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Abstract 8 

A universal feature of living systems is that natural variation in genotype underpins variation in 9 

phenotype. Yet, research in model organisms is often constrained to a single genetic 10 

background, the reference strain. Further, genomic studies that do evaluate wild strains typically 11 

rely on the reference strain genome for read alignment, leading to the possibility of biased 12 

inferences based on incomplete or inaccurate mapping; the extent of reference bias can be 13 

difficult to quantify. As an intermediary between genome and organismal traits, gene expression 14 

is well positioned to describe natural variability across genotypes generally and in the context of 15 

environmental responses, which can represent complex adaptive phenotypes. C. elegans sits at 16 

the forefront of investigation into small-RNA gene regulatory mechanisms, or RNA interference 17 

(RNAi), and wild strains exhibit natural variation in RNAi competency following environmental 18 

triggers. Here, we examine how genetic differences among five wild strains affect the C. 19 

elegans transcriptome in general and after inducing RNAi responses to two germline target 20 

genes. Approximately 34% of genes were differentially expressed across strains; 411 genes 21 

were not expressed at all in at least one strain despite robust expression in others, including 49 22 

genes not expressed in reference strain N2. Despite the presence of hyper-diverse hotspots 23 

throughout the C. elegans genome, reference mapping bias was of limited concern: over 92% of 24 

variably expressed genes were robust to mapping issues. Overall, the transcriptional response 25 

to RNAi was strongly strain-specific and highly specific to the target gene, and the laboratory 26 

strain N2 was not representative of the other strains. Moreover, the transcriptional response to 27 

RNAi was not correlated with RNAi phenotypic penetrance; the two germline RNAi incompetent 28 

strains exhibited substantial differential gene expression following RNAi treatment, indicating an 29 

RNAi response despite failure to reduce expression of the target gene. We conclude that gene 30 

expression, both generally and in response to RNAi, differs across C. elegans strains such that 31 

choice of strain may meaningfully influence scientific conclusions. To provide a public, easily 32 

accessible resource for querying gene expression variation in this dataset, we introduce an 33 

interactive website at https://wildworm.biosci.gatech.edu/rnai/. 34 
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Introduction 35 

Research in the model organism C. elegans has yielded insight into myriad aspects of biology, 36 

particularly development, genetics, and molecular biology (Corsi et al., 2015). Historically, much 37 

of this work has been conducted in a single isogenic strain, the laboratory strain N2 (Andersen 38 

et al., 2012; Antoine Barriere & M. A. Felix, 2005). However, C. elegans harbors significant 39 

intraspecific genetic diversity (A. Barriere & M. A. Felix, 2005; Antoine Barriere & M. A. Felix, 40 

2005; Crombie et al., 2019; Lee et al., 2021; Andersen et al., 2012), and in the last decade C. 41 

elegans has also been established as a powerful system for elucidating connections between 42 

genotype and phenotype (Andersen et al., 2012; Andersen & Rockman, 2022; A. Barriere & M. 43 

A. Felix, 2005; Antoine Barriere & M. A. Felix, 2005; Cook et al., 2017; Crombie et al., 2019; 44 

Evans, van Wijk, et al., 2021; Gaertner & Phillips, 2010; Lee et al., 2021). Natural genetic 45 

variation exists for practically any organismal trait measurable in C. elegans (Andersen & 46 

Rockman, 2022), for example: responsiveness to toxins, metals, drugs, and other stressors 47 

(Dilks et al., 2021; Evans & Andersen, 2020; Evans, Wit, et al., 2021; Hahnel et al., 2018; Na et 48 

al., 2020; Webster et al., 2019; Zdraljevic et al., 2019; Zdraljevic et al., 2017); behavior 49 

(Bendesky et al., 2012; Ghosh et al., 2015; McGrath et al., 2009); transgenerational mortality 50 

traits (Frezal et al., 2018; Saber et al., 2022); and efficiency in RNA interference (RNAi) (Elvin et 51 

al., 2011; Felix, 2008; Felix et al., 2011; Paaby et al., 2015; Tijsterman et al., 2002). 52 

 53 

Naturally, molecular phenotypes that act as intermediaries between genotype and organismal 54 

traits, such as gene expression, also vary across strains. Studies from recombinant inbred lines 55 

(Evans & Andersen, 2020; Rockman et al., 2010; Vinuela et al., 2010) and, more recently, RNA 56 

sequencing of 207 wild strains (Zhang et al., 2022), have identified numerous expression 57 

quantitative trait loci (eQTL) that encode differences in gene expression. How such expression 58 

differences manifest across different strains, whether they offer clues into functional 59 

differentiation, and how genetic differences compare to environmentally induced differences in 60 

gene expression or mediate gene expression responses to environmental stimuli remain 61 

interesting questions. These questions require genome-wide characterization of gene 62 

expression in multiple strains under multiple conditions. 63 

 64 

One phenomenon of particular interest is RNA interference, a mechanism of gene expression 65 

regulation triggered by environmental or endogenous sources of double stranded RNA with 66 

broad-reaching influence over diverse aspects of organismal biology (Billi et al., 2014; Wilson & 67 

