organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-[2-(Benzylsulfanyl)phenyl]-1,1,3,3tetramethylguanidine

Adam Neuba, Ulrich Flörke* and Gerald Henkel

Department Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany Correspondence e-mail: ulrich.floerke@upb.de

Received 15 April 2011; accepted 18 April 2011

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.091; data-to-parameter ratio = 19.6.

The molecular structure of the title compound, $C_{18}H_{23}N_3S$, shows it to be a derivative of an aminothiophenol possessing a tetramethylguanidine group with a localized C=N double bond of 1.304 (2) Å and a protected thiol functional group as an *S*-benzyl thioether. The two aromatic ring planes make a dihedral angle of 67.69 (6)°.

Related literature

For synthesis, see: Neuba (2009); Lindoy & Livingstone (1968); Herres-Pawlis *et al.* (2005). For related structures, see: Neuba *et al.* (2007*a,b,c*); Herres *et al.* (2004); Raab *et al.* (2003, 2002); Peters *et al.* (2008). For complexes of metal centres with bis(tetramethylguanidino)propylene and amine guanidine hybrids, see: Harmjanz (1997); Waden (1999); Pohl *et al.* (2000); Schneider (2000); Wittmann (1999); Wittmann *et al.* (2001); Herres *et al.* (2005); Herres-Pawlis *et al.* (2009); Börner *et al.* (2007, 2009). For sulfur guanidine hybrids based on aminothiophenol and cysteamine, see: Neuba (2009); Neuba *et al.* (2008*a,b,* 2010, 2011).

Experimental

Crystal data $C_{18}H_{23}N_3S$ $M_r = 313.45$

Monoclinic, $P2_1/c$ a = 7.869 (2) Å

b = 26.850(7) A	
c = 8.314 (2) Å	
$\beta = 106.959 \ (5)^{\circ}$	
V = 1680.2 (8) Å ³	
Z = 4	

Data collection

Bruker SMART APEX
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
$T_{\rm min} = 0.923, \ T_{\rm max} = 0.946$

Refinement $P[E^2 + 2\pi (E^2)]$

 $R[F^2 > 2\sigma(F^2)] = 0.041$ 203 parameters $wR(F^2) = 0.091$ H-atom parameters constrainedS = 0.92 $\Delta \rho_{max} = 0.24$ e Å $^{-3}$ 3988 reflections $\Delta \rho_{min} = -0.34$ e Å $^{-3}$

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and local programs.

Mo $K\alpha$ radiation $\mu = 0.19 \text{ mm}^{-1}$

 $0.42 \times 0.33 \times 0.29 \text{ mm}$

14278 measured reflections 3988 independent reflections

2816 reflections with $I > 2\sigma(I)$

T = 120 K

 $R_{\rm int}=0.066$

The authors thank the German Research Council (DFG) and the Federal Ministry of Education and Research (BMBF) for continuous support of their work. AN thanks the university of Paderborn for granting a doctorate scholarship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5518).

