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ABSTRACT

GMrepo (data repository for Gut Microbiota) is a
database of curated and consistently annotated hu-
man gut metagenomes. Its main purpose is to facil-
itate the reusability and accessibility of the rapidly
growing human metagenomic data. This is achieved
by consistently annotating the microbial contents of
collected samples using state-of-art toolsets and by
manual curation of the meta-data of the correspond-
ing human hosts. GMrepo organizes the collected
samples according to their associated phenotypes
and includes all possible related meta-data such as
age, sex, country, body-mass-index (BMI) and recent
antibiotics usage. To make relevant information eas-
ier to access, GMrepo is equipped with a graphical
query builder, enabling users to make customized,
complex and biologically relevant queries. For exam-
ple, to find (1) samples from healthy individuals of 18
to 25 years old with BMIs between 18.5 and 24.9, or
(2) projects that are related to colorectal neoplasms,
with each containing >100 samples and both patients
and healthy controls. Precomputed species/genus
relative abundances, prevalence within and across

phenotypes, and pairwise co-occurrence informa-
tion are all available at the website and accessible
through programmable interfaces. So far, GMrepo
contains 58 903 human gut samples/runs (including
17 618 metagenomes and 41 285 amplicons) from 253
projects concerning 92 phenotypes. GMrepo is freely
available at: https://gmrepo.humangut.info.

INTRODUCTION

Increasing evidence has linked gut microbiota to many as-
pects of human life, including health (1–3), diseases (4–
13), development (14–18), responses to drugs and treat-
ments (19–23). In recent years, the number and total volume
of human gut metagenomic data (including both 16S and
metagenomic sequencing data) have been increasing rapidly
(24). Most of the raw sequencing data have been deposited
into several general purpose databases, such as NCBI Se-
quence Read Archive (SRA) (25) (https://www.ncbi.nlm.
nih.gov/sra) and European Nucleotide Archive (ENA) (26)
(https://www.ebi.ac.uk/ena). A few other databases, includ-
ing EBI Metagenomics (now MGnify) (24), gcMeta (27),
MSE (28) and Qiita (29), have provided processed data and
organized them according to the habitats from which the
samples were taken. These public resources greatly facili-
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Figure 1. Overall workflow of GMrepo. Processing steps are indicated in the blue rounded boxes.

tate data reuse, especially meta-analyses across multiple re-
lated studies for the purpose of cross-study validation and
discovery of novel causal microbial taxa underlying certain
phenotypes (11,12,30).

Despite these existing efforts to deposit, organize and an-
alyze the rapidly growing human metagenomic data, major
obstacles to their reusability and accessibility remain, es-
pecially incomplete and/or inaccurate phenotype informa-
tion and/or missing meta-data. Recently, a study reported
an initial effort to curate human metagenomic data; how-
ever, the data were limited in the number of samples re-
ported (5716 samples collected from 26 projects as of Jan-
uary 2017 when the results were first published), contained
metagenomic data from other body sites and could only be
accessed using R (31). In addition, so far there have been
no systematic efforts to help users filter human gut samples
and/or projects with biologically relevant questions. For ex-
ample, there is no easy way to find fecal samples that were
taken from healthy individuals of 18–25 years of age with
healthy body mass indexes (BMIs, 18.9–24.9) from any of
the existing databases and data sources; also it is very dif-
ficult to find all the projects that are related to colorectal
neoplasms studies, contain >100 samples and contain both
patients and healthy controls.

To address these issues, and more importantly to facil-
itate the reusability and accessibility of the rapidly grow-
ing human metagenomic data, we developed GMrepo as
a database of curated human gut metagenomic data (in-
cluding both 16S and metagenomic sequencing data). The
main features of GMrepo include: (i) manually curated
phenotype information for each collected run/sample and
all possible related meta-data, such as the age, sex, coun-
try, body-mass-index (BMI) and even recent antibiotics

usage; more meta-data could be included in the future;
(ii) consistently annotated microbial contents, including
taxonomic assignments of sequencing reads and precom-
mutated species/genus relative abundances using state-of-
art toolsets; (iii) collected samples organized according to
their associated phenotypes and statistics, including species-
prevalence, abundances and co-occurrences; (iv) in addi-
tion to the online database, GMrepo also provides pro-
grammable access to most of its contents through represen-
tational state transfer (REST) application programming in-
terfaces (APIs); (v) more importantly, GMrepo is equipped
with powerful and easy-to-use graphical query builders to
allow users to make customized, biologically meaningful
queries to the collected samples and projects.