Doudna, 2013). RNAi was discovered in C. elegans (Fire et al., 1998), but competency in 68 
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response to environmental triggers is highly variable across wild C. elegans strains (Elvin et al., 69 

2011; Felix, 2008; Felix et al., 2011; Paaby et al., 2015; Tijsterman et al., 2002). Previous work 70 

showed that a loss-of-function mutation in Argonaute RNAi effector gene ppw-1 is largely 71 

responsible for the near-complete failure of Hawaiian strain CB4856 to mount an RNAi 72 

response against germline targets (Tijsterman et al., 2002), and later work characterized the 73 

failure in CB4856 as a much delayed, rather than absent, response (Chou et al., 2022). Other 74 

strains incompetent for germline RNAi exhibit distinct modes of RNAi failure with distinct genetic 75 

bases (Chou et al., 2022; Elvin et al., 2011; Pollard & Rockman, 2013). Even as wild strains 76 

vary in overall competency for germline RNAi, strain-to-strain differences in RNAi phenotypic 77 

penetrance are also highly dependent on the target gene; whether these differences arise from 78 

strain-specific developmental consequences of gene knock-down or strain-specific differences 79 

in target-dependent RNAi efficacy is unclear (Paaby et al., 2015). How this phenotypic variation 80 

in RNAi response is reflected in genome-wide transcriptional changes upon RNAi induction 81 

remains a largely open question. 82 

 83 

Here, we evaluate how genotype (strain) and induction of the RNAi response affect the C. 84 

elegans transcriptome. We also consider how reliance on the reference genome, derived from 85 

the laboratory strain N2, might constrain estimates of gene expression in wild strains, and how a 86 

focus on N2 in studies of RNAi might limit inferences about RNAi biology within C. elegans 87 

generally. To investigate these questions, and to provide a public resource for interrogating 88 

transcriptional variation in this system, we performed RNA sequencing on five C. elegans 89 

strains with varying competency in germline RNAi, both in the control condition and under RNAi 90 

treatment targeting two germline-expressed genes.  91 

 92 

Materials and methods 93 

Sample preparation and sequencing 94 

Worm strains and husbandry 95 

Strains used in this study include wild strains CB4856, EG4348, JU1088, and QX1211 (gifts 96 

from Matthew Rockman) and wild-type laboratory strain N2 (gift from Patrick McGrath). Worms 97 

were cultured under standard conditions (Stiernagle, 2006) except that plates used for non-N2 98 

wild strains were made with 1.25% agarose to prevent burrowing. All strains except for QX1211 99 

were maintained at 20°C; QX1211 was maintained at 18°C to prevent induction of its mortal 100 

germline phenotype (Frezal et al., 2018). Worms were maintained for at least three generations 101 

without starvation before RNAi induction and RNA sequencing. 102 
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 103 

RNA interference 104 

RNAi was induced via feeding and was carried out on plates at 20°C following established 105 

methods (Ahringer, 2006; Kamath et al., 2001). Worms were fed HT115 E. coli bacteria that had 106 

been transformed with the empty pL4440 vector or the pL4440-derived vectors par-1 107 

(H39E23.1) and pos-1 (F52E1.1) from the Ahringer feeding library (Kamath & Ahringer, 2003). 108 

Bacteria cultures were prepared by streaking from frozen stocks onto LB agar with carbenicillin 109 

(25 ug/mL) and tetracycline (12.5 mg/mL); next 5-10 colonies from < 1 week old plates were 110 

used to inoculate liquid cultures of LB broth with carbenicillin (50 ug/mL) and tetracycline (12.5 111 

mg/mL), which were then incubated with shaking at 37°C for 16-18 hours and finally amplified 112 

with carbenicillin (50 ug/mL) for 6hrs at a 1:200 dilution. 10cm agar feeding plates with 1mM 113 

IPTG (Ahringer 2006) were seeded with the RNAi bacteria cultures, then used within 44-78 114 

hours after incubation in the dark. Worm strains reared under standard conditions were 115 

bleached on day 1 to synchronize, then bleached again on day 4 (Stiernagle, 2006). On day 5, 116 

L1s were transferred to the RNAi plates. All strains were exposed to RNAi in this way at the 117 

same time in triplicate, 6 total plates per strain. 118 

 119 

RNA library preparation and sequencing 120 

As previously described (Chou et al., 2022), synchronized hermaphrodites reared on RNAi 121 

feeding plates were washed off at the first sign of egg laying, washed twice with M9 buffer, and 122 

stored in TRIzol (Invitrogen #15596026) at -80°C until RNA extraction. RNA was extracted from 123 

all samples at the same time using TRIzol (Invitrogen #15596026) and RNeasy columns 124 