References

- Börner, J., Flörke, U., Huber, K., Döring, A., Kuckling, D. & Herres-Pawlis, S. (2009). Chem. Eur. J. 15, 2362–2376.
- Börner, J., Herres-Pawlis, S., Flörke, U. & Huber, K. (2007). Eur. J. Inorg. Chem. pp. 5645–5651.
- Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Harmjanz, F. (1997). PhD thesis, University of Oldenburg, Germany.
- Herres, S., Flörke, U. & Henkel, G. (2004). Acta Cryst. C60, 0358-0360.
- Herres, S., Heuwing, A. J., Flörke, U., Schneider, J. & Henkel, G. (2005). Inorg. Chim. Acta, 358, 1089–1095.
- Herres-Pawlis, S., Neuba, A., Seewald, O., Seshadri, T., Egold, H., Flörke, U. & Henkel, G. (2005). Eur. J. Org. Chem. pp. 4879–4890.
- Herres-Pawlis, S., Verma, P., Haase, R., Kang, P., Lyons, C. T., Wasinger, E. C., Flörke, U., Henkel, G. & Stack, T. D. P. (2009). J. Am. Chem. Soc. 131, 1154– 1169.
- Lindoy, L. F. & Livingstone, S. E. (1968). Inorg. Chem. 7, 1149-1154.
- Neuba, A. (2009). PhD thesis, University of Paderborn, Germany.
- Neuba, A., Flörke, U. & Henkel, G. (2007a). Acta Cryst. E63, 03476-03477.
- Neuba, A., Flörke, U. & Henkel, G. (2007b). Acta Cryst. E63, 04661.
- Neuba, A., Flörke, U. & Henkel, G. (2007c). Acta Cryst. E63, 04683.
- Neuba, A., Flörke, U., Meyer-Klaucke, W., Salomone-Stagni, M., Bill, E., Bothe, E., Höfer, P. & Henkel, G. (2011). *Angew. Chem.* In the press.
- Neuba, A., Haase, R., Bernard, M., Flörke, U. & Herres-Pawlis, S. (2008b). Z. Anorg. Allg. Chem. 634, 2511–2517.
- Neuba, A., Herres-Pawlis, S., Flörke, U. & Henkel, G. (2008a). Z. Anorg. Allg. Chem. 634, 771–777.
- Neuba, A., Herres-Pawlis, S., Seewald, O., Börner, J., Heuwing, J., Flörke, U. & Henkel, G. (2010). Z. Anorg. Allg. Chem. 636, 2641–2649.
- Peters, A., Wild, U., Hubner, O., Kaifer, E. & Himmel, H.-J. (2008). *Chem. Eur. J.* **14**, 7813–7821.
- Pohl, S., Harmjanz, M., Schneider, J., Saak, W. & Henkel, G. (2000). J. Chem. Soc. Dalton Trans. pp. 3473–3479.

- Raab, V., Harms, K., Sundermeyer, J., Kovacevic, B. & Maksic, Z. B. (2003). J. Org. Chem. 68, 8790-8797.
- Raab, V., Kipke, J., Gschwind, R. M. & Sundermeyer, J. (2002). Chem. Eur. J. 8, 1682–1693.
- Schneider, J. (2000). PhD thesis, University of Duisburg, Germany.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Waden, H. (1999). PhD thesis, University of Oldenburg, Germany.
- Wittmann, H. (1999). PhD thesis, University of Marburg, Germany. Wittmann, H., Raab, V., Schorm, A., Plackmeyer, J. & Sundermeyer, J. (2001). Eur. J. Inorg. Chem. pp. 1937-1948.

Acta Cryst. (2011). E67, o1202-o1203 [doi:10.1107/S1600536811014577]

2-[2-(Benzylsulfanyl)phenyl]-1,1,3,3-tetramethylguanidine

A. Neuba, U. Flörke and G. Henkel

Comment

The synthesis and characterization of novel molecules containing nitrogen and sulfur as donor functions and their application in synthesis of sulfur copper complexes is important for biomimetic copper–sulfur chemistry. In search of multifunctional ligands we have extended our studies to guanidyl-type systems with N-donor functions. The first derivative, the ligand bis(tetramethyl-guanidino)propylene as well as amine guanidine hybrids and their complexes with Cu, Fe, Ni, Ag, Mn, Co and Zn have recently been investigated (Harmjanz, 1997; Waden, 1999; Pohl *et al.*, 2000; Schneider, 2000; Wittmann, 1999; Wittmann *et al.*, 2001; Herres-Pawlis *et al.*, 2005, 2009; Herres *et al.*, 2005; Neuba *et al.*, 2008*a,b*; 2010; Börner *et al.* 2007, 2009). We have now developed several sulfur guanidine hybrids based on aminothiophenol and cysteamine (Neuba *et al.*, 2007*a,b,c*; Neuba, 2009). The synthesized sulfur guanidine compounds possess aliphatic and aromatic thioethers or disulfide groups and were used in the synthesis of copper thiolate complexes to mimic active centres like the Cu_A in cytochrome-c oxidase and N₂O-reductase (Neuba *et al.*, 2011). The two aromatic ring planes make a dihedral angle of 67.69 (6)° and the N1—C6—C11—S1—C12—C13 moiety is mostly planar with largest deviation of 0.084 (1) Å for S1 from the best plane. The guanidine plane C1N₃ makes an angle of 59.80 (5)° with the attached aromatic ring. The N1=C1 guanidine double bond measures 1.304 (2) Å and is clearly localized. Similar double-bond localization is observed in other guanidine compounds (*e.g.* Herres *et al.*, 2004; Neuba *et al.*, 2007*a,b*; Raab *et al.*, 2002, 2003; Peters *et al.*, 2008).

