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The issue addressed in this exposition is the classification of multivariate data collected through different sensors 
for water quality monitoring. Multivariate data are sequences that have various attributes in every instance of 
the sequences. A few endeavours exist to address this issue; however, none of them has given full emphasis on 
continuous dataset. Another solution for this issue is to reduce the instances to a single attribute while losing 
significant information. Different arrangements address both the multivariate and the sequential part of the data 
yet give an un-versatile solution. The proposed algorithm is not only able to monitor continuous water quality, 
but it also produces a better classification model for other continuous datasets as well. Instead of decreasing the 
attributes of the dataset, we introduce three additional reference indicators which are dependent on the actual 
attributes. We compare the classification accuracy of our proposed algorithm with standard classification models. 
The proposed method gives better classification accuracy compared to existing methods.
1. Introduction

Water contamination is one of the enormous problems for many 
decades. Happening green globalisation without sufficient clean wa-

ter is impossible. The supplied water quality should be recorded and 
monitored continuously to guarantee the reliable supply of the drink-

ing water. The current state of pollution intensity leads to increased 
accumulation of pollutants in marine waters at different rates ranging 
from 7 to 23% depending on the Arctic aquatic environment [1]. In re-

cent times, the problems of remote monitoring systems for detecting 
and classifying abnormal phenomena on soil or water surface is a great 
research work [2].

Water influences natural systems [3] and human activities. In 2011, 
the World Economic Forum (WEF) identified the interconnected re-

source issues of water, energy, and food as a serious global risk and 
indicated that managing one aspect of this interrelated system with-

out considering links to the others increases the global threat of se-

rious unintended consequences. Indeed, not managing water and nat-

ural resources properly has led to the decline or collapse of civilisa-

tions.

* Corresponding author.

E-mail address: sshakhari.rs2017@it.iiests.ac.in (S. Shakhari).

1.1. Our contribution

We have developed a real-time water quality monitoring device. 
The device is consisting of two water quality measurement sensors to 
collect the primary dataset. An electronic data logging system with a 
32-bit ARM core microcontroller board based on the Atmel SAM3X8E 
ARM Cortex-M3 CPU is used to process the sensors output data and sent 
these data to a central database system. We have collected water quality 
data from three different sources; these are “packaged drinking water”, 
“pipeline drinking water”, and “pond water”.

We propose a decision tree based classification scheme for efficient 
analysis of the water quality data. We first prepare the training dataset 
with our collected water quality data. Then, we develop a classification 
model with this training dataset that can be used to monitor the water 
quality in real-time automatically. We have classified the primary water 
quality dataset [4] as well as three secondary water quality datasets 
available in online repository [5, 6, 7] to test and validate the proposed 
method.

The rest of the paper is organised as follows. The Section 2 discusses 
existing related research in water quality monitoring. In Section 3 we 
have described how the classification method is used for water quality 
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monitoring. The materials and the proposed method for water quality 
monitoring is discussed in Section 4. We have presented the comparison 
of experimental results of our proposed method with C-4.5 Algorithm 
and Logistic Regression in Section 5. We have also used different com-

parison metrics that are essential to compare the data classification 
models in Section 5. And finally, in Section 6 we have concluded the 
work.

2. Related works

K.M.K. Kut et al. have successfully assessed a total of 176 ground-

water samples for its suitability for drinking [8]. Tatjana Mitrović et al.

have predicted water quality of Danube River (Serbia) by using Monte 
Carlo optimised artificial neural networks. They predicted 18 common 
water quality parameters (WQPs) on inactive monitoring stations [9].

E. Fijani et al. [10] have developed a system for real-time moni-

toring of two water quality parameters, i.e. chlorophyll-a (Chl-a) and 
dissolved oxygen (DO). The made a two-layer decomposition using 
CEEMDAN and VMD algorithms with LSSVM and ELM models.

R. Wan et al. [11] have attempted to develop a four-level pollution 
index on water quality of marine environment with there classification 
scheme named Water Quality Classification Index (WQCI).

Multi-Criteria Decision Making Models (MCDM) were adopted by H. 
Yousefi et al. [12] for evaluating drinking water quality of 190 drinking 
water wells. The primary objective of the current study was to explore 
a solution to mitigate probable errors aroused by use of WQI method in 
the classification of water quality classes.

I.C. Nnorom et al. [13] have studied the aqua physicochemical and 
potentially toxic elements of ground and surface water sources used for 
domestic purposes in some districts of Nigeria. They obtained a total of 
124 water samples from 13 natural springs, 24 streams, 80 boreholes 
and seven hand-dug wells were collected from rural and urban areas.

