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Thyroid hormone/thyroid hormone receptor (TH/TR) axis is characterized by TH with the
assistance of plasma membrane transporters to combine with TR and mediate biological
activities. Growing evidence suggests that TH/TR participates in plenty of hepatic
metabolism. Thus, this review focuses on the role of the TH/TR axis in the liver
diseases. To be specific, the TH/TR axis may improve metabolic-associated fatty liver
disease, hepatitis, liver fibrosis, and liver injury while exacerbating the progression of acute
liver failure and alcoholic liver disease. Also, the TH/TR axis has paradoxical roles in
hepatocellular carcinoma. The TH/TR axis may be a prospecting target to cure hepatic
diseases.
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INTRODUCTION

Thyroid hormones (THs), including thyroid hormones 3,5,3′,5′- tetraiodothyronine or
thyroxine (T4) and 3,5,3′-triiodothyronine (T3), are secreted by the thyroid gland to
mediate homeostasis of biological growth, development, and metabolism (Senese et al.,
2019; Turan and Turksoy, 2021). Thyroid hormone receptor (TR), a member of the nuclear
receptor superfamily, is a ligand-dependent transcriptional factor. TR isoforms include TRα1,
TRα2, TRβ1, TRβ2, and v-erbA (Ventura-Holman et al., 2011; Knabl et al., 2020). TRα and TRβ
are encoded by chromosome 17 and chromosome 3, respectively (Onigata and Szinnai, 2014).
V-erbA, acting like a transcriptional suppressor, is a derivant after TRα1 is affected by the avian
erythroblastosis virus (AEV) (Ciana et al., 1998). TRα1 is mainly expressed in most peripheral
organs except the liver, while TRβ1 is highly expressed in the liver. Although the TRα1 and
TRβ1 mRNA levels are similar in metabolically active fats and muscles, protein levels are quite
different (TRβ: TRα = 1:10). Moreover, TRβ2 is highly expressed in the pituitary gland, and
gender differences in the expression have been found (Minakhina et al., 2020). The active form
of TH, T3, and its nuclear receptor assembles ligand-dependent TH/TR complexes, thus
regulating gene expression and directing downstream transcriptional activities (Lin et al.,
2020a). In addition, thyroid hormone-response element (TRE) is located on the promoters of
T3 target genes and affects the activity of the TR transcription response (Cheng, 2005). In
pituitary gland, thyroid-stimulating hormone (TSH) is responsible for synthesis and secretion
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of TH while the encoding genes of TSH are also regulated by
TH in a negative way (Bargi-Souza et al., 2017).

Dysfunction of the TH/TR axis leads to numerous pathologies,
especially including growth, skeletal development, heart diseases,
cognitive dissonance, gastrointestinal function, obesity,
dysmetabolism, and cancers (Brent, 2012; Ortiga-Carvalho
et al., 2014; Ajdukovic et al., 2021; Moutzouri et al., 2021;
Niedowicz et al., 2021; Salman et al., 2021). Therefore, the
abnormity of the TH/TR axis elicits a series of diseases, the
most common of which is metabolic disease (Malm, 2004). The
correlation between the TH/TR axis and many metabolism-
associated diseases has been well-elucidated. For example, the
TH/TR axis plays a protective role in hyperlipidemia, obesity, and
type 2 diabetes (Grover et al., 2007). Intriguingly, the TH/TR axis
is intimately associated with the development of the brain and the
cerebellar both in fetal and adults (Ishii et al., 2021). Also, the TH/
TR axis acts as a promoter in arrhythmia, gastric tumors, and
alcoholic-related liver injury (Puhr et al., 2020; Deng et al., 2021).
Considering the aforementioned facts, the TH/TR axis may be an
indispensable part in maintaining hepatic metabolism.

Indeed, accumulating evidence has demonstrated that the TH/
TR axis plays an important role in liver diseases. For instance,
TRβ1, a subtype of TH, is highly expressed in the liver, regulating
the metabolism of cholesterol and carbohydrates (Dawson and
Parini, 2018; Gautherot et al., 2018). Additionally, the TH/TR
axis, a strong inducer of hepatic autophagy contributing to lipid
droplet degradation, as well as maintaining mitochondrial
biogenesis and turnover, causes the removal of damaged
mitochondria and ROS, ultimately preventing hepatic injury
(Chi et al., 2019). As the TH/TR axis is correlated with
various hepatic physiological alterations, more emphasis
should be placed on the mechanism of the TH/TR axis in
liver diseases. This review summarizes the regulatory
mechanism of the TH/TR axis in the liver and focuses on the
role of the TH/TR axis in hepatic diseases.

TH/TR AXIS PROMOTES HEPATOCYTE
PROLIFERATION AND LIVER
REGENERATION
TH has proven to be a hepatic mitogen, thus eliciting hepatocyte
proliferating and liver repopulation. López-Fontal et al. (2010) also
discovered that hypothyroidism and TR-deficient mice showed
delayed recovery of liver mass. Interestingly, hypothyroidism can
induce moderate non-alcoholic steatohepatitis, thereby promoting
liver regeneration (Rodríguez-Castelán et al., 2017). A large number
of studies reported that TRβ is involved in liver regeneration by the
TH/TR axis (Sun et al., 2007). For instance, two TRβ agonists, TG68
and IS25, promote hepatocyte proliferation without TH/TR axis-
dependent side effects (Perra et al., 2020). This aforementioned
finding hints that the regulation of hepatocyte proliferation by the
TH/TR axis is of great importance. Accordingly, studies have
suggested the effect of the TH/TR axis on hepatocyte
proliferation that TH promotes liver regeneration after 50% liver
transplantation in mice via elevating histone 3 mRNA, proliferating
cell nuclear antigen (PCNA), cyclin-dependent kinase 2 (cdk2),

cyclin A, and cyclin D1 levels (Oren et al., 1999; Columbano
et al., 2008; Taki-Eldin et al., 2011). The TH/TR axis activates β-
catenin to induce hepatocyte proliferation through PKA and Wnt-
dependent pathways (Fanti et al., 2014; Alvarado et al., 2016).
Moreover, poly (ADP-ribose) polymerase (PARP), a nuclear
enzyme involved in cell replication, is involved in the early steps
of liver regeneration induced by TH after partial hepatectomy (PH)
(Cesarone et al., 2000). The decrease of Dio3 elicits TH-dependent
hepatocyte proliferation and liver regeneration (Kester et al., 2009).
In addition, T3 bounds to nucleoprotein and then changes the
interaction between nucleoprotein and TRE during liver
regeneration (Hirose-Kumagai et al., 1995). These studies show
that the regulation of hepatocyte proliferation by the TH/TR axis
has been gradually demonstrated. Otherwise, the TH/TR axis is also
involved in some specific regulation mechanisms of liver
regeneration. For instance, Anan et al. (Abu Rmilah et al., 2020)
summarized that TH mediates cell cycle regulators and apoptosis in
liver regeneration. In addition, T3 improves liver regeneration by
promoting the expression of VEGF and its receptor Flt-1 (Bockhorn
et al., 2007). These studies suggest that the TH/TR axis may protect
hepatocyte proliferation and liver regeneration (Figure 1).