(Qiagen #74104) following (He, 2011). cDNA and sequencing libraries were generated from 500 125 

ng of fresh RNA samples with 10 cycles of PCR with the NEBNext Ultra II Directional RNA 126 

Library Prep Kit for Illumina (NEB #7760). After quality checking using an Agilent 2100 127 

Bioanalyzer, library fragments were size-selected via BluePippon (Sage Science). Single-end 128 

75bp reads were sequenced on an Illumina NextSeq at the Molecular Evolution Core facility at 129 

the Georgia Institute of Technology. 130 

 131 

Analysis 132 

Analytical approach 133 

We considered multiple state-of-the-art pipelines to align RNA-seq data and quantify 134 

expression. Because the four wild strains in our study are diverged from the N2 reference 135 

genome by differing degrees (Cook et al., 2017), we required a method that could evaluate N2 136 
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data and non-N2 data over a range of variation without bias. One variant-aware option for 137 

quantifying RNA expression is to consider only RNA-seq reads that align to exactly one position 138 

on the reference genome (unique mappers) using STAR (Dobin et al., 2012), and to discard 139 

reads not uniquely aligning to the same position after non-reference variants are swapped into 140 

the read using WASP (van de Geijn et al., 2015). We explored this approach with our data. 141 

Specifically, we used STAR v2.7.5a with non-default parameters --outFilterMismatchNmax 33 –142 

seedSearchStartLmax 33 --alignSJoverhangMin 8 --outFilterScoreMinOverLread 0.3 --143 

alignIntronMin 40 --alignIntronMax 2200 --waspOutputMode SAMtag --varVCFfile <VCF 144 

containing SNPs from all 4 non-reference strains>; these latter parameters implemented WASP 145 

from within STAR. 146 

 147 

A second option is to generate strain-specific transcriptomes that incorporate known variants 148 

from each strain into the reference genome and use those to quantify transcript expression via 149 

pseudo-alignment; this approach permits reads to map to multiple locations (Bray et al., 2016; 150 

Patro et al., 2017). We do not compare the STAR-WASP approach to this pseudo-alignment 151 

approach here; high-level results were similar between the approaches. For our final analysis 152 

we chose the second option, for multiple reasons: 1) pseudo-alignment approaches are at least 153 

as accurate at estimating expression while being computationally more efficient (Bray et al., 154 

2016; Patro et al., 2017); 2) pseudo-alignment approaches take into account the large fraction 155 

of reads that align to multiple loci in the genome (Bray et al., 2016; Patro et al., 2017); and 3) 156 

our specific generation of strain-specific transcriptomes enabled us to include insertion-deletion 157 

polymorphisms (INDELs), whereas WASP ignores INDELs (van de Geijn et al., 2015). Including 158 

INDELs was particularly relevant in this study, as 8,195-67,267 INDELs differentiate the four 159 

non-reference strains from the reference genome (CeNDR 20210121 release) (Cook et al., 160 

2017). 161 

 162 

The following methods detail generation of strain-specific transcriptomes and pseudo-alignment 163 

to quantify expression at individual genes. A subset of these methods and data overlap with our 164 

recent RNAi-focused study, which examined expression variation at specific RNAi genes (Chou 165 

et al., 2022). 166 

 167 

Strain-specific transcriptomes 168 

As previously described (Chou et al., 2022), we used SNPs and INDELs from CeNDR (release 169 

20210121) (Cook et al., 2017) to update the N2 reference genome (release ws276) (Harris et 170 
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al., 2020) to generate strain-specific transcriptomes using the software g2gtools (v0.1.31 via 171 

conda v4.7.12, Python v2.7.16) (https://github.com/churchill-lab/g2gtools). Specifically, INDELS 172 

were added to the reference genome with g2gtools vcf2chain and SNPs with g2gtools patch. 173 

INDELs were added to the SNP-updated genome with g2gtools transform. We generated strain-174 

specific GTFs from the strain-specific FASTAs with g2gtools convert and generated strain-175 

specific transcriptomes from these GTFs with gffread (v0.12.7) (Pertea & Pertea, 2020).  176 

 177 

The nextflow workflow performing this process is available in this project’s code repository 178 

(https://github.com/averydavisbell/wormstrainrnaiexpr) in workflows/strainspectranscriptome. 179 

 180 

Gene expression quantification 181 

Transcript-level quantification, used downstream for gene-level estimates, was performed using 182 

Salmon (v1.4.0) (Patro et al., 2017), as we previously detailed (Chou et al., 2022). First, we 183 

trimmed Illumina TruSeq adapters from RNA-seq reads with Trimmomatic (v0.3.9) (Bolger et al., 184 