Detailed research work on water quality of Gomti River was done 
by P. Kumar [14]. He simulated the Water quality along 24 km stretch 
of the Gomti River from downstream of Near Moosa Bird Sanctuary to 
Near Bharwara. He had shown the current as well as predicting the fu-

ture situation using different scenarios while considering critical drivers 
of global changes namely climate change and population growth.

V. Roth et al. [15] have investigated the effects of climate change 
on water resources in the transnational Blue Nile Basin (BNB) using 
water data from the past 25 years. A. Awotwi et al. have shown that the 
cassava has effects on water yields and water quality components after 
studying the water quality responses [16].

To our best knowledge, the previous works ware performed using 
various existing models. In this work, we have presented a specific 
classification method only for continuous datasets to suit water qual-

ity monitoring efficiently.
Fig. 1. A typical water quality data collection point by the monitoring de

2

3. Problem description

The main purpose of this research work is to develop a real-time 
water quality monitoring system. For the solution of this problem, we 
had gone through three stages as follows:

• Developing a water quality data logging device that is capable of 
sending the collected sensor data to our central server (http://wsn .
iiests .ac .in :8080).

• Data collection from three different water sources, i.e. ‘packaged 
drinking water’, ‘pipeline drinking water’, and ‘pond water’ by our 
water quality data logging device.

• Developing a multi-class classification system for continuous wa-

ter quality monitoring with the collected water quality data in the 
central server.

The problem of the multi-class classification system is described be-

low.

Here, we have a continuous-valued training Dataset [D]. Now, we 
can represent D as a matrix of dimension [R × (N + C)] where, R is the 
total number of instances, N is the total number of attributes, C = 1, 
representing the class labels. For example, the following matrix can be 
used to represent a Dataset [D] with R instances and N attributes.

[
𝐷
]
=

⎡⎢⎢⎢⎢⎣
𝑟0,0 𝑟0,1 𝑟0,2 … 𝑟0,𝑁−1 𝑐0
𝑟1,0 𝑟1,1 𝑟1,2 … 𝑟1,𝑁−1 𝑐1
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝑟𝑅−1,0 𝑟𝑅−1,1 𝑟𝑅−1,2 … 𝑟𝑅−1,𝑁−1 𝑐𝑅−1

⎤⎥⎥⎥⎥⎦
Here,

𝑟𝑖,𝑗 is the 𝑗th attribute value of 𝑖th instance and c𝑖 is the class label 
of 𝑖th instance where, 0 ≤ i < R & 0 ≤ j <N.

In the training Dataset [D] every instance r is given a class label c. 
But the test dataset will not include the class labels. Our primary objec-

tive is to produce a classification model that can be used to determine 
the class labels of a test dataset more accurately.

4. Materials and methods

4.1. Automatic water quality data logging system

We have developed a water quality data logging device (Fig. 1) 
consisting of two industrial type water quality measurement sensors 
pH (pouvoir hydrogen), and TDS (Total Dissolved Solids). We have 
mounted the pH and TDS sensors in a water pipeline and enclosed into 
a device to make it portable. The pH sensor can measure 0 to 14 pH 
with an accuracy of ±0.01 pH. The TDS sensor can weigh 0 to 2000 
vice at location 22◦33′17.7′′N 88◦18′29.6′′E (IIEST, Shibpur, India).

http://wsn.iiests.ac.in:8080
http://wsn.iiests.ac.in:8080
https://www.iiests.ac.in/
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Fig. 2. The inner view of the electronic data logging system with a 32-bit ARM core microcontroller board based on the Atmel SAM3X8E ARM Cortex-M3 CPU.
Table 1

Information of the Datasets which ware classified by the proposed method, 
C-4.5 [17] & Logistic Regression [18].

DATA SET #Instances #Attributes #Classes

Troxler T., D. Childers. 2018 Dataset [5] 422 8 3

Rosenblatt A. 2014 Dataset [6] 44012 7 2

Steinbach M. 2017 Dataset [7] 486 9 8

Primary Water_Quality_Data [4] 7871 2 3

parts per million (ppm) with ±1% measuring accuracy. The water data 
signals from the sensors are fetched and converted to numeric values 
by an Arduino due microcontroller based system (Fig. 2) and logged via 
serial communication on our data storage and the computing unit.

4.2. Data collection & preprocessing

We have collected a total of 7871 instances of water quality data by 
our water quality monitoring device. But, in our collected primary wa-

ter quality data, only two water quality parameters are present namely 
pH and TDS. So, to validate our proposed method for water quality 
monitoring system, we have also used three additional secondary wa-

ter quality datasets ([5, 6, 7]). The information about experimented 
datasets is given in Table 1. We have used Python programming lan-

guage to access and convert all these datasets as comma-separated value 
(CSV) format.