INTERPLAY BETWEEN TH/TR AXIS AND
LIVER DISEASES

Hepatocyte proliferation, regeneration, and lipid homeostasis in
the liver are involved in many hepatic diseases. Significantly,
numerous studies have shown that the prevalence and
development of hepatic diseases are related to TH/TR axis
abnormity (Mishkin et al., 1981). The interplay between the
TH/TR axis and liver diseases are summarized. These diseases
mainly include metabolic-associated fatty liver disease
(MAFLD), hepatocellular carcinoma (HCC), hepatitis of
hepatitis B virus (HBV) and hepatitis C virus (HCV)
infection, acute liver failure (ALF), liver fibrosis, alcoholic
liver disease, and liver injury.

TH/TR Axis Might Improve MAFLD
MAFLD, formerly named as non-alcoholic fatty liver disease, is a
serious liver issue worldwide and will be the leading cause of liver
transplantation in the forthcoming decades (Méndez-Sánchez
and Díaz-Orozco, 2021). A large number of studies reported that
TH regulates hepatic triglyceride and cholesterol metabolism
(Zhao et al., 2020). Accordingly, TH increases the activity of
hepatic lipase, thus enhancing lipid mobilization from fat
droplets. Moreover, TR activation triggers free fatty acid
transporting into the hepatocytes (Tanase et al., 2020).
Considering the aforementioned facts, the TH/TR axis is likely
to be intimately correlated with hepatic diseases such as MAFLD.
Accumulating evidence has demonstrated that the TH/TR axis is
involved in MAFLD. To be specific, MAFLD is positively related
with hypothyroidism, elevated TSH, T3, and thyroid peroxidase
antibody (TPOAb), and suppressed T4 (Gor et al., 2021;
D’Ambrosio et al., 2021).

The fact that whether the TH/TR axis can be a risk factor in
MAFLD is not clear. Martínez-Escudé A et al. (2021) reported
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that TSH, regarded as a risk factor of MAFLD, is involved in
obesity, atherogenic dyslipidemia, metabolic syndrome (MetS),
hypertransaminasemia, and altered cholesterol and triglycerides
levels. Then, a recent research hint that TSH is a MAFLD risk
factor but excludes the FT3 and FT4 levels (Tan et al., 2021).
Intriguingly, the result in a middle-aged and elderly euthyroid
subjects showed that high-normal FT3 and low-normal TSH
independently predict the high incidence of MAFLD (Gu et al.,

2021). In addition, Chao et al. thought that FT3 and FT4 are
independent risk factors to MAFLD. Conversely, although the
level of TSH in non-MAFLD and MAFLD subjects who are
undergoing health examinations are significantly different, TSH
is excluded as an independent risk factor of MAFLD (Zhang X.
et al., 2020; Chao and Chen, 2021). As described earlier, there is
still controversy to identify TSH and TH as independent risk
factors of MAFLD.

TABLE 1 | Comparison of different effects on selective TRβ receptor agonists.

Drug
category (or
categories)

Type of
agonist/
affinity

Effects on Supplement Reference

Heart Thyroid
hormone axis (THA)

Lipid metabolism

MGL- 3,196
(Resmetirom)

TRβ
-selective
agonist (28-
fold over TRα)

Non-cardiac
electrocardiogram change

At the highest dose,
reversible free T4 was
reduced by 20%. No
significant change in TSH,
free T3, and thyroid axis
dysfunction

LDL-cholesterol, non-
HDL-cholesterol,
apolipoprotein B, and
triglycerides were
reduced. Liver weight,
hepatic steatosis, plasma
alanine aminotransferase
activity, and blood
glucose were reduced.
The dose of 80 mg has
the greatest effect on lipid
metabolism.

No effect on body weight. No
dose- related adverse events,
no changes in liver enzymes,
and vital signs. Phase 2–3
clinical trials are under way.
Effects on insulin resistance
and dog cartilage abnormality
are dispute.

Sinha et al.
(2012);
Kagawa et al.
(2018); Ritter
et al. (2020)

MB07811
(vk2809;
precursor of
KB-141)

TRβ agonists No significant change Total and free T4 levels
were decreased by day 7,
with both doses of
MB07811 and remaining
constant over the
subsequent 6 weeks of
treatment. Levels of TSH
and TSH mRNA were
reduced.

Decreased serum TGs,
liver TGs, and liver weight

No effect on body weight,
fasting blood glucose, plasma
insulin and plasma FFA,
SREBP-2, and HMG- CoA
reductase or
phosphoenolpyruvate
carboxykinase in the liver

Kowalik et al.
(2018)

KB-141 TRβ agonists Increased heart rate, the
first derivative of left
ventricular pressure, and
systolic aortic pressure,
followed by reduced
weight

Decreased total 3,5,3, 5-
tetraiodo- L-thyronine (T4)
and free T4, total T3, and
free T3

Not liver TGs but lower
serum TGs and liver
weight

No difference in the maximum
cholesterol lowering effect
between KB-141 and
MB07811.

Kowalik et al.
(2018)

Sobetirome
(GC- 1)

GC-1 binds
TRβ higher
than that
of TRα

No undesirable effects TRH surpression:T3>Sob
-AM2>sobetirome,
decreased or depleted
circulating T4 and T3 levels
without altered serum TSH
levels

Reduced serum
cholesterol triglyceride
and lipoprotein (a) levels.
Reverse very high-fat diet
(VHFD)-induced fat
accumulation in the liver
and induced weight loss.
Reverse cholesterol
transport pathway

Hyperglycemia and insulin
resistance. The drug was
stopped after the first phase
of clinical trial.