2014), parameters ILLUMINACLIP:TruSeq3- SE.fa:1:30:1. Strain-specific transcriptomes were 185 

used to generate Salmon index files with command salmon index with options -k 31 --186 

keepDuplicates (all others default; no decoy was used). Salmon transcript quantification salmon 187 

quant was performed with options -l SR --dumpEq, --rangeFactorizationBins 4, --seqBias, and --188 

gcBias, and library-specific fragment length arguments --fldMean and --fldSD. 189 

 190 

The nextflow workflow generating strain-specific transcriptomes (link above) also generates 191 

strain-specific salmon indexes; the nextflow workflow performing transcript quantification is 192 

available in this project’s code repository in workflows/strainspecsalmon. 193 

 194 

Differential expression analysis 195 

Differential expression analyses were performed in R (v4.1.0) (R Core Team, 2021) using the 196 

DESeq2 package (v1.32.0) (Love et al., 2014). We imported transcript quantification data into 197 

DESeq2 using the tximport package (v1.20.0) (Soneson et al., 2015), which adds Salmon-198 

specific transcript length normalizations to DESeq2’s sample-wise RNA quantification 199 

normalization and converts Salmon’s transcriptome quantification estimates to gene-level 200 

quantification estimates. Genes with fewer than 10 estimated reads across all samples 201 

(summed) were excluded from downstream analyses, retaining 18,589 genes. Principal 202 

components analysis was performed using the top 500 most variably expressed genes across 203 
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all samples after DESeq2’s variance-stabilizing transformation (vst function), which was 204 

performed blind to experimental design. 205 

 206 

We used DESeq2’s likelihood-ratio tests to determine whether genes were differentially 207 

expressed based on strain in the control condition and whether the interaction of strain and 208 

treatment was significant. For strain-wise significance, control sample counts were modeled with 209 

the negative binomial model 210 

log2(qij) = βi xj + 1 211 

Which was compared to the reduced (null) model 212 

log2(qij) = 1 213 

Here, for gene i, sample j, q is proportional to the actual concentration of RNA fragments for a 214 

gene (derived by DESeq2 from input counts and error modeling. (Love et al., 2014). βi gives the 215 

log2 fold changes for gene i corresponding to strain x. A total of 15,654 genes were sufficiently 216 

detected in the control samples to be included in this analysis (the remainder were excluded by 217 

DESeq2’s p-value correcting methods). 218 

 219 

To evaluate strain:treatment interactions, all sample counts were modeled with the negative 220 

binomial model 221 

log2(qij) = β1i xj + β2iyj + β3i xj yj 222 

Which was compared to the reduced model 223 

log2(qij) = β1i xj + β2iyj 224 

Here, the symbols are as in the first set of equations, with the additions that y corresponds to 225 

RNAi treatment; xy to the strain-treatment interaction; and β1 to the strain effect, β2 to the 226 

treatment effect, and β3 to the interaction effect. 227 

 228 

In both likelihood-ratio tests, genome-wide adjusted p-values were determined by DESeq2’s 229 

multiple testing correction. Genes were considered differentially expressed if this p-value was 230 

less than 0.1. 231 

 232 

On the same datasets, we assessed differential expression within strains using DESeq2’s 233 

Wald’s tests of contrasts between treated (par-1 or pos-1 RNAi) and control (empty vector) 234 
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samples. Genes were considered significantly differentially expressed if, after log2 fold change 235 

shrinkage using the ‘ashr’ method from the package ashr (v2.2-47) (Stephens, 2017), their 236 

absolute value fold change was greater than 1.5 and genome-wide adjusted p-value (FDR) was 237 

less than 0.1. 238 

 239 

The script performing these analyses is available in this project’s code repository at 240 

diffexp_lrt_straintreat_salmon_deseq2.R.  241 

 242 

DNA sequence coverage estimation and identification of low-coverage and missing genes 243 

We examined DNA sequence coverage within genes in CeNDR (Cook et al., 2017) BAM files 244 

(20210121 release); these files correspond to the same strains as in our study except in the 245 

case of EG4348, where CeNDR sequenced genetically identical strain EG4349. We note, of 246 

course, that the CeNDR DNA alignments were made directly to the N2 genome; we used the 247 

variants discovered therein to build our genotype-specific pseudo-transcriptomes. To get per-248 

gene DNA sequence coverage, we first generated a file containing the non-overlapping, non-249 

duplicated locations of all genes’ RNA generating sequences by determining the locations of all 250 

merged exons genome-wide using GTFTools (v0.8.5) (Li, 2018) 251 

(http://www.genemine.org/gtftools.php). Then, we determined the mean per-base coverage of 252 

each of these regions using mosdepth v0.3.2 (Pedersen & Quinlan, 2018) with default options 253 

with the exception of setting --flag 1540, which excludes unmapped reads, PCR duplicates, and 254 