We have applied our proposed classification method for water qual-

ity monitoring (Algorithm 1) in the datasets as mentioned earlier in 
Table 1. We also applied two standard methods i.e. C-4.5 [17] and 
Logistic Regression [18] to classify these datasets (Table 1). We then 
compared the results of our proposed classification method with these 
standard classification methods, i.e. C-4.5 and Logistic Regression. We 
observed a better classification accuracy by our proposed method, thus 
producing a better water quality monitoring system.

4.3. Proposed classification method for continuous water quality 
monitoring

We have used the tree data structure in our proposed Reference 
Indicator based Decision Tree algorithm-RIDT [Algorithm 1] for the 
classification of multi-attribute continuous data. The algorithm is also 
suited for any integer-valued dataset.

4.3.1. Introduction of reference indicators

In our algorithm, we have used three reference indicators (Line No. 
4 to 14 of Algorithm 1) with the attributes of the dataset. These addi-

tional reference indicators are dependent on all the actual attributes. 
3

So, if we make any decision depending on these reference indicators, 
that decision will be based on all the real attributes together. As we 
have used these additional reference indicators as well as the original 
attributes, the essential attributes are not ignored while the least impor-

tant attributes also considered [Algorithm 1]. As a result, we observed 
a noteworthy increment for correctly classified instances.

We have used standard deviation and summation of all the attribute 
values for the first two reference indicators respectively. The first ref-

erence indicator is calculated as in Equation (1) where, {𝑥1 , 𝑥2 ,…, 𝑥𝑁 } are 
the actual attribute values of the instances, 𝑥 is the average of the ac-

tual attribute values, and N is the number of actual attributes in the 
instances of the dataset.

referenceIndicator1(instance) =

√√√√ 1
𝑁 − 1

𝑁∑
𝑖=1

(
𝑥𝑖 − �̄�

)2
(1)

We have tried to map all the attributes together of all instances to 
possible distinct values by making it dependent on the position and 
value of actual attributes as well as the second reference indicator. 
We call it the third reference indicator. This third reference indicator 
enables us to distinguish the different class instances quickly. It is cal-

culated as in equation (2) where, {𝑥1 , 𝑥2 ,…, 𝑥𝑁 } are the actual attribute 
values of the instances and N is the number of actual attributes in the 
instances of the dataset.

referenceIndicator3(instance) =𝑚𝑜𝑑

(
𝑁∑
𝑖=1

(
𝑥𝑖 ∗ 2𝑖

)
,

𝑁∑
𝑖=1

𝑥𝑖

)
(2)

4.3.2. Selection of the partitioning attribute

We have used the well-known concept of entropy (E) and informa-

tion gain (IG) to select the attribute on which the partition will be done. 
The partition attribute is selected where the maximum information gain 
is obtained. Every internal node as in Fig. 3 represents a partition of the 
generated decision tree (Line No. 27 to 33 of Algorithm 1).

The entropy (E) and information gain (IG) calculation in this context 
are given in Equations (3) and (4) respectively where, X is the training 
samples, C is the total number of classes, f𝑖 is the fraction of samples 
which belong to 𝑖th class in the training samples, A is the partitioning 
attribute, X𝑣 is the subset of X having value v for attribute A.

𝐸(𝑋) = −
𝐶∑
𝑖=1

𝑓𝑖 log2(𝑓𝑖) (3)

𝐼𝐺(𝑋,𝐴) =𝐸(𝑋) −
∑ |𝑋𝑣||𝐴| 𝐸(𝑋𝑣) (4)
𝑣∈Values(𝐴)
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Fig. 3. Data structure of every internal node used to hold the classification tree.
Algorithm 1 Proposed Reference Indicator based Decision Tree (RIDT) 
algorithm for water quality monitoring system.

INPUT: D – A dataset with attributes in CSV format only

OUTPUT: T – A Multivariate continuous data classification tree

1: Tree ← NULL tree node pointer of structure as in Fig. 3

2: R ← #Instances in D
3: N ← #Attributes in D
4: for i ← 0 to R-1 do

5: referenceIndicator1 ← Standard Deviation of D[i][0] to D[i][N-2] // last attribute 
(D[i][N-1]) is for class

6: referenceIndicator2 ← Sum of D[i][0] to D[i][N-2]

7: referenceIndicator3 ← 0.0;

8: for j ← 0 to N-2 do

9: referenceIndicator3 ← referenceIndicator3 + D[i][j] * power(2,j)

10: end for

11: D[i][N] ← referenceIndicator1
12: D[i][N+1] ← referenceIndicator2
13: D[i][N+2] ← mod(referenceIndicator3 ,referenceIndicator2)

14: end for

15: Tree ← DTREE_BUILDER(D)

16: return Tree

17: procedure DTREE_BUILDER(D)

18: Tree ← NULL tree node pointer of structure as in Fig. 3

19: R ← #Instances in D
20: N ← #Attributes in D
21: if All Instances in D are in one class then

22: return A leaf node by marking that class

23: end if

24: if No attribute is left to make a partition then

25: return A leaf node marking as the class that is most frequent in these Instances.