Taub et al.
(2013), Fanti
et al. (2014),
Raza et al.
(2021)

DITPA Similar affinity
to both TR
isoforms with
relatively low
affinity

Increased cardiac index
and decreased systemic
vascular resistance

Lowered serum TSH levels,
to a lesser extent, serum T3
and T4, and no differences
in clinical manifestations of
thyrotoxicosis or
hypothyroidism

Decreased serum
cholesterol, low-density
lipoprotein cholesterol
and body weight, and a
transient decrease in
triglycerides and no
change in high-density
lipoprotein cholesterol

Reduced body weight and
dangerous skeletal actions

Erion et al.
(2007), Senese
et al. (2019)

KB2115
(Eprotirome)

KB2115 has
modestly
higher affinity
for TRβ than
for TRα

No undesirable effects No adverse extrahepatic
thyromimetic effects

Reduced serum total and
LDL-cholesterol,
apolipoprotein B,
triglycerides, and Lp (a)
lipoprotein, prevents
hepatic steatosis

Increase in transaminase and
conjugated bilirubin
concentrations; clinical trials
were discontinued because
long-term studies in dogs
resulted in cartilage damage.

Senese et al.
(2019), Kannt
et al. (2021)
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Importantly, the TH/TR axis regulate hepatic lipidmetabolism
such as mitochondrial fatty acid β-oxidation, lipid autophagy,
and expression of lipid-related genes (Sinha et al., 2012; Kagawa
et al., 2018). Thus, selective TRβ agonists may improve hepatic
lipid disorders and MAFLD (Kowalik et al., 2018; Senese et al.,
2019; Ritter et al., 2020). These agonists includeMGL-3196 (Taub
et al., 2013; Raza et al., 2021; Kannt et al., 2021), MB07811 (Erion
et al., 2007), KB-141 (Erion et al., 2007), sobetisome (GC-1)
(Huang Y. Y. et al., 2013; Ferrara et al., 2018; Saponaro et al.,
2020), KB2115 (Eprotirome) (Ladenson et al., 2010a; Senese et al.,
2019), and DITPA (Ladenson et al., 2010b; Senese et al., 2019)
(Table 1). The side effects of selective TRβ agonists mostly result
from TRα-induced dose-dependent cardiac effects, muscle
metabolism, and bone turnover (Erion et al., 2007; Kelly et al.,
2014). In short, the TH/TR axis may act as a promising treatment
method for MAFLD.

TH/TR Axis Is Involved in HCC Growth,
Proliferation, Invasion, and Metastasis
HCC is one of the most common malignant tumors. The TH/TR
axis is involved in HCC. Some studies have demonstrated that
mutations of TR genes are associated with human carcinoma
(Anyetei-Anum et al., 2018; Piqué et al., 2020). A clinical study
exhibited that hypothyroidism delays hepatocyte growth while
hyperthyroidism promotes HCC (Mishkin et al., 1981).
Additionally, the level of TR expression in adenomas (83%)
and cancer (68%) is significantly lower than that in normal
epithelium (96%) (Liu et al., 2019). Moreover, TH-related
mitochondrial turnover protects hepatocytes from HBV
hepatocarcinogenesis (Chi et al., 2017; Hossain et al., 2020). In
addition, the TH/TR axis regulates proliferation, differentiation,
metastasis, and drug resistance, autophagy in HCC (Jazdzewski
et al., 2011; Rosen and Privalsky, 2011; Jerzak et al., 2015; Liu
et al., 2019; Lin et al., 2020a).

TH/TR Axis May Be Involved in Hepatitis of
Hepatitis B Virus and Hepatitis C Virus
Infection
Hepatitis of HBV and HCV infection are global issues, which
have a risk to develop severe liver disease such as liver cirrhosis
andHCC (Jing et al., 2020; Zhang et al., 2021). A study hinted that
the FT3 level decreases in HBV patients, while the FT3 and FT4
levels increase in HCV patients (Orságová et al., 2014). More
specifically is that along with the increasing inflammatory grade,
the level of TT3 primary increased and then decreased, but only
the increased level was significantly statistic (Hu et al., 2020).
Interestingly, HBV/HCV coinfection elevates the probability of
thyroid dysfunction (Ji et al., 2016). Meanwhile, one of the major
problems with interferon therapy in hepatitis is the occurrence of
aberrant TSH, T3, and T4 values, as well as autoantibodies and
thyroid diseases (Ignatova et al., 1998; Orságová et al., 2014;
Karwowska et al., 2018). Nevertheless, Huang MJ et al. (1999)
indicated that seropositivity of thyroid autoantibodies should not
be a contraindication to IFN therapy in HCV-infected patients.
Similarly, a recent research reported that the antithyroid

antibodies do not cause severe autoimmune disorders in
children with chronic HBV infection and merely associated
with subclinical hypothyroidism (Kansu et al., 2004).

Downregulated TH/TR Function
Ameliorates Acute Liver Failure
Acute liver failure (ALF), characterized by elevated liver
biochemistry, coagulopathy, and hepatic encephalopathy (HE)
but with no underlying chronic liver disease (CLF), is a severe and
complex clinical syndrome (Lopes and Samant, 2021). The TH/
TR axis may be involved in ALF. On the one hand, type A HE is
strongly related to low TSH in ALF patients with a concerning
poor survival rate (Anastasiou et al., 2015; Wang et al., 2017).
HINAT ACLF has proposed liver failure incorporating TSH into
the standard (Feng and Shi, 2018; Wu et al., 2018). Interestingly,
type C HE often happens to patients with cirrhosis and lower T3
and T4 levels (Wang et al., 2017). In addition, ALF induced by
surgical liver devascularization in female pigs observed a decrease
in serum-free T3 and T4 as well as TRα protein levels
(Kostopanagiotou et al., 2009). Intriguingly, thioacetamide-
induced ALF promotes hepatocyte proliferation in response to
T3 in the rat (Malik et al., 2006). On the other hand,
hypothyroidism prevents immune-mediated acute liver injury
in mice, subsequently elevating TSH levels and survival rates and
declining serum liver enzymes, blood ammonia, and
prothrombin time. It has been reported that a patient with
ALF results from non-controlled hyperthyroidism (Sousa
Domínguez, 2015). Clinically, plasma exchange is an effective
method to eliminate TH in acute liver failure with thyroid storm
(Zeng et al., 2017). Mechanistically, low T3 and T4 levels in
hypometabolism-associated hypothyroidism link to
inflammation and oxidative stress (Bruck et al., 1998). In
general, high TSH levels and low TH/TR functions manifest a
protector in ALF.