QC failures. Finally, we computed the per-gene coverage as 	255 
Σ(𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒	𝑝𝑒𝑟	𝑚𝑒𝑟𝑔𝑒𝑑	𝑒𝑥𝑜𝑛 ∗ 𝑙𝑒𝑛𝑔𝑡ℎ	𝑜𝑓	𝑚𝑒𝑟𝑔𝑒𝑑	𝑒𝑥𝑜𝑛)

Σ	𝑙𝑒𝑛𝑔𝑡ℎ	𝑚𝑒𝑟𝑔𝑒𝑑	𝑒𝑥𝑜𝑛𝑠	𝑖𝑛	𝑔𝑒𝑛𝑒
 256 

To delineate a set of low DNA coverage genes, we median-normalized the coverages within 257 

strain and flagged any with < 25% of the median coverage (i.e., median-normalized coverage < 258 

0.25) as low coverage. Genes were classified as putatively missing from non-reference strain 259 

genomes if they had raw coverage estimates of exactly zero. 260 

 261 

The workflow running this analysis is available in this project’s code repository in 262 

workflows/mosdepthmergedexons; this workflow performs custom gene-level analysis steps by 263 

calling an R script available in this project’s code repository at 264 

exploregenecoverage_fromexons.R. The scripts determining overlap with differentially 265 

expressed genes and zero-coverage genes are available in this project’s code repository at 266 

de_dnacov_overlap.R and exploregencoverage_fromexons_lowend.R.  267 
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 268 

‘Off’ gene analysis 269 

To identify genes putatively unexpressed in one or more strains despite being expressed in 270 

others (‘off’ genes), we first identified all genes differentially expressed between any two strains 271 

in the control condition (Wald’s test comparing each strain pair, genome-wide adjusted p < 0.1). 272 

The rationale was that genes significant for differential expression between strain pairs must 273 

have meaningful expression in at least one strain; we employed this standard to avoid inclusion 274 

of genes that are simply not expressed or expressed at a very low level regardless of strain. We 275 

then determined the average variance-stabilizing transformed (DESeq2 function vst) expression 276 

across all samples from all three treatments within each strain for these genes and identified 277 

those with zero mean expression. (These genes, of course, also have zero estimated 278 

expression prior to vst normalization.) Genes with strain-wise differential expression and zero 279 

expression within a strain comprise the ‘off’ gene set. (This process identified an additional six 280 

genes that fell just short of significance in the global analysis for differential expression in the 281 

likelihood-ratio test described above.) We then interrogated these genes for overlap with low 282 

DNA coverage and differential expression under RNAi treatment. 283 

 284 

The script performing these analyses is available in this project’s code repository at 285 

offgenes_straintreatDE_deseq2_dnacov.R.  286 

 287 

Gene set enrichment analysis 288 

We performed gene set enrichment analysis of genes differentially expressed upon RNAi 289 

treatment using WormBase’s enrichment analysis tool (Angeles-Albores et al., 2016; Harris et 290 

al., 2020) (https://wormbase.org/tools/enrichment/tea/tea.cgi). We analyzed genes upregulated 291 

and downregulated on each RNAi treatment in all five strains (20 analyses total; 5 strains x 2 292 

treatments x 2 directions of differential expression). Upregulated genes were those with higher 293 

expression on a treatment, with fold change > 1.5 vs control and adjusted p-value < 0.1; 294 

downregulated genes were those with lower expression on a treatment, with fold change < -1.5 295 

vs control and adjusted p-value < 0.1 (see ‘Differential expression analysis’). The background 296 

gene set for all analyses was the 18,529 genes included in overall differential expression 297 

analyses. All gene-set enrichment related outputs were saved and the enrichment results tables 298 

(‘Download results table here’) output were combined across strains for visualization.  299 

 300 
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The script performing this limited downstream processing is available in this project’s code 301 

repository at exploreGeneSetEnrichmentResults.R. 302 

 303 

High-performance computation 304 

Computationally intensive analyses were performed on the infrastructure of PACE (Partnership 305 

for an Advanced Computing Environment), the high-performance computing platform at the 306 

Georgia Institute of Technology. These analyses comprised pseudo-transcriptome generation, 307 

expression quantification, DNA sequence coverage estimation, and their related computational 308 

tasks. 309 

 310 

Figures and website 311 

Figures were made in R (v4.1.0) (R Core Team, 2021) using packages ggplot2 (v3.3.6) 312 

(Wickham, 2016), data.table (v1.14.3) (Dowle & Srinivasan, 2022) (https://r-datatable.com), 313 

DESeq2 (v1.32.0) (Love et al., 2014), cowplot (v1.1.1) (Wilke, 2020), ggVennDiagram (v1.2.0) 314 

(Gao, 2021), eulerr (v6.1.1) (Larsson, 2021), and ggpattern (v1.0.1) (FC et al., 2022), with color 315 

schemes developed using RColorBrewer (v1.1-3) (Neuwirth, 2022) and Paul Tol’s color palettes 316 