26: end if

// splitting Attribute selection process starts

27: maxInfo ← 0.0

28: for i ← 0 to N-1 do

29: infoGain ← information gain (IG) if we split D on Attribute𝑖
30: if maxInfo < infoGain then

31: maxInfoPossition ← i

32: end if

33: end for

// threshold value of the splitting Attribute calculation starts

34: Sort the dataset (D) with respect to the values of Attribute𝑚𝑎𝑥𝐼𝑛𝑓𝑜𝑃𝑜𝑠𝑠𝑖𝑡𝑖𝑜𝑛
35: thresholdValue ← 0.0

36: for i ← 0 to N-2 do

37: maxT ← (Attribute𝑖 + Attribute𝑖+1)/2

38: if thresholdValue < maxT then

39: thresholdValue ← maxT

40: end if

41: end for

42: Tree ← build a tree node that holds Attribute𝑚𝑎𝑥𝐼𝑛𝑓𝑜𝑃𝑜𝑠𝑠𝑖𝑡𝑖𝑜𝑛 and thresholdValue

43: D𝑣1 ← Sub-dataset of D where Attribute𝑚𝑎𝑥𝐼𝑛𝑓𝑜𝑃𝑜𝑠𝑠𝑖𝑡𝑖𝑜𝑛 ⩽ thresholdValue

44: D𝑣2 ← Sub-dataset of D where Attribute𝑚𝑎𝑥𝐼𝑛𝑓𝑜𝑃𝑜𝑠𝑠𝑖𝑡𝑖𝑜𝑛 > thresholdValue

45: Tree𝑣1 ← DTREE_BUILDER(D𝑣1)

46: Attach Tree𝑣1 to the left side link of the Tree

47: Tree𝑣2 ← DTREE_BUILDER(D𝑣2)

48: Attach Tree𝑣2 to the right side link of the Tree

49: return Tree

50: end procedure

4.3.3. Calculation of threshold value & creation of tree node

The proposed algorithm sets a threshold value and a partition at-

tribute in every internal node. To find the threshold value of a particular 
partitioning attribute we first sorted the dataset with respect to the 
values of that partitioning attribute. Then we calculated all the mean 
values of two consecutive attribute values of the partitioning attribute 
of this sorted dataset. Finally, we take the maximum mean value as the 
threshold value (Line No. 34 to 42 of Algorithm 1).
4

4.3.4. Creation of sub-dataset by splitting the main dataset

After selecting the partitioning attribute and the threshold value, 
the dataset is divided into two sub-datasets based on this partitioning 
attribute and the threshold value of that partitioning attribute. One sub-

dataset is consists of the instances of the original dataset where the 
attribute value of the partitioning attribute is less than or equal to the 
threshold value for that internal node. Rest instances will belong to the 
other sub-dataset (Line No. 43 and 44 of Algorithm 1).

4.3.5. Creation of leaf node: class determination

In this partitioning process when all the instances of a sub-dataset 
belong to a single class then, that partition node will be marked as a 
leaf node with that class label. There may be a situation when making 
a further partition is not possible because of the unavailability of the 
partitioning attributes as they have already used in the previous parti-

tioning nodes. Then we marked that partition as a leaf node with the 
class label that is the most frequent in instances of that sub-dataset par-

tition (Line No. 18 to 26 of Algorithm 1).

At the time of class determination of an instance of the dataset, the 
threshold values and partitioning attributes of the internal nodes will 
decide the flow of the comparison path from the root node to the leaf.

4.3.6. Computational time complexity of the proposed algorithm

Lemma 4.1. The worst case computational complexity to build the classifi-

cation model is O(RN2) where R is the total number of instances, and N is 
the number of attributes in the training dataset.

Proof. We are splitting the time complexity calculation into the follow-

ing steps:

Step 1. The inclusion of reference indicators: Computation of the 
reference indicators for every instance is dependent on the actual num-

ber of attributes (N). The algorithm will include the reference indicators 
for all the instances (R) of the dataset. So, the time complexity for the 
inclusion of reference indicators is proportional to RN (Line no 4 to 14 
of Algorithm 1).

Step 2. Creation of leaf node: The proposed algorithm will depend 
on the number of instances (R) in the current dataset to check whether 
leaf node creation criteria is mate or not (Line no 22 and 24 of Algo-

rithm 1). Leaf node creation time is constant (Line no 22 and 25 of 
Algorithm 1).