TH/TR Axis Improves Liver Fibrosis
Liver fibrosis is characterized by chronic inflammation and
fibrous scar formation in the liver, finally resulting in
hepatocyte deficiency and loss of hepatic function (Erhardtsen
et al., 2021). Advanced fibrosis is associated with decreased serum
FT3 levels (Du et al., 2021). As an independent risk factor, an
elevated TSH level is significantly correlated with the risk of
fibrosis (Martínez-Escudé et al., 2021). In a recent study,
compared with 12.19% in chronic hepatitis C (CHC) patients
without thyroid disease (TD), severe fibrosis is found at 92.85%
among CHC patients with TD (Biciusca et al., 2020). However,
studies have suggested that hypothyroidism was not highly
associated with fibrosis (D’Ambrosio et al., 2021). Treating
with TRβ agonist resmetirom in advanced NASH with fibrosis
mice have lower α-smooth muscle actin, fibrogenesis-involved
genes, and markers of fibrosis, especially including liver stiffness
and N-terminal type III collagen pro-peptide (PRO-C3), which
indicate that resmetirom can improve fibrosis (Harrison et al.,
2021; Kannt et al., 2021). As a result, the TH/TR axis ameliorates
liver fibrosis, although the deeper connection between hepatic
fibrosis and the TH/TR axis needs more exploration.
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TH May Accelerate Alcoholic Liver Disease
Alcoholic liver disease is caused by long-term heavy drinking,
initially manifesting as fatty liver, and hepatocyte necrosis,
then developing into alcoholic hepatitis, liver fibrosis,
cirrhosis, and liver failure (Wang and Mu, 2021). Papineni
et al. (2017) indicated that TH-free T3 (fT3) decreases in
alcoholic hepatitis and cirrhosis while fT3 and fT4 increase
in chronic alcoholic liver disease patients after treatment.
More specifically speaking, low fT3 not only probably
reflects the severity of liver disease, the degree of liver
damage but may also increase the withdrawal effects and
craving for alcohol (Nomura et al., 1975; Israel et al., 1979;
Burra et al., 1992). However, it has been reported that alcohol
and TH also might cause a hypermetabolic state of the liver
and liver cell damage. Accordingly, antithyroid drugs can cure
alcoholic fatty liver via inhibiting ethanol metabolic rate
(EMR) in chronic ethanol-consuming patients (Szilagyi
et al., 1983). Overall, the TH/TR axis may aggravate
alcoholic liver disease.

TH/TR Axis Ameliorates Liver Injury
Liver injury is caused by multiple factors mainly including some
drugs, poisons, or chronic liver, and extrahepatic diseases
(Yamamoto, 1995). In CCl4-induced liver injury in rats, the
serum T3 level is reduced due to the decreased release of T3
from liver cells rather than a decreased conversion of T4 to T3

(Ikeda et al., 1986). In general, the TH/TR axis protects against
liver damage, and thyroid disorder aggravates the development of
liver injury. From the protective aspect, T3 replenishment
protects against liver injury via improving oxidative stress, cell
ferroptosis, detoxification, and increasing drug transport proteins
expression, inflammatory factors, autophagy, and lipid
metabolism. DNA damage generated by reactive oxygen
species upregulates 8-hydroxy-2-deoxyyguanosine (8-OHdG)
levels. During diabetes, hypothyroidism, and hypothyroidism
with diabetes, the use of TH downregulates the level of 8-
OHdG, protein carbonyl content (PCO), protein oxidation,
and advanced oxidation protein products (AOPPs) (Altan
et al., 2010). In addition, TH synergizes with
methylprednisolone (MP) to improve oxidative stress and liver
damage and then realizing anti-inflammatory and antioxidant
effects (D’Espessailles et al., 2013). Intriguingly, T3 scavenges
lipid peroxyl free radicals and improves cell ferroptosis in the
LPS/galactosamine-induced liver injury mouse model (Mishima
et al., 2020). Moreover, the combined supplementation of T3 and
n-3 polyunsaturated fatty acid (n-3 PUFA) in rat decreases
ischemia-reperfusion (IR) liver injury and oxidative stress.
From the aggravating aspect, hyperthyroidism promotes liver
injury. Otherwise, thionamides, methimazole, and
propylthiouracil are associated with drug-induced liver injury
(LiverTox, 2012; Yan et al., 2017) (Table 2). In a word, the
activation of the TH/TR axis can ameliorate liver injury.

TABLE 2 | Regulatory mechanism of the TH/TR axis alleviates acute liver injury. The regulatory mechanisms are clarified into three categories, including the effects of
protection or exacerbation, treating factors, and changed factors. TH downregulates 8-OHdG, PCO, and AOPP levels. TH can also synergize with MP to improve
oxidative stress and liver damage and realize anti-inflammatory and antioxidant effects. T3 scavenges lipid peroxyl free radicals and improves cell. The combined
supplementation of T3 and n-3 PUFA was given to rats to decrease IR liver injury and oxidative stress. T3 treatment recovers NF-κB activity, STAT3, TNF-α, and haptoglobin
and increases liver GSH depletion and protein oxidation protection against IR. T3 upregulates the liver redox-sensitive nuclear transcription factor Nrf2 DNA,
detoxification, and drug transport proteins expression, especially including protein levels of Eh1, NQO1, GST Ya, GST Yp, MRP-2, MRP-3, and MRP-4. The inactivation
of Kupffer cell by GdCl3 can suppress T3-induced oxidative stress, thus ameliorating the development of liver injury. T3 induces liver PC against IR supported by
triggering AMPK, ultimately accelerating the depletion of inflammatory factors such as hepatic NLRP3 and IL-1β. T3 induces hepatocyte proliferation in toxic liver injury.
T3 injection protects liver IR damage by enhancing MEK/ERK/mTORC1 mediated autophagy. TH-induced MAO inhibitors inhibit the activity of MAO protecting against
liver injury. The accumulation of TR mRNA may remove negative influences in fluoride-related liver injury via preventing disruption of lipid metabolism, oxidative damage,
and apoptosis. Hyperthyroidism promotes liver injury. Thionamides, methimazole, and propylthiouracil are associated with drug-induced liver injury. The Yinning Tablet
restores the expression of antiapoptotic Bcl-2 cytosol cytochrome c protein overexpression and downregulates the expression of L-thyroxine-induced overexpressed
caspase-9, -8, -3, proapoptotic BAX and Dio1, thus ameliorating TH-induced liver injury in rats through regulating mitochondria-mediated apoptotic signals. (The arrows
indicate factors are unregulated or downregulated.)