(https://personal.sron.nl/~pault/). The interactive website that enables exploration of the data 317 

from this study was developed using Shiny (Chang et al., 2022). 318 

 319 

Results and discussion 320 

To investigate natural variation in both gene expression and response to exogenous RNAi, we 321 

performed RNA sequencing on five isogenic C. elegans strains in three conditions: RNAi 322 

targeting the germline genes par-1 and pos-1 and the untreated condition. We included the 323 

RNAi-competent reference strain N2 and four wild strains with varying competency to germline 324 

RNAi (Paaby et al 2015, Chou et al 2022): JU1088 (highly competent), EG4348 (moderately 325 

competent), and CB4856 and QX1211 (largely incompetent). These wild strains also vary in 326 

divergence from N2, representing some of the least (JU1088) and most (QX1211) divergent 327 

strains (variants per kilobase vs. N2 genome: 0.82, 1.40, 1.99, and 4.20, respectively, from 328 

Caenorhabditis elegans Natural Diversity Resource [CeNDR] data (Cook et al., 2017)). To limit 329 

bias arising from differences between non-N2 sequencing reads and the N2 reference genome 330 

in our analysis, we first created strain-specific transcriptomes by inserting known single 331 

nucleotide and insertion/deletion variants from CeNDR (Cook et al., 2017) into the reference 332 

genome. Then, we pseudo-aligned the RNA reads to these strain-specific transcriptomes to 333 
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quantify per-gene RNA expression in each strain on each condition, and estimated differential 334 

expression based on strain, RNAi treatment, and their interaction. 335 

 336 

 337 
 338 
Figure 1. Genotype (strain) dominates expression variation across five C. elegans strains 339 
treated with RNAi targeting the genes par-1 and pos-1 or an empty vector control. A) Principal 340 
components analysis (PCA) of gene expression. PCs 1 vs. 2 (left) and 2 vs. 3 (right) of PCA of 341 
the 500 most variably expressed genes are plotted; the proportion of variance explained is 342 
noted on the axes. B) In the control condition, 34.2% of 15,654 nominally expressed genes are 343 
differentially expressed across strains (genome-wide adjusted p < 0.1 in a likelihood-ratio test 344 
between models including and excluding the strain term); a subset of these (approximately 2.6% 345 
overall) are not expressed at all in at least one strain (in any condition, see text for details). 346 
Related Supplementary Material: 347 
File S1 contains the genes differentially expressed based on strain 348 
File S2 contains the ‘off’ genes identified as potentially unexpressed in one strain but expressed 349 
in others 350 
 351 

Genotype (strain)-wise expression variation predominates, nominates functionally 352 

diverged genes 353 

Overall, genotypic differences between strains explained more gene expression variation than 354 

RNAi treatment. We detected nominal expression at 18,589 genes across the full dataset; a 355 

principal components analysis of the 500 most variable genes shows distinct strain-wise 356 

partitioning of the variation (Figure 1A). To identify genes with significant expression differences 357 

between strains in just the control condition, we compared a model with a term for strain to one 358 

without (via a likelihood-ratio test) for each gene. Of the 15,654 genes included in this control-359 

specific analysis, 5355, or approximately 34%, were differentially expressed across the five 360 

strains (likelihood-ratio test, genome-wide adjusted p < 0.1) (File S1). This fraction of genes 361 

with expression differences between strains is consistent with recent findings that 28% of 362 
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assayed genes were associated with mappable genetic differences (eQTLs) across 207 wild 363 

strains (Zhang et al., 2022). Other systems, such as flies, also harbor extensive variation in 364 

gene expression: a recent study of 200 inbred Drosophila melanogaster strains detected strain-365 

wise expression variation at the majority of genes (Everett et al., 2020). The experimental and 366 

analytical approach matters a great deal; in the Drosophila study, many more variable genes 367 

were identified using RNA-seq data than microarray data, and only 30-40% of differentially 368 

expressed genes were associated with mappable eQTLs (Everett et al., 2020).  369 

 370 

In some cases, presence versus absence of expression may underpin differential expression 371 

across strains; this pattern could indicate strain-wise differences in functional requirements or in 372 

developmental timing of expression. We identified such ‘off’ genes as those with zero mean 373 

expression in at least one strain (across all conditions) as well as significant strain-wise 374 

differential expression between a pair of strains in the control condition (genome-wide adjusted 375 

p < 0.1). This conservative zero-read threshold reduces the frequency of misclassifying low 376 

expression genes as off; the requirement for differential expression ensures true expression in 377 

at least one strain. This stringent selection yielded 411 putative ‘off’ genes (Figure 1B, File S2). 378 