Step 3. Selection of the partitioning attribute: For the selection 
of the partitioning attribute (Line no 27 to 33 of Algorithm 1), the 
proposed algorithm will calculate the information gains of the current 
dataset at all the attribute positions, so the maximum time will depend 
on the number of attributes (N) of the current dataset.

Step 4. Dataset sorting and threshold value calculation: In line 
number 34 to 41 of Algorithm 1, the dataset sorting time and threshold 
value calculation time for a partitioning attribute will depend on the 
number of instances of the current dataset (R).

Step 5. Building a tree node and divide the current dataset into 
two sub-datasets: The tree node building time is constant in Line no 
42 of Algorithm 1. The creation of sub-datasets also takes constant time 
in line no. 43 and 44 of Algorithm 1.

Step 6. Recursive call of the DTREE_BUILDER procedure: The 
proposed algorithm will recursively call the DTREE_BUILDER procedure 
in line no 45 and 47 of Algorithm 1.

In the worst case scenario, the proposed algorithm will build a com-

plete tree where every path test every attribute. So, the total levels of 
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the tree will be N. All the instances (R) will spread across all the nodes 
at each of the N levels.

At each level i, in the tree the algorithm must examine the remaining 
N − i attributes for each instance at the level to calculate the informa-

tion gains and threshold values. So, the maximum number of time for 
recursively calling the DTREE_BUILDER procedure is the number of at-

tributes (N) in the original dataset.

So, the overall computational complexity to produce the classifica-

tion model by the proposed algorithm will be O(RN + R + N + R + 
constant time) × N ≈ O(RN × N) ≈ O(RN2). □

However, in most of the cases, the number of leaves are ≪ R. In 
practice, complexity is linear in both number of attributes (N) and the 
number of training instances (R).

5. Results and discussion

5.1. Evaluation of proposed method by confusion matrix

A confusion matrix demonstrates the quantity of right and wrong 
estimates produced by the classification model. It shows contrast with 
the genuine results (original class) in the dataset. The matrix dimension 
is N × N. N is the quantity of original classes. Utilizing the data in the 
confusion matrix, we can evaluate the performance of the classification 
models.

The confusion matrixes generated from the outputs of our proposed 
method, C-4.5, and Logistic Regression is given in Table 2 for our pri-

mary water quality dataset. The confusion matrixes for Troxler T., D. 
Childers. 2018 water quality dataset [5], Rosenblatt A. 2014 water 
quality dataset [6] and Steinbach M. 2017 water quality dataset [7]

is produced on Tables 3, 4 and 5 respectively.

In our confusion matrices in the Tables 2, 3, 4 and 5, the row values 
represent the actual attribute classes of the dataset and the column val-

ues represent the predicted classes by the classification model. The total 
instances of an actual class are the summation of the values of the cor-

responding row. The total instances of a certain class that are predicted 
by the classification model are the summation of the corresponding col-

umn values. The principal diagonal of the confusion matrix represents 
the correctly classified instances of the corresponding class of the row, 
column position.

5.1.1. Different prediction cases of the proposed method

There are four cases when a classifier model makes predictions. 
These are as follows:

NTP (Number of True Positives): These are cases in which the 
classifier model predicted some instances to a certain class, and they 
actually do belongs to that predicted class.

Table 2

Confusion matrix of primary water dataset generated from the output of Pro-

posed Method, C-4.5 [17] & Logistic Regression [18].

By Proposed Method and C-4.5 Algorithm

Water source Packaged drinking 
water

Pipeline drinking 
water

Pond 
water

Packaged drinking water 2689 0 0

Pipeline drinking water 0 2627 0

Pond water 0 0 2555

By Logistic Regression

Water source Packaged drinking 
water

Pipeline drinking 
water

Pond 
water

Packaged drinking water 2672 17 0

Pipeline drinking water 59 2202 366

Pond water 57 293 2205
5

Table 3

Confusion matrix of Troxler T., D. Childers. 2018 water quality dataset [5] gen-

erated from the output of Proposed Method, C-4.5 [17] & Logistic Regression 
[18]. Here, TS/PH6a, TS/PH8, and TS/PH7a are three water quality data log-

ging sites having Longitude (degree), Latitude (degree) at −80.649, 25.214; 
−80.525, 25.233, and −80.639, 25.191 respectively.