Effects of protection Treating factor Changed factor

Oxidative stress T3 + insulin GdCl3 8-OHdG, PCO, and AOPPs ↓
Inactivation of Kupffer cells

Cell ferroptosis T3 Lipid peroxyl free radicals ↓
Detoxification T3 Nrf2, Eh1, NQO1, GST Ya, and GST Yp

MRP-2, -3, -4 ↑
Inflammation TH + MP —

Autophagy T3 MEK/ERK/mTORC1 ↑
Lipid metabolism apoptosis Yinning Tablet TR ↑

TR ↑
Bcl-2 and cytochrome c protein ↑
caspase-9, -8, -3, proapoptotic BAX, and Dio1 ↓

DNA and protein damage T3 + insulin —

IR TH + nPUFA NF-kB, STAT3, THF-α, and haptoglobin ↓
— GSH depletion and protein oxidation ↑
T3 AMPK ↑

NLRP3 and IL- 1β ↓
Other mechanisms T3 MAO ↓
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THE REGULATORY MECHANISMS
UNDERLYING TH/TR AXIS MAY SUPPLY
NOVEL TREATMENTMETHODS FOR LIVER
DISEASES

The regulatory mechanism of the TH/TR axis in liver diseases has
been gradually elucidated. However, the understanding of the
regulatory mechanism of the TH/TR axis in liver diseases is not
entirely clear, which is still being explored. The study on the
regulatory mechanism of the TH/TR axis in hepatic diseases is
helpful to reveal the importance in liver diseases.

MAFLD
In MAFLD, the deiodinase family members, especially including
types 1, 2, and 3 iodothyronine deiodinases (Dio1, 2, and 3) and
responsible for the activation and inactivation of TH, can modulate
the TH/TR axis. As hepatic enzymes, Dio1 and Dio2 convert T4 to
T3 and increase T3/T4 levels. Conversely, Dio3 inactivates TH. To be
specific, the activation of Dio3 activates hypoxia-inducible factor 1α
(HIF-1α), thus inhibiting T3 signaling and the metabolic rate
(Bianco and da Conceição, 2018; Luongo et al., 2019; Russo
et al., 2021). Increased Dio1 level promotes β-oxidation of fatty
acid and oxidative phosphorylation, then preventing hepatocyte
steatosis. Moreover, the level of Dio1 mRNA depends on the
dietary conditions. When fed a normal chow diet (NCD), Leprdb
mice grows up with severe steatosis with only mild inflammation.
The depletion of Dio1 in Leprdb mice upregulates hepatic Tnfa and
Co1a1 mRNA levels, which are inflammation and fibrosis
biomarkers, respectively (Bruinstroop et al., 2021). Genes related
to reverse cholesterol transport and lipase activity decrease with the
downregulation of Dio2 in rats (Russo et al., 2021). The sites of de
novo DNA hypermethylation (H sites) disrupt long-distant
chromatin interactions, looping enhancers, and promoters in
hepatocytes. TH produced from Dio2 activation depletes
H3K9me3 and interferes with the formation of more than a
thousand H sites, subsequently maintaining the liver development
and function (Fonseca et al., 2021). In general, the TH/TR axis
modulated by the deiodinases may delay MAFLD progression.
Nevertheless, the regulatory mechanism of the TH/TR axis in
MAFLD remains to be further studied (Figure 1).

HCC
The TH/TR axis modulates cyclin-dependent kinase (CDK) and
cyclins, MicroRNAs (miRNAs), long non-coding RNA
(lncRNA), TGF-β signaling, hedgehog (Hh) (relying on the
local deiodinase expression), and other tumor-related genes
and -proteins to be involved in the growth, proliferation, and
metastasis of HCC (Manka et al., 2018).

In addition, CDKs and regulatory subunits cyclins regulate the
cell cycle in mammalian. P21, as a CDK inhibitor, halts G1/S and
G2/M transitions of cell cycle progression by inhibiting CDK4,6/
cyclin-D and CDK2/cyclin-E, respectively (Karimian et al., 2016).
The inhibition of HCC cells growth and proliferation is dependent
upon the activation of P21 by the TH/TR axis. A recent study
reported that the activation of the TH/TR axis upregulates endoglin
in HCC cells, thus restraining P21 polyubiquitination-induced cell

proliferation (Lin et al., 2013a). In addition, the TH/TR axis inhibits
hepatoma cell growth via repressing UHRF1 and relieves UHRF1-
mediated P21 silence (Wu et al., 2015). Furthermore, TH induces the
miR-214-3p expression, followed by interfering with the proto-
oncogene serine/threonine-protein kinase (PIM-1) and activating
P21, thus blocking cell proliferation (Huang et al., 2017). Other
CDKs and cyclins also involve in the regulatory mechanism in HCC
in a TH/TR axis-dependent fashion. Ezequiel et al. (Ridruejo et al.,
2021) suggested that hexachlorobenzene (HCB) is an endocrine
disruptor and a liver tumor promoter. In the HepG2 cell line, the
depletion of HCB by TH leads to the downregulation of the TGF-β1/
pSMAD-2/3 signaling pathway, thus increasing Dio1 levels and
decreasing p21 and P27, ultimately suppressing cell proliferation.
Beyond that, the silence of TGF-βmice promote the proliferation by
increasing the expressions of CDK2, cyclin E, and cyclin A, as well as
decreasing the expression of CDKn1a/p21 (Baek et al., 2010). It has
been reported that depleting forkhead box M1 (FOXM1) by TH
interferes with oncogenic expression of cyclin D1, cyclin E, and
CDK2, thereby inhibits HCC cells proliferation (Barrera-Hernandez
et al., 1999; Wu et al., 2020). These pathways all manifest that the
TH/TR axis closely interacts with p21, CDKs, and its regulatory
subunits cyclins to affect cell proliferation in HCC.

Moreover, miRNAs, a class of evolutionarily conserved non-
protein-coding small RNA, are responsible for regulating gene
expression at the translation level (Oura et al., 2020). The TH/TR
axis regulates miRNAs, thereby producing various effects in
HCC. For example, the downregulation of the TH/TR axis
induces nodule regression and the increased expression of
targeted microRNA, miR-27a, miR-181a, miR-204a, and miR-
181a in the resistance-hepatocyte rat model (R-H model) and
human cirrhotic peritumoral tissue (Frau et al., 2015). Beyond
that, miR-214-3p, miR-130b, miR-17, miR-21, miR-424, and
miR-503 also participate in the regulation of the TH/TR axis-
mediated liver cancer (Huang Y. H. et al., 2013; Lin et al., 2013b;
Ruiz-Llorente et al., 2014; Lin et al., 2015). Thus, miRNAs have
the potential to be targets in TH/TR-involved HCC.