CONSTRUCTION AND CONTENTS OF GMREPO

Figure 1 illustrates the overall workflow of GMrepo, while
Figure 2 shows the detailed analysis pipeline of the collected
human gut metagenomic data. Below is a brief summary of
the materials and methods used in this study.

Data acquisition of sequencing reads and manual curation of
meta-data

Raw sequencing reads were downloaded from the EBI
ENA (26) (European Nucleotide Archive, https://www.ebi.
ac.uk/ena) and NCBI SRA (25) (Sequence Read Archive,
https://www.ncbi.nlm.nih.gov/sra) databases using com-
mand line tools from enaBrowserTools (https://github.com/
enasequence/enaBrowserTools) and SRA-Tools (https://
ncbi.github.io/sra-tools/) facilitated by Aspera (a high-
speed data transfer tool). Related meta-data of the se-
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Figure 2. Schematic representations of the GMrepo metagenomics pipeline for amplicon data (A) and metagenomic data (B). Processing steps are indicated
in the blue rounded boxes and tools are marked on the arrows. Input and output files as colored rectangles (black, green, red). Conditional judgments are
in trapezoids. QC1: a run will be marked as ‘failed’ (QCStatus = = 0) if less than 20k reads or <50% of reads were retained after trimming; QC2: arun will
be marked as ‘failed’ (QCStatus = = 0) if a single taxon accounts for >99.99% of the total abundance.

quencing platforms, corresponding biosamples, experi-
ments, projects and the human hosts from which the fecal
samples were taken, were obtained from EBI Metagenomics
(now MGnify) (24) and related databases of the NCBI.

Two rounds of manual curation were then performed on
the meta-data. For the first round, meta-information, such
as phenotypes (health or diseases), age, sex and BMI of
the associated samples/runs were extracted using in-house
R and Perl scripts and were manually curated and supple-
mented with the materials obtained from the related publi-
cations and/or even from the authors (Figure 1). The ex-
tracted meta-data include sequencing related meta-data,
including the sequencing platform, type of sequences ob-
tained (i.e. 16S or metagenomic) number of sequences, and
human host related meta-data including phenotypes (i.e.,
diseases or healthy), age, sex, country, BMI and antibiotic
usage. For the second round, different curators from the first
round reviewed the collected meta-data and made necessary
corrections.

Processing of raw sequencing reads

FastQC (version 0.11.8, http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) was used to evaluate the
overall quality of the downloaded data, followed by the use
of Trimmomatic (32) to remove sequencing vectors and
low-quality bases. Sequences shorter than two-thirds of
the original read length were removed from the subsequent
analysis (Figure 2).

For 16S sequences, single-ended sequencing reads were
used directly for subsequent analysis, while the pair-ended
reads were first merged using Casper (33) before down-

stream processing. Metagenomic sequences were used di-
rectly for subsequent analysis, regardless of whether they
were single- or pair-ended.

The processed data were referred as to ‘clean data’. When
necessary, Seqtk (https://github.com/lh3/seqtk) was used to
convert FASTQ sequences to FASTA format.

Taxonomic assignment to processed sequencing reads and
calculation of relative abundances

For 16S sequences, MAPseq version 1.2 (34) was used to
analyze the obtained clean data and assign taxonomic clas-
sification information to the reads. Reads with a combined
score higher than 0.4 at the genus level were used for subse-
quent analysis, as recommended by the authors of MAPseq.
Relative abundances were then calculated at the genus and
species levels for each sample/run, with total abundance
values of 100%.

For metagenomic sequences, MetaPhlAn2 (35) was used
with default parameters for the taxonomic assignments to
the sequencing reads and calculating the relative abun-
dances at species and genus levels.