By Proposed Method

Site name TS/PH6a TS/PH8 TS/PH7a

TS/PH6a 145 8 30

TS/PH8 17 32 5

TS/PH7a 12 1 172

By C-4.5 Algorithm

Site name TS/PH6a TS/PH8 TS/PH7a

TS/PH6a 152 1 30

TS/PH8 27 23 4

TS/PH7a 23 3 159

By Logistic Regression

Site name TS/PH6a TS/PH8 TS/PH7a

TS/PH6a 128 3 52

TS/PH8 32 1 21

TS/PH7a 74 3 108

Table 4

Confusion matrix of Rosenblatt A. 2014 water quality dataset [6] generated 
from the output of Proposed Method, C-4.5 [17] & Logistic Regression [18].

By Proposed Method

Bay/River Tarpon Bay Shark River

Tarpon Bay 21087 945

Shark River 1126 20854

By C-4.5 Algorithm

Bay/River Tarpon Bay Shark River

Tarpon Bay 21103 929

Shark River 1563 20417

By Logistic Regression

Bay/River Tarpon Bay Shark River

Tarpon Bay 17994 4038

Shark River 4456 17524

NTN (Number of True Negatives): These are cases in which the 
classifier model predicted some instances, not to belong to a certain 
class, and they actually do not belong to that predicted class.

NFP (Number of False Positives): These are cases in which the 
classifier model predicted some instances to a certain class, but they 
actually do not belong to that predicted class.

NFN (Number of False Negatives): These are cases in which the 
classifier model predicted some instances, not to belong to a certain 
class, but they actually do belong to that predicted class.

We can calculate the values of these cases from the confusion matrix. 
Number of instances in the test dataset is the summation of NTP, NTN,

NFP and NFN.

5.1.2. Evaluation metrics of the Proposed Method for each individual 
classes

With the help of the four prediction cases of the classification models 
described in Section 5.1.1, we can formulate some evaluation metrics 
[19, 20], to observe it’s performance on each individual class, such 
as Sensitivity (Sens) or True Positive Rate (TPR), False Positive Rate 
(FPR), Specificity (Spec) or TNR, Positive Predictive Value (PPV) or 
Precision, Negative Predictive Value (NPV), Accuracy (Acc), F1 score, 
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Table 5

Confusion matrix of Steinbach M. 2017 water quality dataset [7] generated from 
the output of Proposed Method, C-4.5 [17] & Logistic Regression [18]. Here, 
BL = BUG LAKE, BLD = BUG LAKE DEEP, CL = CLOUD LAKE, CLD = CLOUD 
LAKE DEEP, DL = DEVILS LAKE, DLD = DEVILS LAKE DEEP, KL = KING LAKE, 
& KLD = KING LAKE DEEP.

By Proposed Method

Class BL BLD CL CLD DL DLD KL KLD

BL 74 1 0 0 1 0 0 0

BLD 10 32 0 0 0 0 0 0

CL 1 3 72 5 0 0 0 0

CLD 0 0 4 38 0 0 0 1

DL 0 0 0 0 74 3 0 0

DLD 1 2 0 0 6 34 0 0

KL 1 0 0 0 0 0 79 1

KLD 0 0 0 0 0 0 5 38

By C-4.5 Algorithm

Class BL BLD CL CLD DL DLD KL KLD

BL 72 2 0 0 1 1 0 0

BLD 4 37 0 0 0 1 0 0

CL 1 3 71 6 0 0 0 0

CLD 0 0 4 38 0 0 0 1

DL 0 0 0 0 72 5 0 0

DLD 1 2 0 0 7 33 0 0

KL 1 0 0 0 0 0 79 1

KLD 0 0 0 0 0 0 5 38

By Logistic Regression

Class BL BLD CL CLD DL DLD KL KLD

BL 72 2 0 0 1 1 0 0

BLD 13 26 0 1 1 1 0 0

CL 2 0 71 5 0 0 3 0

CLD 0 0 18 25 0 0 0 0

DL 6 0 0 0 66 5 0 0

DLD 0 2 0 0 17 24 0 0

KL 1 1 0 0 0 0 77 2

KLD 0 0 0 0 0 0 4 39

and Matthews Correlation Coefficient (MCC) as defined in Equations 
(5), (6), (7), (8), (9), (10), (11) and (12) respectively.

TPR =
𝑁TP

𝑁TP +𝑁FN
(5)

FPR =
𝑁FP

𝑁TN +𝑁FP
(6)

Spec =
𝑁TN

𝑁TN +𝑁FP
(7)

PPV =
𝑁TP

𝑁TP +𝑁FP
(8)

NPV =
𝑁TN

𝑁TN +𝑁FN
(9)

Acc =
𝑁TP +𝑁TN

𝑁TP +𝑁TN +𝑁FP +𝑁FN
(10)

F1 score =
2𝑁TP

2𝑁TP +𝑁FP +𝑁FN
(11)

MCC =
𝑁TP ×𝑁TN −𝑁FP ×𝑁FN√

(𝑁TP +𝑁FP)(𝑁TP +𝑁FN)(𝑁TN +𝑁FP)(𝑁TN +𝑁FN)
(12)