Furthermore, lncRNA, the human major transcriptional
genome, is a length greater than 200 nucleotides, which is a
non-coding protein (Dang et al., 2015). A recent study has
reported that compared to the non-tumor samples, the
expression of lncRNA related genes including MSC-AS1,
POLR2J4, EIF3J-AS1, SERHL, RMST, and PVT1 are
upregulated in tumor samples. Beyond that, lncRNA genes
mostly cluster in the TGF-β signaling pathway, internal
ribosome entry pathway, granzyme A mediated apoptosis,
FAS signaling pathway, calcium signaling by HBx, and p38/
MAPK signaling pathway (Gu et al., 2019). It has been
reported that lncRNA CRNDE and lncRNA SNHG7 are
independent risk factors of synchronous colorectal liver
metastasis (SCLM), which also predict a high tumor
recurrence rate (Zhang P. et al., 2020). Since lncRNA is
associated with the occurrence of tumor, it is plausible that
lncRNA may intimately be regulated by the TH/TR axis.
Indeed, the TH/TR axis is related to lncRNA in HCC. For
instance, brain cytoplasmic RNA 1 (BCYRN1 or BC200) is
widely expressed in tumors. BC200 is also inhibited by T3/TR,
then downregulating the expressions of CDK2, cyclin E1, and
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cyclin E2 and upregulating P21, thereby repressing cell growth
and tumor sphere formation and preventing the evolvement of
HCC (Lin et al., 2018). Otherwise, the downregulation of
taurine upregulated gene 1 (TUG1) by the TH/TR axis also
cause AFP mRNA, cyclin E, and H3K27me3 silence and cell
growth inhibition (Lin et al., 2020b).

Finally, other TH/TR-related genes and -proteins are involved
in HCC. Thyroid hormone receptor-interacting proteins (TRIP),
the Zyxin family of LIM proteins, is responsible for regulating
transcription of TR. Significantly, the transcriptional activation of
the TH/TR axis in HCC may depend on TRIP. Specifically, when
TRIP6 activates FOXC1, migration, invasion, and proliferation
are strongly promoted. It is also found that TRIP6 induces cyclin
D1 expression, decreases p21 and p27 activation, and HCC cell
proliferation arrest (Lee et al., 1995; Zhao et al., 2017; Wang et al.,
2020). Moreover, the downregulation of TRIP13 impairs the
NHEJ repair process, increased apoptosis, and cell cycle arrest
at the S-phase, ultimately inhibiting the proliferation, migration,
and invasion of HCC cells (Ju et al., 2018). In addition, pituitary
tumor transforming gene 1 (PTTG1) is silenced by Sp2, which is
negatively mediated by T3/TR in Hep3B hepatoma cells (Chen
et al., 2008). Ndrg2 is a Myc suppressor gene. The activation of
V-erbA leads to the depletion of Ndrg2, thus exacerbating tumor
invasion and metastasis (Ventura-Holman et al., 2011). As a
tumor-associated protein, lipocalin 2 (Lcn2) can activate theMet/
FAK pathway in a TH/TR axis-dependent manner, thus
enhancing tumor cell migration and invasion (Chung et al.,
2015). Intriguingly, T3/TR/MEK/ERK/NUPR1/PDGFA cascade
may play a vital role in hepatocarcinogenesis. Consistently, T3/

TR positively regulates nuclear protein 1(NUPR1) via binding to
the NUPR1 promoter regions, therefore promoting vascular
invasion (Chen et al., 2019). Recently, it has been found that
increasing thyroid hormone responsive (THRSP) prevents the
silence of the ERK/ZEB1 signaling pathway and inhibits the
process of epithelial-to-mesenchymal transition, subsequently
preventing hepatocellular carcinogenesis (Hu et al., 2021). A
secreted protein named Dickkopf 4 (DKK 4) antagonizes the
Wnt signal pathway and inhibits tumor metastasis, which is
dependent upon the activation of the T3/TR axis (Chi et al.,
2013).

In short, the TH/TR axis have paradoxical role in the growth,
proliferation, invasion, metastasis, and migration of HCC. A
relevant regulatory mechanism of the TH/TR axis in HCC
remains to be further explored (Figures 2, 3).

Liver Injury
In liver injury, the studies show that T3 treatment recovers NF-κB
activity, signal transducer, and activator of transcription 3
(STAT3), TNF-α and haptoglobin and increases liver GSH
depletion and protein oxidation protecting against IR
(Fernández et al., 2007; Mardones et al., 2012). A study
exhibited that T3 upregulates the liver redox-sensitive nuclear
transcription factor erythroid 2-related factor 2 (Nrf2) DNA,
detoxification, and drug transport proteins expression, mainly
including protein levels of epoxide hydrolase 1 (Eh1), NADPH-
quinone oxidoreductase 1 (NQO1), glutathione-S-transferases Ya
(GST Ya), GST Yp, multidrug resistance-associated proteins 2
(MRP-2), mrp-3 ,and MRP-4 in male Sprague–Dawley rats,