Experimental

The title compound was prepared as follows: a solution of tetramethylchloroformamidinium chlorid (Herres-Pawlis *et al.*, 2005) (5.13 g, 30 mmol) in dry MeCN was added dropwise to an ice-cooled solution of 2-(benzylthio)aniline (Lindoy & Livingstone, 1968) (6.45 g, 30 mmol) and triethylamine (4.18 ml, 3.03 g, 30 mmol) in dry MeCN. After 3 h under reflux, a solution of NaOH (1.2 g, 30 mmol) in water was added. The solvents and NEt₃ were then evaporated under vacuum. In order to deprotonate the mono-hydrochloride, 50 wt% KOH (aqueous, 15 ml) was added and the free base was extracted into the MeCN phase (3×80 ml). The organic phase was dried with Na₂SO₄. After filtration, the solvent was evaporated under reduced pressure. The title compound was obtained as white powder (yield 69%, 6.4 g). Colourless crystals suitable for X-ray diffraction were obtained by slow cooling of a hot saturated MeCN solution.

Spectroscopic analysis: ¹H NMR (500 MHz, CDCl₃, 25°C, δ , p.p.m.): 2.68 (s, 12H, CH₃), 4.10 (s, 2H, CH₂), 6.59 (d, 1H, CH), 6.80 (t, 1H, CH), 7.03 (t, 1H, CH), 7.15 (d, 1H, CH), 7.21 (t, 1H, CH), 7.28 (t, 2H, CH), 7.36 (d, 2H, CH); ¹³C NMR (125 MHz, CDCl₃, 25°C, δ , p.p.m.): 37.3 (CH₂), 39.5 (CH₃), 120.5 (CH), 121.7 (CH), 126.1 (CH), 126.9 (CH), 127.2 (CH), 127.6 (CH), 128.4 (CH), 128.7 (C_{quat}), 129.1 (CH), 136.6 (C_{quat}), 137.8 (C_{quat}), 160.0 (C_{gua}); IR (KBr, v, cm⁻¹): 3053 (w), 3030 (w), 3003 (w), 2918 (m), 2848 (m), 2790 (w), 1589 (vs (C=N)), 1558 (s (C=N)), 1500 (m (C=N)), 1460 (m), 1425 (m), 1377 (s), 1279 (w), 1232 (w), 1207 (w), 1144 (m), 1066 (m), 1038 (m), 1020 (s), 914 (w), 850 (w), 806 (vw), 777 (m), 715 (s), 696 (m), 682 (w), 621 (w), 571 (w), 545 (w), 498 (vw), 484 (w), 461 (w), 445 (w). EI–MS (m/z (%)): 313.0

(100) $[M^+]$, 280.0 (31), 269.1 (8) $[M^+ - N(CH_3)_2]$, 242.0 (5), 237.0 (10) $[M^+ - Ph]$, 222.0 (14) $[M^+ - CH_2Ph]$, 215.0 (20), 190.0 (12) $[M^+ - SCH_2Ph]$, 179.0 (76), 148.9 (28), 135.9 (20), 124.0 (9) $[SCH_2Ph^+]$, 91.0 (76), 72.0 (20).

