patient case-mix across hospitals.
However, mortality does not equate to quality. Greater-than-
predicted mortality may occur for a number of reasons, not all
of which reflect poor care. Thus, these mortality models serve
as a warning tool to trigger deeper review, but are not a stand-
alone marker of hospital quality. The results must be contex-
tualized and evaluated alongside other metrics.

Several aspects of the modeling approach warrant further
discussion. First, hospitalizations were assigned to one of 51
mutually exclusive admission diagnosis categories based on
their admitting diagnosis, similar to the approach taken in the
Kaiser Permanente Northern California’s risk-adjustment
model’. By contrast, other models have used hierarchical
approaches to classifying admission diagnoses, which are
not based on diagnostic codes and must therefore be incorpo-
rated into workflow. For example, the UK’s Intensive Care
National Audit and Research Centre’s coding method clas-
sifies ICU admissions by type (surgical, medical), system
(e.g., respiratory), site (e.g., lungs), process (e.g., infection),
and condition (e.g., bacterial pneumonia)*>. While there are
741 unique conditions in this approach, five conditions ac-
counted for 19.4% of all admissions,”> and the majority of
unique conditions were ultimately excluded from the model to
due imprecision in estimating the association between the
condition and mortality (in which case hospitalizations are
classified by the body system).?' The VA admission diagnosis

categories each include one or more clinical classification
software®(CCS) diagnosis categories. The merging of CCS
categories into admission diagnosis categories was informed
by clinical rationale, as well as by the observed mortality rates
for CCS categories. For this reason, for example, upper and
lower extremity fractures were merged together, while hip
fracture was kept as a separate diagnosis category due to its
higher associated mortality. The mapping of individual admis-
sion diagnoses to admission diagnosis categories via the CCS
categories facilitates assignment of any new ICD-10-CM
codes to an admission diagnosis category since the Agency
for Healthcare Research and Quality updates the clinical clas-
sification software on an ongoing basis. While some clinicians
may prefer more granular admission diagnosis groupings,
each group must have a sufficient number of observations to
estimate the association with mortality—Ilimiting the number
of discrete diagnosis groupings that can be used in practice.
Instead, the physiologic variables serve to further differentiate
the hospitalizations within the same diagnosis category, and
consistently provide far more prognostic information than the
diagnosis category.”"!

Second, hospitalizations were excluded from the VA model
if the patient had a hospice encounter in the year preceding or
on the calendar day of admission. Only 1.5% and 0.1% of
otherwise eligible hospitalizations were excluded, respective-
ly, due to hospice encounters prior to or on the day of
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Figure 2 Observed vs predicted mortality in the SMR-30 Validation Cohort using 10 equally sized bins defined by decile of predicted risk. This
figure depicts the number of predicted and observed deaths in the validation cohort, stratified by decile of predicted risk for mortality. The
number of hospitalizations per decile, as well observed and predicted number and proportion of deaths by decile are presented in Table 3.

admission. Furthermore, in exploratory analyses without this
exclusion, the mortality models perform similarly since the
model consistently identifies patients referred to hospice as
having a high risk for mortality. Some clinicians may argue for
expanding the hospice exclusion to also exclude patients with
who transition to hospice at later points in hospitalization.
However, a majority of patients who die during inpatient
hospitalization are transitioned to comfort-only measures or
have treatment limitations initiated prior to death, such that
broad exclusions of patients with hospice care could

substantially limit the ability to differentiate mortality out-
comes across hospitals. Initiation of hospice care during or
before the calendar day of admission was felt to be the fairest
approach. However, the best approach to incorporating treat-
ment limitations into hospital performance assessment re-
mains an area of ongoing study, and best practices are yet to
be defined.”® Through the VA’s Life-Sustaining Treatment
Decisions Initiative, there is a national effort to elicit, honor,
and document Veteran’s values, goals, and healthcare treat-
ment preferences. The initiative’s harmonized approach to

Table 3 Observed vs Predicted Mortality in the SMR-30 Validation Cohort Using 10 Equally Size Bins Defined by Decile of Predicted Risk

Risk Predicted risk (lowest, Hospitalizations, N Observed deaths, N Predicted deaths, N Difference*, N (%)
decile highest) (%) (%)

1 (0.000-0.002) 37,379 62 (0.17) 47 (0.13) 15 (0.04)