Two-step quality controls

A two-step quality control process was used to ensure the
quality of the data (Figure 2). First, amplicon sequencing
samples/runs with <20 000 reads were removed from sub-
sequent analysis and were marked as ‘failed QC (QC status
= 0)’ in GMrepo. The second step of quality control is for
both amplicon sequences and metagenomic sequences. Af-
ter taxonomy assignment, samples/runs containing only a
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Figure 3. Statistics of some of the metadata we collected. (A) The unknown phenotype means that the health status of the sample provider is not clearly
indicated. For data from the American Gut Project (AGP), we only use diagnoses from medical professionals (doctor, physician assistant). Samples with
unknown phenotypes are mainly from AGP. (B) The integrity of the metadata is assessed based on age, sex and BMI.

Table 1. Top 10 phenotypes included in GMrepo

Phenotype No. of runs

No. of
processed
runs

No. of valid
runs

No. of failed
runs

No. of
associated
species

No. of
associated
genus

Health 27 329 20 320 12 485 7835 6189 1613
Colitis, Ulcerative 2509 2440 1175 1265 4183 1285
Irritable Bowel Syndrome 2092 2091 954 1137 3320 1064
Infant, Premature 1443 1443 1240 203 260 97
Colorectal Neoplasms 1374 1374 1256 118 4596 1380
Diarrhea 1355 1354 470 884 2775 906
Constipation 1244 1244 611 633 3146 1022
Migraine Disorders 1235 1235 574 661 2894 964
Lung Diseases 1228 1228 592 636 2817 958
Autoimmune Diseases 1154 1154 547 607 2848 956

No. of runs: all runs with curated meta-data,
No. of processed runs: number of all runs with the sequence data processed; please note all runs will be processed eventually,
No. of valid runs: number of runs whose data passed our QC procedure and the corresponding species/genus relative abundances are available in our
database,
No. of failed runs: number of runs whose data DID NOT passed our QC procedure,
No. of associated species: number of species associated with the processed and valid runs.
No. of associated genus: number of genus associated with the processed and valid runs.

single taxon, i.e., a species or a genus accounted for more
than or equal to 99.99% of the total abundance, will also be
marked as ‘failed QC (QC status = 0)’.

Species co-occurrence analysis

Species co-occurrences were performed separately for phe-
notypes with more than 50 related samples/runs. For
each species-species and genus-genus pair of phenotypes,
Fisher’s exact text (fisher.test() function in R) was used;
the four required numbers as input are: the number of
samples/runs in which both taxa are found, the numbers
of samples in which either taxa are found and the number
of samples in which neither of the taxa are found. Taxon
pairs with an Odds ratio (OR) value larger than 1 and a P-
value < 0.05 are considered to significantly co-occur in a
phenotype.

In addition to the presence/absence information, the rel-
ative abundances of the co-occurring pairs were used to cal-
culate Person and Spearman correlations in order to further
describe the directions of the interactions between the two
taxa.

Database construction and web development

All data were loaded into a MySQL database. The frontend
(the webpages) of the website was coded using HTML and
JavaScript, while the backend was coded using PHP with a
Slim framework to support queries to the MySQL database
and provide representational state transfer (REST) applica-
tion programming interfaces (APIs) for programmable ac-
cess to our data. The AngularJS framework was used to
bride the front- and back- ends. D3.js and plotly.js were
used for visualizations at the front-end. Various other open-
source JavaScript libraries were also used, including jQuery
and jQuery QueryBuilder. The website is hosted on an
Apache server.

USAGE, UTILITY AND FUTURE DIRECTIONS

Human gut metagenomic data organized according to host
phenotypes

Through multiple rounds of manual curation, we col-
lected meta-data for a total of 58 903 runs of human
gut metagenomic data from 253 projects, including 17 618
metagenomes and 41 285 amplicons spanning 92 pheno-
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Figure 4. Phylogenetic tree comprising the 2685 included species, based on NCBI taxonomy. These 2685 species were found in more than one samples with
a median relative abundance higher than 0.01% within one or more phenotypes. The three inner layers show the statistics of these species in our database,
including the median relative abundance of the species (red) and the species prevalence in the samples (brown) and phenotypes (yellow). The outermost
layer shows the corresponding phyla of these species.

types (health and 91 diseases). Figure 3 summarizes statis-
tics of some of the metadata we have collected. For exam-
ple, we were able to assign explicit phenotype information
to most of the collected samples (88.17%, Figure 3A); how-
ever, despite our efforts, we were able to obtain only very
basic meta-data including age, sex and BMI for only one
third of the samples. As shown in Figure 3B, 30.86% of
the samples contained none of the basic meta-data, while
the rest contained only one or two (25.95% and 10.31%, re-
spectively). These results highlight the challenges in reusing
metagenomic data and call for reporting standards of min-
imal meta-data information or metagenomic samples.