Refinement

H atoms were clearly identified in difference syntheses, idealized and refined riding on the C atoms with C—H = 0.95 (aromatic) or 0.98–0.99 Å, and with isotropic displacement parameters $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(-CH_3 \text{ H atoms})$. All CH₃ H atoms were allowed to rotate but not to tip.

Figures

Fig. 1. Molecular structure with displacement ellipsoids drawn at the 50% probability level.

2-[2-(Benzylsulfanyl)phenyl]-1,1,3,3-tetramethylguanidine

Crystal data	
C ₁₈ H ₂₃ N ₃ S	F(000) = 672
$M_r = 313.45$	$D_{\rm x} = 1.239 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 842 reflections
a = 7.869 (2) Å	$\theta = 2.7 - 27.7^{\circ}$
b = 26.850 (7) Å	$\mu = 0.19 \text{ mm}^{-1}$
c = 8.314 (2) Å	T = 120 K
$\beta = 106.959 \ (5)^{\circ}$	Block, colourless
V = 1680.2 (8) Å ³	$0.42\times0.33\times0.29~mm$
Z = 4	

Data collection

Bruker SMART APEX diffractometer	3988 independent reflections
Radiation source: sealed tube	2816 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.066$
φ and ω scans	$\theta_{\text{max}} = 27.9^{\circ}, \ \theta_{\text{min}} = 1.5^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)	$h = -10 \rightarrow 9$
$T_{\min} = 0.923, T_{\max} = 0.946$	$k = -35 \rightarrow 35$
14278 measured reflections	$l = -10 \rightarrow 10$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.091$	H-atom parameters constrained
<i>S</i> = 0.92	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0443P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3988 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
203 parameters	$\Delta \rho_{max} = 0.24 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.34 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and	isotroi	nic o	r ec	nivalent	isotro	nic dis	placement	narameters	$(Å^2$)
				1001.01			100000000000000000000000000000000000000	1001.01		p	pen ennerens	1 /	/

	r	12	7	Uine*/Une
S 1	λ	y 0.202868 (12)	2 0 76277 (5)	0.02250(11)
51	0.48274(0)	0.392808 (13)	0.70377(3)	0.02550 (11)
N1	0.64141 (18)	0.33140 (4)	0.56770 (16)	0.0214 (3)
N2	0.93294 (17)	0.29594 (4)	0.63993 (16)	0.0232 (3)
N3	0.68294 (18)	0.24922 (4)	0.50838 (17)	0.0239 (3)
C1	0.7516 (2)	0.29479 (5)	0.57258 (18)	0.0203 (3)
C2	1.0512 (2)	0.27118 (7)	0.5595 (2)	0.0362 (4)
H2A	0.9806	0.2524	0.4615	0.054*
H2B	1.1294	0.2483	0.6395	0.054*
H2C	1.1231	0.2961	0.5232	0.054*
C3	1.0191 (2)	0.33296 (6)	0.7646 (2)	0.0291 (4)
H3A	1.0587	0.3609	0.7089	0.044*
H3B	1.1220	0.3179	0.8466	0.044*
H3C	0.9349	0.3450	0.8225	0.044*
C4	0.4983 (2)	0.24676 (6)	0.4081 (2)	0.0311 (4)
H4A	0.4223	0.2445	0.4825	0.047*
H4B	0.4800	0.2173	0.3354	0.047*
H4C	0.4678	0.2768	0.3385	0.047*
C5	0.7491 (2)	0.20329 (5)	0.5999 (2)	0.0309 (4)
H5A	0.8732	0.2079	0.6666	0.046*