2 (0.002-0.004) 37,379 94 (0.25) 118 (0.32) —24 (-0.06)

3 (0.004-0.007) 37,379 154 (0.41) 211 (0.56) =57 (-0.15)

4 (0.007-0.011) 37,379 252 (0.67) 332 (0.89) —80 (—0.21)

5 (0.011-0.016) 37,379 384 (1.03) 495 (1.33) —111 (-0.30)
6 (0.016-0.023) 37,380 541 (1.45) 725 (1.94) —184 (-0.49)
7 (0.023-0.035) 37,379 926 (2.48) 1077 (2.88) —151 (-0.40)
8 (0.035-0.057) 37,379 1572 (4.21) 1686 (4.51) —114 (-0.30)
9 (0.057-0.114) 37,379 2951 (7.89) 2991 (8.00) =40 (-0.11)
10 (0.114-0.987) 37,379 9100 (24.35) 9775 (26.15) —675 (—1.81)
1-10 (0.000-0.987) 373,791 16036 (4.29) 17458 (4.67) —1422 (-0.38)

*Differences reflect the observed minus predicted mortality. Negative values indicate that the model over-predicted mortality, while positive value
indicate that the model under-predicted mortali

The expected (mean) absolute calibration error’™ across risk decile was 0.38%, while the maximum calibration error'? (observed in the highest risk
decile) was 1.81%
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documenting treatment preferences across VA hospitals may
allow for future incorporation of treatment preferences docu-
mented at hospital admission to be incorporated into perfor-
mance measurement.

Third, physiological variables are currently incorporated
into the VA’s mortality models as categorical variables, which
allow for ready interpretation of the association between phys-
iologic derangements and the risk of mortality. By contrast,
some other models (and VA’s initial ICU mortality model) use
cubic splines®”"''—which allow for more flexible parameter-
ization of the physiologic variables, but come at the cost of
decreased transparency, since the model output is not readily
interpretable. The opaqueness of regression models has been
cited as a key drawback of regression-based performance
assessment, which may reduce credibility and motivation to
act on the assessment results.”” Thus, given the trade-offs
between statistical precision and interpretability, there is no
“best approach” to the incorporation of physiologic variables.
The current VA mortality models using categorical physiolog-
ic variables perform similarly to the prior VA ICU mortality
model using cubic splines, indicating that the loss of perfor-
mance is minimal, and therefore, the added statistical precision
may not be worth the added complexity of interpretation.

There are some limitations to acknowledge. First, there are
many drawbacks to the use of risk-adjusted mortality for
measuring hospital quality, which are discussed in detail else-
where, including low power, inability to differentiate prevent-
able versus unpreventable deaths, and the imperfect correla-
tion between process and outcome measures>>. Despite
these limitations, monitoring risk-adjusted mortality is an im-
portant component of quality improvement, as discussed
above. Secondly, the VA’s acute care mortality models incor-
porate 8 physiologic variables (sodium, BUN, creatinine, glu-
cose, albumin, bilirubin, white blood cell count, and hemato-
crit), with an additional three values (PaO,, PaCO,, and pH)
included in the ICU models. These physiologic variables are
commonly included in other physiologic risk-adjustment
models and have high clinical face value, but are not fully
comprehensive. Additional physiologic measurements such as
vital signs (heart rate, blood pressure, respiratory rate, pulse
oximetry), mental status, and blood lactate measurement may
provide additional prognostic information®’. Vital signs and
mental status cannot be readily incorporated into the VA’s
mortality model at present because they are recorded outside
the electronic health record (e.g., in ICU-specific programs) in
many units, leading to systematic missingness that could bias
risk adjustment. Lactate measurements, however, are available
in the electronic health record, and are currently being consid-
ered for incorporation into VA mortality models. Finally, the
VA patient population has unique demographics, risk factors,
and comorbidity profile, so this model may not generalize to
other settings. Indeed, model performance often degrades
when applying models to new settings, underscoring the need
for periodic model evaluation and recalibration and the benefit

of developing context-specific models rather than simply ap-
plying “off-the-shelf” risk tools>>'.

CONCLUSIONS

We have shown that the VA’s mortality models, which incor-
porate patient physiology and are recalibrated annually using
hospitalizations from the prior 2 years, are highly predictive
and have good calibration both overall and across risk deciles.
The strong model performance underscores the benefit of
physiologic data and the development of models in the popu-
lation and setting in which they will be used.
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