In addition to the project-run relationships, we organized
the collected gut metagenomic data according to their asso-

ciated host phenotypes. We adopted the MeSH system (36)
(Medical Subject Headings, a hierarchically organized con-
trolled vocabulary for biomedical information) to describe
and organize these phenotypes. Listed in Table 1 are the top
10 phenotypes included in GMrepo.

For each phenotype, we summarized the total num-
bers of associated species and genera. For example, in
total there are 6189 species (and/or strains) associated
with healthy individuals (https://gmrepo.humangut.info/
phenotypes/D006262), which were assigned to a total of
1613 genera. However, only 389 (∼6.3% of the total) species,
assigned to 91 (∼5.6% of total) genera, were found in more
than one sample with a median relative abundance higher
than 0.01%. Similar results were found in other phenotypes.

https://gmrepo.humangut.info/phenotypes/D006262
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Figure 5. Details of a species in Crohn’s Diseases. Faecalibacterium prausnitzii is chosen to show its distributions (A) and relative abundances (B) in Crohn’s
Disease. For various disease phenotypes, the relative abundances of the species of interest in healthy controls (green) will also be retrieved and visualized
side-by-side with the disease (red). (C) A species co-occurrence network constructed based on the significantly co-occurred pairs for a phenotype (Crohn’s
Disease). Nodes: species co-occurred with others in samples of this phenotype with sizes proportional to the number of connected nodes in the network.
Links: indicate co-occurring relationships between species with widths proportional to the absolute value of the correlation coefficient (Pearson correlation),
while the colors indicate positive (green) or negative (red) correlations. Placing a mouse over a node can highlight the node and its direct neighbors and
show the names of the node and its direct neighbors.

These results indicate that most of these taxa were found in
only a small number of runs, and/or are presented with lim-
ited abundances.

In all of the 28 252 valid runs in our database, we found
that in total 6973 species were assigned to 1710 genera.
Among these, 2685 species, assigned to 834 genera, were
found in more than one sample with a median relative abun-
dance higher than 0.01% within one or more phenotypes
(Figure 4, the phylogenetic relationships of these species
were obtained from the NCBI taxonomy database (37) and
were visualized using Evolview v3 (38)); these numbers are
close to recently published results (39). Although the preva-
lence of most species is low, our results have expanded the
known species repertoire of the collective human gut mi-
crobiota. Diet, region, and disease are known to affect the
abundance and diversity of the human gut microbiota. We
believe that the total number of species/strains in the hu-
man gut flora will be further increased as more samples are
analyzed in the future.

Additional links to the NCBI BioProject, NCBI SRA
and NCBI MeSH Browser were also provided for each of
the projects, runs and phenotypes, in order to facilitate re-
searchers to obtain more information or download raw se-
quencing data. More external databases will be included in
the future.

Species abundance, prevalence and co-occurrence within and
across phenotypes

With the availability of precalculated relative abundance in-
formation for all valid runs in GMrepo, we allow users to
visualize the species/genus abundance distribution in a phe-
notype of interest as a scatter plot (Supplementary Figure
S1); if a user chooses a disease (e.g. Crohn’s Disease or col-
orectal neoplasms), the abundances of the same taxon in
healthy controls will also be retrieved and visualized side-
by-side with the disease in the scatter plot and boxplot
(Figure 5A, B). Visualization and comparison of the taxon
abundances across all phenotypes is also supported (Sup-
plementary Figures S2 and S3).

We also calculated the species/genus prevalence for
each species (Supplementary Figure S4). Based on the
presence/absence information, we calculated pairwise co-
occurrences within each phenotype for all possible species-
species and genus-genus pairs. For significantly co-occurred
pairs (see the ‘Construction and contents of GMrepo’ for
details), we also provided precalculated Person and Spear-
man correlation coefficient values based on their relative
abundances, in order to further describe the directions of
the interactions between the two taxa. For example, a sig-
nificant positive correlation coefficient may indicate the two
taxa prefer similar environments and/or are beneficial to
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Figure 6. Graphical selectors and three examples. These selectors support complex logic combinations (AND, OR and grouping) that allow users to
perform biologically relevant queries. (A) Shows how to find samples from healthy individuals with BMIs between 18.5 and 24.9; (B) allows users to find
fecal samples of Americans who did not recently use antibiotics; (C) shows how to find projects that are related to neurological diseases (e.g. including
autism spectrum disorder, bipolar disorder and depression) and each contains healthy controls.

each other’s’ growth, while a significant negative correlation
coefficient may indicate the two taxa prefer different envi-
ronments and/or are competitive. A co-occurrence network
can then be constructed based on significantly co-occurred
pairs, as shown in Figure 5C.