H5B	0.7414	0.1760	0.5196	0.046*
H5C	0.6772	0.1952	0.6746	0.046*
C6	0.6947 (2)	0.38116 (5)	0.56372 (19)	0.0192 (3)
C7	0.7988 (2)	0.39792 (5)	0.4653 (2)	0.0233 (3)
H7A	0.8470	0.3744	0.4052	0.028*
C8	0.8338 (2)	0.44823 (6)	0.4527 (2)	0.0252 (4)
H8A	0.9042	0.4589	0.3838	0.030*
C9	0.7656 (2)	0.48271 (5)	0.5412 (2)	0.0236 (3)
H9A	0.7905	0.5171	0.5343	0.028*
C10	0.6610(2)	0.46705 (5)	0.63978 (19)	0.0220 (3)
H10A	0.6153	0.4908	0.7009	0.026*
C11	0.6223 (2)	0.41684 (5)	0.65010 (18)	0.0192 (3)
C12	0.4411 (2)	0.44748 (5)	0.8758 (2)	0.0243 (4)
H12A	0.5549	0.4615	0.9463	0.029*
H12B	0.3797	0.4733	0.7947	0.029*
C13	0.3272 (2)	0.43232 (5)	0.98479 (19)	0.0210 (3)
C14	0.4001 (2)	0.40508 (6)	1.1318 (2)	0.0274 (4)
H14A	0.5226	0.3966	1.1635	0.033*
C15	0.2967 (3)	0.39029 (6)	1.2317 (2)	0.0317 (4)
H15A	0.3480	0.3719	1.3316	0.038*
C16	0.1184 (3)	0.40237 (6)	1.1860 (2)	0.0332 (4)
H16A	0.0467	0.3919	1.2539	0.040*
C17	0.0442 (2)	0.42969 (6)	1.0417 (2)	0.0329 (4)
H17A	-0.0781	0.4384	1.0113	0.039*
C18	0.1484 (2)	0.44444 (6)	0.9414 (2)	0.0266 (4)
H18A	0.0967	0.4630	0.8420	0.032*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
S1	0.0297 (2)	0.01664 (17)	0.0296 (2)	-0.00079 (16)	0.01715 (18)	-0.00202 (15)
N1	0.0224 (7)	0.0167 (6)	0.0277 (7)	-0.0022 (5)	0.0116 (6)	-0.0044 (5)
N2	0.0206 (7)	0.0215 (6)	0.0263 (7)	-0.0002 (5)	0.0047 (6)	-0.0055 (5)
N3	0.0234 (7)	0.0164 (6)	0.0296 (7)	-0.0001 (5)	0.0043 (6)	-0.0045 (5)
C1	0.0237 (9)	0.0187 (7)	0.0199 (8)	-0.0011 (6)	0.0089 (7)	-0.0020 (6)
C2	0.0267 (10)	0.0419 (10)	0.0414 (11)	0.0044 (8)	0.0121 (9)	-0.0069 (8)
C3	0.0288 (10)	0.0255 (8)	0.0281 (9)	-0.0054 (7)	0.0008 (8)	-0.0025 (7)
C4	0.0253 (10)	0.0251 (8)	0.0400 (10)	-0.0031 (7)	0.0049 (8)	-0.0076 (7)
C5	0.0350 (10)	0.0193 (7)	0.0367 (10)	0.0001 (7)	0.0076 (9)	-0.0016 (7)
C6	0.0175 (8)	0.0181 (7)	0.0219 (8)	-0.0009 (6)	0.0058 (7)	-0.0018 (6)
C7	0.0221 (9)	0.0230 (8)	0.0277 (8)	0.0002 (6)	0.0119 (7)	-0.0037 (6)
C8	0.0228 (9)	0.0273 (8)	0.0279 (9)	-0.0026 (7)	0.0111 (7)	0.0035 (7)
C9	0.0242 (9)	0.0168 (7)	0.0289 (9)	-0.0020 (6)	0.0061 (7)	0.0020 (6)
C10	0.0228 (9)	0.0173 (7)	0.0252 (8)	0.0013 (6)	0.0059 (7)	-0.0012 (6)
C11	0.0182 (8)	0.0195 (7)	0.0209 (8)	-0.0004 (6)	0.0071 (7)	-0.0002 (6)
C12	0.0305 (10)	0.0174 (7)	0.0280 (9)	0.0022 (6)	0.0131 (8)	-0.0036 (6)
C13	0.0258 (9)	0.0169 (7)	0.0218 (8)	0.0007 (6)	0.0092 (7)	-0.0061 (6)
C14	0.0259 (9)	0.0296 (8)	0.0267 (9)	0.0056 (7)	0.0076 (8)	-0.0013 (7)