Most of these genes lacked expression in a single strain: 249 were off in one strain, 105 were 379 

off in two strains, 51 were off in three strains, and only 6 genes were expressed in a single 380 

strain and off in the others (Figure S1A). We detected 49 genes that were off in N2 but 381 

expressed in at least one other C. elegans strain. The complete functional repertoire of these 382 

genes would therefore be invisible in a study using only the N2 strain. Such on/off patterns of 383 

gene expression occur in other systems as well; for example, across 144 Arabidopsis thaliana 384 

strains, thousands of genes showed strong expression in some strains but zero expression in 385 

others (Zan et al., 2016). 386 

 387 

To assess the potential significance of ‘off’ genes in the context of RNAi response, we 388 

investigated whether any genes unexpressed in one strain exhibited differential expression 389 

within another strain following par-1 or pos-1 RNAi treatment. Of the 411 ‘off’ genes, 47 were 390 

differentially expressed on an RNAi treatment in at least one other strain (RNAi differential 391 

expression threshold: genome-wide adjusted p < 0.1 and fold change > 1.5 for within-strain 392 

RNAi treatment vs. control comparisons) (Figure S1B). The majority (n = 33) of these genes 393 

were differentially expressed in only one RNAi treatment in one strain. However, one gene 394 

identified by this analysis is W06G6.11 (WBGene00012313), which was ‘off’ in N2 but 395 

expressed in the other strains, and was significantly upregulated on RNAi against both par-1 396 
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and pos-1 in RNAi-sensitive strain JU1088 (fold change = 1.9 and genome-wide adjusted p = 397 

0.03; fold change = 3.4 and genome-wide adjusted p = 0.003, respectively). Prior RNA-seq and 398 

microarray studies have indicated that W06G6.11 expression may be affected by the activity of 399 

Argonaute alg-1 (Aalto et al., 2018), a member of the RNA-induced silencing complex involved 400 

in endogenous and exogenous short RNA processing (Grishok et al., 2001), and also by 401 

exposure to pathogens (Engelmann et al., 2011; Lee et al., 2013). These studies detect 402 

W06G6.11 expression in N2, but in samples derived from older adult hermaphrodites relative 403 

the young adults we sampled; a study that included CB4856 also confirmed significantly higher 404 

W06G6.11 expression in that strain relative to N2 (Zamanian et al., 2018). 405 

 406 

This process of identifying genes that are unexpressed in some strains, but differentially 407 

expressed based on a treatment or phenotype of interest in others, might be used to identify 408 

candidate genes for other naturally variable phenotypes, perhaps as a complement to genotype-409 

to-phenotype mapping by genome-wide association studies with expression mediation analyses 410 

(Evans & Andersen, 2020; Zhang et al., 2022). 411 

 412 

Reference bias screening increases confidence in differential expression calls  413 

For RNA-seq studies that evaluate wild strains, reliance on a reference strain poses a concern. 414 

The main issue is whether the mapping of fewer non-reference strain RNA reads than 415 

reference-strain reads to a gene arise from true differences in gene expression, or from failure 416 

of non-reference reads to correctly map to the reference genome due to sequence divergence 417 

(reference bias) (Degner et al., 2009). Such discrepancies might remain even after the use of 418 

genotype-specific transcriptomes. In the case of C. elegans, wild strains exhibit a wide range in 419 

levels of divergence from the reference strain N2 in the species generally and the strains 420 

studied here specifically (Andersen et al., 2012; Cook et al., 2017; Crombie et al., 2019); much 421 

of this diversity is located in hyper-divergent haplotypes encompassing 20% of the genome (Lee 422 

et al., 2021).  423 

 424 

To refine our level of confidence in the genes we identified as differentially expressed, we 425 

examined our results in the context of alignment quality in the original CeNDR genome 426 

sequencing data (Cook et al., 2017) (Figure S2, Files S3, S4). For each strain in our study, we 427 

curated a list of genes with missing or poor DNA sequence alignment in CeNDR (Cook et al., 428 

2017) (File S5). Specifically, we classified genes with exactly zero coverage as missing in that 429 

strain’s genome; this is a conservative assignment, as even one well-aligned DNA sequence  430 
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 431 
 432 
Figure 2. Improving confidence in differential expression calls by integrating DNA alignment 433 
data. A) The number of genes with low (<25% of the median) and missing (zero raw coverage) 434 
DNA alignment coverage (from CeNDR sequencing (Cook et al., 2017)) in each strain, of the 435 
18,589 genes included in the expression analysis. Strain note: CeNDR assessed DNA coverage 436 
in EG4349, the genetically identical isotype to EG4348. B) The total number of genes 437 
differentially expressed based on strain (likelihood-ratio test of models including and excluding 438 
strain term, genome-wide adjusted p < 0.1) and their overlap with genes classified as missing or 439 
low DNA coverage in any strain (417 are both differentially expressed across strains and low 440 
DNA coverage, hypergeometric enrichment test p = 9.8 x 10-46). Areas are proportional to 441 
number of observations. C) The number of unexpressed ‘off’ genes per strain, subset into three 442 
categories: called as turned off at the RNA level with high confidence; missing in the strain 443 
genome (zero raw coverage); called with uncertainty, given low DNA sequence coverage (<25% 444 
but >0 median DNA coverage).  445 
Related Supplementary Material: 446 
Figure S2 shows DNA coverage distributions and cutoffs 447 
File S2 contains details on each ‘off’ gene 448 
File S3 contains raw per-gene DNA sequence coverage estimates 449 
File S4 contains median-normalized per-gene DNA sequence coverage estimates 450 
Files S5 contains the list of genes flagged as low DNA coverage 451 
Files S6-7 provide numerical summaries of ‘off’ genes 452 
 453 