In Fig. 4 and 5, the Receiver Operating Characteristic (ROC) curve 
[21] is produced for our primary water quality dataset and Troxler T., 
D. Childers. 2018 water quality dataset [5] by plotting the true positive 
rate (Equation (5)) against the false positive rate (Equation (6)) to vi-

sualize the performance of the proposed method. The ROC curves for 
water quality datasets of Rosenblatt A. 2014 [6] and Steinbach M. 2017 
[7] are given in Fig. 6 and 7 respectively.
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Table 6

Percentage of Correctly Classified Instances generated from the output of C-4.5 
algorithm [17], logistic regression [18] & our classification algorithm.

DATA SET C-4.5 Logistic 
regression

Proposed

method

Troxler T., D. Childers. 2018 Dataset [5] 79.15% 56.16% 82.70%

Rosenblatt A. 2014 Dataset [6] 94.34% 80.70% 95.29%

Steinbach M. 2017 Dataset [7] 90.54% 82.30% 90.74%

Primary Water_Quality_Data [4] 100.00% 89.94% 100.00%

5.1.3. Overall evaluation metrics of the classification models

Definition 1. The Factor of Correctly Classified Instances (FCCI) of 
a classification model can be calculated as the ratio of the summation 
of Number of True Positives of every class with the total number of 
instances present in the dataset.

The Equation (13) defines the calculation of FCCI where C is the 
number of classes in the dataset and 𝑁TP

𝑖 is the number of true pos-

itives of class i. We can obtain the Percentage of Correctly Classified 
Instances (PCCI) by multiplying FCCI with 100, i.e. PCCI = FCCI ×
100. In Table 6, we have shown the Percentage of Correctly Classified 
Instances (PCCI) of six datasets by C-45, Logistic Regression, and the 
proposed algorithm.

We observed that the Percentage of Correctly Classified Instances 
(PCCI) of the proposed algorithm is more considerable than C-4.5 and 
Logistic Regression for four datasets. For the water dataset, we ware 
able to achieve PCCI = 100% (Table 6) with the proposed algorithm 
and C-4.5.

FCCI =

𝐶∑
𝑖=1

𝑁TP
𝑖

Number of Instances in the Dataset
(13)

C-4.5 [17] & Logistic Regression [18]

Definition 2. The Mean Absolute Error (MAE) is a linear score which 
implies that all the individual differences (errors) are given the same 
weight by measuring the average of the errors in an arrangement of 
forecasts. It also shows the closeness of estimates to the actual.

The MAE is represented by the equation (14) where 𝑓𝑖 = prediction

and 𝑦𝑖 = true value and average of the absolute error |𝑒𝑖| = |𝑓𝑖 − 𝑦𝑖|.
𝑀𝐴𝐸 = 1

𝑛
Σ𝑛
𝑖=1|𝑓𝑖 − 𝑦𝑖| = 1

𝑛
Σ𝑛
𝑖=1|𝑒𝑖| (14)

We have accumulated the Mean Absolute Errors of the six datasets 
by Logistic Regression, C-4.5, and our proposed algorithm. We show 
this MEA values in Fig. 8 as a bar graph visualisation. We observed 
that our algorithm is producing minimum MEA over C-4.5 and Logistic 
Regression.

Definition 3. Root Mean Squared Error (RMSE) is the squared aver-

age difference amongst estimate and relating observed values of differ-

ent models for a particular dataset and not between datasets. The errors 
are squared before they are found the middle value.

The RMSE gives high weight to huge errors. This means the RMSE 
is most helpful when huge errors are not acceptable. The Root Mean 
Squared Error (RMSE) is represented in equation (15) that measures 
the contrasts between the values really show in the occurrences and the 
values estimated by a classification model [22, 23].

𝑅𝑀𝑆𝐸 =

√√√√ 1
𝑁

Σ𝑁
𝑗=1

(
𝑃𝑖,𝑗 − 𝑇𝑗

𝑇

)2
(15)
𝑗
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Fig. 4. Receiver operating characteristic (ROC) curve of primary water quality dataset by the proposed method, C-4.5 Classifier & Logistic Regression. Here, (a) ROC 
curve for “packaged drinking water” quality, (b) ROC curve for “pipeline drinking water” quality and (c) ROC curve for “pond water” quality.