C15	0.0425 (11)	0.0296 (8)	0.0243 (9)	0.0015 (8)	0.0117 (8)	0.0015 (7)
C16	0.0423 (12)	0.0292 (9)	0.0372 (10)	-0.0078 (8)	0.0260 (9)	-0.0093 (7)
C17	0.0224 (10)	0.0332 (9)	0.0451 (11)	0.0010 (7)	0.0129 (9)	-0.0113 (8)
C18	0.0282 (10)	0.0235 (8)	0.0281 (9)	0.0028 (7)	0.0082 (8)	-0.0025 (6)
Geometric para	ameters (Å, °)					
S1—C11		1.7661 (15)	С6—	C11	1	.413 (2)
S1—C12		1.8175 (15)	С7—	C8	1	.389 (2)
N1-C1		1.3035 (19)	С7—	H7A	0	.9500
N1—C6		1.4033 (18)	C8—	С9	1	.384 (2)
N2—C1		1.373 (2)	C8—	H8A	0	.9500
N2—C3		1.4536 (19)	С9—	C10	1	.386 (2)
N2—C2		1.455 (2)	С9—	H9A	0	.9500
N3—C1		1.3804 (18)	C10–	-C11	1	.390 (2)
N3—C4		1.451 (2)	C10–	-H10A	0	.9500
N3—C5		1.4628 (19)	C12-	-C13	1	.505 (2)
C2—H2A		0.9800	C12-	-H12A	0	.9900
C2—H2B		0.9800	C12-	-H12B	0	.9900
C2—H2C		0.9800	C13-	-C18	1	.385 (2)
С3—НЗА		0.9800	C13-	-C14	1	.396 (2)
С3—Н3В		0.9800	C14-	-C15	1	.380 (2)
С3—НЗС		0.9800	C14-	-H14A	0	.9500
C4—H4A		0.9800	C15-	-C16	1	.381 (3)
C4—H4B		0.9800	C15-	-H15A	0	.9500
C4—H4C		0.9800	C16–	C17	1	.382 (2)
C5—H5A		0.9800	C16–	-H16A	0	.9500
С5—Н5В		0.9800	C17–	-C18	1	.387 (2)
C5—H5C		0.9800	C17–	-H17A	0	.9500
С6—С7		1.391 (2)	C18–	-H18A	0	.9500
C11—S1—C12		102.33 (7)	C8—	С7—Н7А	1	19.2
C1—N1—C6		121.20 (13)	С6—	С7—Н7А	1	19.2
C1—N2—C3		121.30 (13)	С9—	С8—С7	1	19.62 (14)
C1—N2—C2		122.01 (13)	С9—	C8—H8A	1	20.2
C3—N2—C2		114.35 (14)	С7—	C8—H8A	1	20.2
C1—N3—C4		118.43 (13)	C8—	C9—C10	1	20.05 (14)
C1—N3—C5		120.43 (14)	C8—	С9—Н9А	1	20.0
C4—N3—C5		113.92 (13)	C10-	-С9—Н9А	1	20.0
N1-C1-N2		126.77 (14)	С9—	C10—C11	1	20.61 (14)
N1-C1-N3		118.33 (15)	С9—	C10—H10A	1	19.7
N2-C1-N3		114.87 (13)	C11–	-C10-H10A	1	19.7
N2—C2—H2A		109.5	C10-	-C11-C6	1	19.88 (14)
N2—C2—H2B		109.5	C10–	-C11-S1	1	24.60 (12)
H2A—C2—H2E	3	109.5	С6—	C11—S1	1	15.51 (11)
N2—C2—H2C		109.5	C13–	-C12-S1	1	08.58 (10)
H2A—C2—H2C	2	109.5	C13–	-C12-H12A	1	10.0
H2B—C2—H2C	2	109.5	S1—4	C12—H12A	1	10.0
N2—C3—H3A		109.5	C13–	-C12-H12B	1	10.0
N2—C3—H3B		109.5	S1—4	C12—H12B	1	10.0