Additional links to external databases were also provided
for each of the species and genera identified in GMrepo, in
order to facilitate researchers in obtaining related informa-
tion on these taxa. So far we have linked GMrepo to NCBI
taxonomy, ENA taxonomy, genome annotations (40), mi-
crobe to bacteriophage interactions (41), bacteria to drug
interactions (http://www.bugdrug-db.info) and a few others
(42). More external databases will be included in the future.

Complex and biologically relevant queries to our data are fa-
cilitated by graphical query builders

One of the most important features of GMrepo is the col-
lection and manual curation of related meta-data. To fur-
ther take advantage of this data, we equipped GMrepo with
graphical query builders (powered by the jQueryBuilder
widget) to allow users to perform complex queries. We pro-
vided two query builders and three examples for each. As
shown in Figure 6, the query builders are easy to use be-
cause of their straightforward and self-explanatory inter-
face. They support complex logic combinations (AND, OR
and grouping) that allow users to perform biologically rel-
evant queries. For example, Figure 6A shows how to find
runs/samples from healthy individuals with BMIs between
18.5 and 24.9; Figure 6B allows users to find fecal sam-
ples of Americans who have not used antibiotics recently;
Figure 6C shows how to find projects that are related to

neurological diseases (including autism spectrum disorder,
bipolar disorder and depression) and each contains healthy
controls. More examples can be found at https://gmrepo.
humangut.info.

More query builders will be added in the near future to al-
low users to search for species/genera based on their abun-
dances, prevalence, co-occurrences and differential abun-
dances in different phenotypes.

Future directions

In addition to the continuous collection of new human gut
metagenomic data in the coming years, we plan to add new
contents to GMrepo, including (but not limited to) viral
abundances, functional profiles and metabolic pathway pro-
files for the collected samples. We also plan to include more
utilities, allowing users to perform on-site cross-sample
comparisons, differential abundance analysis and mathe-
matical modeling. These will further facilitate the reusabil-
ity and accessibility of human gut metagenomic data and
will contribute to better understanding of the relationships
between gut microbiota dysbiosis and human diseases.

CONCLUSIONS

In this study, we introduced GMrepo, an online database
of curated, consistently annotated meta-data and human
gut metagenomic data. With 58 903 samples/runs collected
from 253 projects and 92 phenotypes, GMrepo is one of the
largest databases dedicated to human gut metagenomes (in-
cluding both 16S and metagenomic sequences). We care-
fully curated meta-data and applied stringent criteria to

http://www.bugdrug-db.info
https://gmrepo.humangut.info
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keep only high quality data. To facilitate reusability and ac-
cessibility, we included precomputed species/genus relative
abundances, prevalence within and across phenotypes, as
well as pairwise co-occurrence information. These data are
available at the website and can be accessed through pro-
grammable interfaces. To make relevant information eas-
ier to access, we equipped GMrepo with a graphical query
builder, allowing users to make customized, complex and
biologically relevant queries. We will continue developing
GMrepo in the near future by including more manually cu-
rated human gut metagenomic data, more functional anno-
tated data, and more utilities.

DATA AVAILABILITY

All data are freely accessible to all academic users. This
work is licensed under a Creative Commons Attribution-
Non-Commercial 3.0 Unported License (CC BY-NC 3.0).
In addition to various download functions on many web-
pages, users can download all data from the ‘Data down-
loads’ section of the ‘Help’ page. Programmable access
through REST APIs is also supported; detailed instructions
on using R, Perl and Python to access our data can be found
at the ‘Programmable access’ section of the ‘Help’ page
or our GitHub page: https://github.com/evolgeniusteam/
GMrepoProgrammableAccess.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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