Fig. 5. Receiver operating characteristic (ROC) curve of Troxler T., D. Childers. 2018 water quality dataset [5] by the proposed method, C-4.5 Classifier & Logistic 
Regression. Here, (a) ROC curve for PH6a water quality having Site Coordinates at Longitude (degree): −80.649 & Latitude (degree): 25.214, (b) ROC curve for PH7a 
water quality having Site Coordinates at Longitude (degree): −80.639 & Latitude (degree): 25.191, and (c) ROC curve for PH8 water quality having Site Coordinates 
at Longitude (degree): −80.525 & Latitude (degree): 25.233.
Here, P(𝑖,𝑗) is the predicted value, i fitness case, T𝑗 is the target value of 
the fitness case j and N is the number of instances.

We have calculated RMSE values by C-4.5, Logistic Regression, and 
our proposed algorithm and presented a comparison of these RMSE 
values in Fig. 9. The proposed classification algorithm can maintain 
a lower Root Mean Squared Error compared to C-4.5 and Logistic Re-

gression.
7

Definition 4. Kappa Statistic adjusts the level of agreement between 
the classifier’s forecasts and reality by considering the extent of expec-

tations that may happen by chance.

Kappa Statistic in equation (16) and (18) compares the precision of 
the classification framework to the exactness of an irregular framework, 
i.e. the results given randomly [24, 25]. A random model can also pro-
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Fig. 6. Receiver operating characteristic (ROC) curve of Rosenblatt A. 2014 water quality dataset [6] by the proposed method, C-4.5 Classier & Logistic Regression. 
Here, (a) ROC curve of Shark River, (b) ROC curve of Tarpon Bay.

Fig. 7. Receiver operating characteristic (ROC) curve of Steinbach M. 2017 water quality dataset [7] by the proposed method, C-4.5 Classier & Logistic Regression. 
Here, (a) ROC curve of BUG LAKE, (b) ROC curve of BUG LAKE DEEP, (c) ROC curve of CLOUD LAKE, (d) ROC curve of CLOUD LAKE DEEP, (e) ROC curve of 
DEVILS LAKE, (f) ROC curve of DEVILS LAKE DEEP, (g) ROC curve of KING LAKE, & (h) ROC curve of KING LAKE DEEP.
8
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Fig. 8. Mean absolute error of C-4.5 algorithm; logistic regression & proposed algorithm for the dataset of Table 1.

Fig. 9. Root mean squared error of C-4.5 algorithm, logistic regression & proposed algorithm for the dataset of Table 1.
9
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Fig. 10. Kappa statistic of C-4.5 algorithm, logistic regression & proposed algorithm for the dataset of Table 1.
duce higher precision if in the test dataset there are maximum instances 
of the same class.

𝐾 =
𝑃0 − 𝑃𝑐

1 − 𝑃𝑐
(16)

Where P0 is the total agreement probability i.e. Accuracy (Acc) as 
in equation (10)), and P𝑐 is the probability that the agreement oc-

curred by chance i.e. Random Accuracy (RA). The Random Accuracy 
is characterized as the aggregate of the products of reference probabil-

ity and result probability for each class as in equation (17) in terms of 
𝑁TP, 𝑁TN, 𝑁FP 𝑎𝑛𝑑 𝑁FN.

RA =
(𝑁TP +𝑁FP)(𝑁TP +𝑁FN)(𝑁TN +𝑁FP)(𝑁TN +𝑁FN)(

𝑁TP +𝑁TN +𝑁FP +𝑁FN
)2 (17)

If the number of class is more than two, we can represent Kappa 
Statistic as far as the confusion matrix’s cell counts [24] is shown in 
equation (18).

𝐾 =
𝑅 ∗

𝐶∑
𝑖=1

𝑥𝑖𝑖 −
𝐶∑
𝑖=1

𝑥𝑖.𝑥.𝑖

𝑅2 −
𝐶∑
𝑖=1

𝑥𝑖.𝑥.𝑖

(18)

Where x𝑖𝑖 is the count of cases in the main diagonal, R is the number of 
instances, C is the number of classes, and x𝑖. and x.𝑖 are the column and 
row total counts, respectively.

Comparison of the Kappa Statistic is shown in Fig. 10. The pro-

posed algorithm gives a better Kappa Statistic value. Kappa Statistic 
is a normalised statistic. Its esteem never surpasses one, so a similar 
measurement can be utilised even when the number of occurrences go 
higher.

6. Conclusion

We have developed a water quality monitoring device consisting of 
existing sensors to collect the water quality data from three different 
sources. However, we have only two water quality parameters in our 
collected data. So, to validate the proposed method we have used three 
secondary water quality dataset having more quality parameters. We 
propose a classification method to classify the collected water quality 
data as well as to detect water contamination. We have also given a 
comparative study of the proposed method with two existing stander 
10
classification methods, i.e. C-4.5 and Logistic Regression. In both cases, 
we have experienced better classification performance by our reference 
indicator based decision tree algorithm. Thus, giving us a better water 
quality monitoring system.
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