НЗА—СЗ—НЗВ	109.5	H12A—C12—H12B	108.4
N2—C3—H3C	109.5	C18—C13—C14	118.55 (15)
НЗА—СЗ—НЗС	109.5	C18—C13—C12	121.19 (14)
НЗВ—СЗ—НЗС	109.5	C14—C13—C12	120.25 (15)
N3—C4—H4A	109.5	C15—C14—C13	120.91 (16)
N3—C4—H4B	109.5	C15—C14—H14A	119.5
H4A—C4—H4B	109.5	C13—C14—H14A	119.5
N3—C4—H4C	109.5	C14—C15—C16	119.81 (16)
H4A—C4—H4C	109.5	C14—C15—H15A	120.1
H4B—C4—H4C	109.5	C16—C15—H15A	120.1
N3—C5—H5A	109.5	C15—C16—C17	120.10 (16)
N3—C5—H5B	109.5	C15—C16—H16A	120.0
H5A—C5—H5B	109.5	C17—C16—H16A	120.0
N3—C5—H5C	109.5	C16—C17—C18	119.97 (17)
H5A—C5—H5C	109.5	С16—С17—Н17А	120.0
H5B—C5—H5C	109.5	С18—С17—Н17А	120.0
C7—C6—N1	123.59 (13)	C13—C18—C17	120.66 (16)
C7—C6—C11	118.26 (13)	C13-C18-H18A	119.7
N1—C6—C11	117.77 (13)	C17—C18—H18A	119.7
C8—C7—C6	121.54 (14)		
C6—N1—C1—N2	28.2 (2)	C9—C10—C11—S1	-177.01 (12)
C6—N1—C1—N3	-153.64 (14)	C7—C6—C11—C10	-2.2 (2)
C3—N2—C1—N1	21.5 (2)	N1-C6-C11-C10	-175.37 (14)
C2—N2—C1—N1	-140.14 (17)	C7—C6—C11—S1	176.95 (12)
C3—N2—C1—N3	-156.70 (13)	N1-C6-C11-S1	3.76 (18)
C2—N2—C1—N3	41.6 (2)	C12—S1—C11—C10	-7.87 (16)
C4—N3—C1—N1	12.7 (2)	C12—S1—C11—C6	173.05 (12)
C5—N3—C1—N1	-135.83 (16)	C11—S1—C12—C13	-178.03 (11)
C4—N3—C1—N2	-168.95 (14)	S1-C12-C13-C18	-105.18 (15)
C5—N3—C1—N2	42.6 (2)	S1-C12-C13-C14	74.12 (16)
C1—N1—C6—C7	42.6 (2)	C18—C13—C14—C15	0.3 (2)
C1—N1—C6—C11	-144.63 (15)	C12-C13-C14-C15	-179.05 (14)
N1—C6—C7—C8	173.60 (15)	C13-C14-C15-C16	0.2 (2)
C11—C6—C7—C8	0.8 (2)	C14—C15—C16—C17	-0.8 (2)
C6—C7—C8—C9	0.7 (2)	C15-C16-C17-C18	0.9 (2)
C7—C8—C9—C10	-0.9 (2)	C14—C13—C18—C17	-0.2 (2)
C8—C9—C10—C11	-0.5 (2)	C12—C13—C18—C17	179.14 (14)
C0 C10 C11 C(20(2)	C16 C17 C19 C12	0.4(2)

Fig. 1