FIGURE 1 | Regulatory mechanism of the TH/TR axis in hepatic proliferation, liver regeneration, and MAFLD. The black lines depict the following: the effect of the
TH/TR axis in hepatic proliferation and liver regeneration. TH promotes liver regeneration via elevating histone 3 mRNA, PCNA, cdk2, cyclin A, and cyclin D1. The axis
activates β-catenin to induce hepatocyte proliferation through PKA and Wnt-dependent mechanisms. PARP participates in liver regeneration induced by TH. The
decrease of Dio3 elicits TH-dependent hepatocyte proliferation and liver regeneration. T3 improves liver regeneration by promoting the VEGF and Flt-1 expression.
The green lines represent the following: the TH/TR axis might improve MAFLD. Dio3 activates HIF-1a, thus inhibiting T3 signaling. Genes related to reverse cholesterol
transport and lipase activity decrease with the downregulation of Dio2 in rats. TH is produced by Dio2 and then depletes H3K9me3. (For interpretation of the references
to color in this figure legend, the reader is referred to the Web version of this article).
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which may indicate the hepatocyte protective mechanism in liver
injury attributed to ROS and chemical toxicity (Cornejo et al.,
2013). In addition, the inactivation of Kupffer cell by gadolinium
chloride (GdCl3) can suppress T3-induced oxidative stress, thus
ameliorating the development of liver injury characterized by
neutrophil infiltration and necrosis (Simon-Giavarotti et al.,
2002). Accumulating evidence has demonstrated that T3
induces liver preconditioning (PC) against IR supported by
triggering AMP-activated protein kinase (AMPK), ultimately
accelerating the depletion of inflammatory factors such as
hepatic NLRP3 and IL-1β (Fernández et al., 2009; Vargas and
Videla, 2017). T3 induces hepatocyte proliferation in toxic liver
injury (Malik et al., 2006). T3 injection protects liver IR damage
by enhancing MEK/ERK/mTORC1-mediated autophagy in male
C57BL/6 mice (Yang et al., 2015). In addition, TH-induced
monoamine oxidase (MAO) inhibitors inhibit the activity of
MAO protecting against liver injury in rats (Obata and
Aomine, 2009). In addition to the TH/TR axis also prevents
liver damage. It has been discovered that the accumulation of TR
mRNA may remove negative influences in fluoride-related liver
injury via preventing disruption of lipid metabolism, oxidative
damage, and apoptosis (Bo et al., 2018). Particularly, traditional
Chinese medicine is also involved in improving the TH/TR axis-
induced liver injury. To be specific, the Yinning Tablet restores
the expression of antiapoptotic Bcl-2 cytosol cytochrome c
protein and downregulates the expression of L-thyroxine-
induced overexpressed caspase-9, -8, -3, proapoptotic BAX
and Dio1, thus ameliorating TH-induced liver injury in rats

via regulating mitochondria-mediated apoptotic signals (Yang
et al., 2020).

Other Liver Diseases
The TH/TR axis may be correlated with hepatitis. Some studies
have demonstrated that ubiquitin-specific protease 18 (USP18),
known as UBP43, participates in gene regulations of the TH
signaling pathway. Li et al, (2017) discovered that USP18
regulates the signaling of antivirus by the TH signaling
pathway, prolactin signaling pathway, insulin resistance and
complement, and have crosstalk among them. Also, the
thyroid hormone-uncoupling protein (TRUP) gene and
thyroid hormone receptor-associated protein 150 alpha gene
are associated to the integration of HBV DNA into liver cell
DNA, which are the key regulators of cell proliferation and
viability (Gozuacik et al., 2001; Paterlini-Bréchot et al., 2003).
In recent years, the relationship between the TH/TR axis and
hepatitis of HBV and HCV infection has been gradually
elucidated. However, understanding of the antiviral
mechanism of the TH/TR axis is not entirely clear, which is
still being explored.

Furthermore, the TH/TR axis is associated with alcohol-
related hepatic alterations. For example, TH has been proven
to increase the level of Dio2, thereby elevating susceptibility to
hepatic steatosis in a model of alcoholism (Fonseca et al., 2019;
Hernandez, 2019). In addition, the mRNA level of TRIP12 is
significantly different in alcohol-feed (AF) and control pair-feed
(PF) mice (Zhang et al., 2018) (Figure 4).

FIGURE 2 | TH/TR axis is involved in HCC growth, proliferation, invasion, and metastasis. The TH/TR axis upregulates endoglin, thus restraining
P21 polyubiquitination-induced cell proliferation. The TH/TR axis inhibits hepatoma cell growth via repressing UHRF1 and relieves UHRF1-mediated P21 silence. TH
induces the miR-214-3p expression, followed by interfering with PIM-1 and activating P21, thus blocking cell proliferation. The depletion of HCB by TH downregulates
the TGF-β1/pSMAD-2/3 signaling pathway, thus increasing Dio1 levels and decreasing p21 and P27, ultimately suppressing cell proliferation. The silence of TGF-β
mice promote the proliferation by increasing the expressions of CDK2, cyclin E, and cyclin A, as well as decreasing the expression of CDKn1a/p21. Depleting FOXM1 by
TH interferes with cyclin D1, cyclin E, and CDK2, thereby inhibiting HCC cell proliferation.
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CONCLUSION

Here, we amply reviewed the function of the TH/TR axis in
hepatic diseases. The TH/TR axis may protect against
metabolic-associated fatty liver disease, hepatitis B virus and

hepatitis C virus infection, liver fibrosis, and drug-induced and
extrahepatic liver injury but may accelerate the development of
acute liver failure and alcoholic liver disease. Meanwhile, the
axis has a dual role in hepatocellular carcinoma. As a result,
targeting the TH/TR axis should be considered for treating

FIGURE 3 | The TH/TR axis inhibits nodule regression and decreases the expressions of miR-27a, miR-181a, and miR-204a. BC200 is inhibited by T3/TR and
downregulates the expressions of CDK2, cyclin E1, and cyclin E2 and upregulates P21, thereby repressing cell growth. The downregulation of TUG1 by the TH/TR axis
causes AFP mRNA, cyclin E, and H3K27me3 silence and cell growth inhibition. When TRIP is activated by FOXC1, migration, invasion, and proliferation are strongly
promoted. TRIP6 induces the AKT signaling pathway, thereby preventing FOXO3a overexpression-induced cyclin D1 interference, p21 and p27 activation, and
HCC cell proliferation arrest. The downregulation of PTTG1 is silenced by Sp2, which is negatively mediated by T3/TR. The activation of V-erbA leads to the depletion of
Ndrg2, thus exacerbating tumor invasion andmetastasis. Lcn2 can activate theMet/FAK pathway in a TH/TR axis-dependent manner, thus enhancing cell migration and
invasion. T3/TR/MEK/ERK/NUPR1/PDGFA cascade may play a vital role in hepatocarcinogenesis. T3/TR upregulates NUPR1 via binding to the NUPR1 promoter
regions, therefore promoting vascular invasion. THRSP prevents silence of the ERK/ZEB1 signaling pathway and inhibits the process of epithelial-to-mesenchymal
transition. DKK 4 antagonizes the Wnt signal pathway and inhibits tumor metastasis, which depends upon the activation of the T3/TR axis.

FIGURE 4 | TH/TR axis may be involved in hepatitis of hepatitis B virus and hepatitis C virus infection and accelerates alcoholic liver disease. USP18 regulates the
signaling of antivirus by the thyroid hormone signaling pathway. TRUP gene and thyroid hormone receptor associated protein 150 alpha gene are associated to the
integration of HBV DNA into the liver cell DNA, which are key regulators of cell proliferation and viability. TH has been proven to increase the level of Dio2, thereby elevating
susceptibility to hepatic steatosis in a model of alcoholism. The mRNA level of TRIP12 is significantly different in alcohol liver disease.
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liver disease, which may be a promising disease-reversing
strategy for patients.

PROSPECTIONS

The total T3 in different stages of inflammation exhibits a
trend of first increasing and then decreasing (Hu et al., 2020).
Although there is no statistical significance of the total T3
decreases, it is still trustworthy, owing to the fact that the initial
stage of TH also occurs booming in acute liver failure.
Subsequently, the later declination may be due to the
adjustment and balance of the body in different periods. In
this retrospective study, the patient’s aggravation is not
serious, and the samples are not large enough (n = 6), thus
leading to an insignificant decrease.

TH protects liver cells from damage by mediating the HBV/
HCV infectious signaling pathway and then improves hepatitis-
related carcinogenic transformation. TSH and TT3 are promising
aspects to be included in the evaluation criteria for inflammatory
activities and served as biological markers to reduce the
proportion of liver biopsy and the medical burden. Moreover,
the treatment of interferon is not strongly related to autoimmune
diseases except for thyroid. However, virus infection and
antivirus endeavors lead to format a certain proportion of
thyroid autoantibodies and related thyroid diseases such as
hypothyroidism, and this cannot be ignored.

To date, it is reported that the mutation of the TRβ gene in
thyroid hormone resistance patients leads to the impairment
of TRβ signals in the hepatic steatosis. The mutation type of
the THRβ gene is the substitution of glycine by arginine at
position 243 (R243Q) of TRβ. Compared with patients with
WT relatives, serum T3 and T4 of RTH β patients are higher
than the upper limit of a reference range. However, there is no
significant difference in TSH. They also found that the liver
fat content, serum free fatty acids, and HDL cholesterol were
higher (Chaves et al., 2021). At present, the fragments related
to lipid metabolism are all located in the hinge region of TR.
In the future, gene mutations may be used to discover the
region that regulates TR lipid metabolism in the hinge region,
as well as other regions and their functions, and this pathway
exactly can become the therapy targets of NASH/NAFLD
and HCC.

Post-translational modifications participate in the occurrence
and development of liver disease. Both TRα and TRβ are

regulated by the level of PTM, including SUMOylation (Liu
and Brent, 2018). The small ubiquitin-like modifier (SUMO)
family, existing widely in eukaryotes, is a highly conserved post-
translational modification protein that regulate lipid metabolism,
inflammatory response, bile acid homeostasis, autophagy, and
other related biological functions in nuclear receptors (Zeng et al.,
2020; Liu et al., 2021). The research team found that the sumo-3
protein (mainly expressed in the nucleus) and TR receptor have
significantly upregulated in oleic acid (OA)-induced NAFLD in
WRL68 cells and human liver tissue models (published in
Chinese journals). TR can be SUMOylated (Anyetei-Anum
et al., 2019). At the same time, nuclear autophagy can
improve metabolic disorders (Fu et al., 2018). TR
SUMOylation may associate with nuclear autophagy to
improve metabolic disorders and prospectively become a
therapeutic target in NAFLD.

In summary, the TH/TR axis provides effective insights into
the treatment of hepatic diseases. The research and application
prospects for the TH/TR axis in liver diseases are promising. TH/
TR may provide new potential therapeutic targets
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GLOSSARY

TH/TR axis thyroid hormone/thyroid hormone receptor axis

T4 thyroid hormones 3,5,3′,5′- tetraiodothyronine or thyroxine

T3 3,5,3′-triiodothyronine

AEV avian erythroblastosis virus

TRE thyroid hormone-response element

TSH thyroid-stimulating hormone

PCNA proliferating cell nuclear antigen

cdk2 cyclin-dependent kinase 2

PARP Poly (ADP-ribose) polymerase

PH partial hepatectomy

MAFLD metabolic-associated fatty liver disease

HCC hepatocellular carcinoma

HBV hepatitis B virus

HCV hepatitis C virus

ALF acute liver failure

GC-1 sobetisome

Eprotirome KB2115

MetS metabolic syndrome

TPOAb thyroid peroxidase antibody

SBP systolic blood pressure

DBP diastolic blood pressure

FBG fasting blood glucose

TG triglyceride

HDLC high-density lipoprotein

ALT alanine aminotransferase

AST aspartate aminotransferase

BUN urea nitrogen

CR creatinine

Dio iodothyronine deiodinases

HIF-1α hypoxia-inducible factor 1α

NCD normal chow diet

H sites sites of de novo DNA hypermethylation

CDK cyclin-dependent kinase

miRNAs microRNAs

lncRNA long non-coding RNA

Hh Hedgehog

PIM-1 the proto-oncogene serine/threonine-protein kinase-1

HCB hexachlorobenzene

FOXM1 forkhead box M1

R-H model resistance-hepatocyte rat model

SCLM synchronous colorectal liver metastasis

BC200 brain cytoplasmic RNA 1

TUG1 taurine upregulated gene 1

TRIP Thyroid hormone receptor-interacting proteins

PTTG1 pituitary tumor-transforming gene 1

Lcn2 lipocalin 2

NUPR1 nuclear protein 1

THRSP thyroid hormone responsive

DKK 4 dickkopf 4

USP18 ubiquitin-specific protease 18

TRUP thyroid hormone uncoupling protein

ALF acute liver failure

HE hepatic encephalopathy

CLF chronic liver disease

CHC chronic hepatitis C

TD thyroid disease

PRO-C3 N-terminal type III collagen pro-peptide

PBC primary biliary cirrhosis

fT3 TH-free T3

EMR ethanol metabolic rate

AF alcohol-feed

PF pair-feed

8-OHdG 8-hydroxy-2-deoxyyguanosine

PCO protein carbonyl content

AOPPs advanced oxidation protein products

MP methylprednisolone

n-3 PUFA n-3 polyunsaturated fatty acid

IR ischemia-reperfusion

STAT3 signal transducer and activator of transcription 3

Nrf2 nuclear transcription factor erythroid 2-related factor 2

Eh1 epoxide hydrolase 1

NQO1 NADPH-quinone oxidoreductase 1

GST glutathione-S-transferases

MRP multidrug resistance-associated proteins

GdCl3 gadolinium chloride

PC preconditioning

AMPK AMP-activated protein kinase

MAO monoamine oxidase

R243Q substitution of glycine by arginine at position 243

SUMO small ubiquitin-like modifier

OA oleic acid
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