read precluded a gene from being classified as missing. We classified genes with more than 454 

zero coverage but less than 25% of the gene-wise median DNA coverage in each strain as low 455 

coverage. This process identified a similar set of genes across strains despite the contribution of 456 
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some strain-to-strain coverage variation (Figure S2, File S5). In total, we identified 799 genes 457 

as missing or low DNA coverage in one or more strains (Figure 2A). 458 

 459 

Were differentially expressed genes associated with poor DNA coverage? Overall, yes: overlap 460 

of the missing-or-low coverage and strain-wise differentially expressed gene sets revealed 461 

significant enrichment (hypergeometric test of enrichment p = 9.8 x 10-46). However, the 462 

absolute number of differential expression genes with poor DNA coverage was modest: only 4% 463 

of all genes analyzed and 8% of genes with differential expression across strains had missing or 464 

low DNA coverage (Figure 2B). Put another way, 52% of missing or low DNA coverage genes 465 

were called as differentially expressed, while 29% of all analyzed genes were called as 466 

differentially expressed. Further, we note that poor DNA coverage arises from several sources. 467 

First, by chance, some genes will be low coverage simply due to stochastic variation in short-468 

read sequencing depth, as reflected in the 62 genes binned as low coverage in N2 mapped to 469 

itself (Figure 2A). Second, sequence divergence between the mapped strain and the reference 470 

genome could inhibit alignment (reference bias); this possibility motivates this analysis. Third, 471 

the gene could be missing from the strain’s genome while present in the N2 reference genome. 472 

Not surprisingly, QX1211, the strain most diverged from the N2 reference genome, exhibits the 473 

most missing and the most low coverage genes (Figure 2A, File S6). 474 

 475 

The set of ‘off’ genes that show zero expression in some strains may be particularly vulnerable 476 

to reference bias, for example if they were more likely to be pseudogenes in at least one strain. 477 

In this scenario, poor DNA coverage may be conflated with true expression loss, as 478 

accumulated mutations may lead both to poor DNA coverage and consequently poor RNA 479 

alignment and to reduced expression through mutation-mediated defunctionalization. Here, 480 

when genes are detected as unexpressed, we can make distinctions between 1) missing genes, 481 

which we are reasonably confident do not exist in the strain genome; 2) genes for which we may 482 

not trust the conclusion of zero expression because of low DNA coverage and potential bias in 483 

RNA read mapping; and 3) true ‘off’ genes, which do not fall into either category and likely 484 

represent unbiased expression differences at the RNA level. In this scheme, among the four 485 

non-reference strains, 17-49 (12-35%) of the originally detected ‘off’ genes are likely truly turned 486 

off, 28-66 (22-34%) appear missing from the strain genome, and 36-89 (36-66%) are 487 

undetected for an unknown reason but have low DNA coverage and may be influenced by 488 

reference bias (Figure 2C, File S7).  489 

 490 
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As we would expect, all 49 ‘off’ genes in the reference strain N2 were classified as truly 491 

unexpressed; none were missing or low coverage (Figure 2C). Of these, 22 are listed as 492 

pseudogenes on WormBase (Harris et al., 2020), and may represent alleles that have been 493 

pseudogenized in the N2 lineage but remain functional in other strains. One such candidate is 494 

the Argonaute ZK218.8 (WBGene00013942), which is expressed in strains CB4856 and 495 

QX1211 and may reflect functional diversification in RNAi processes across the population 496 

(Chou et al., 2022). Of the 47 ‘off’ genes with par-1 or pos-1 RNAi effects in another strain, a 497 

large majority (n = 39, 83%) were missing in the genome or were associated with low DNA 498 

coverage (Figure S3). This majority represents a slight enrichment relative to the proportion of 499 

missing or low coverage genes within the complete set of ‘off’ genes (286/411 or 70%) (one-500 

sided proportion test with continuity correction: c2 = 3.05, df = 1, p = 0.04). Enrichment of 501 

genome divergence among RNAi-responsive ‘off’ genes supports the hypothesis that genes 502 

associated with RNAi are evolving rapidly in C. elegans (Chou et al., 2022). By adding the 503 

missing and low DNA coverage filters, we infer that, of genes with an RNAi effect in another 504 

strain, zero (in N2) to 12 (in QX1211) were missing from the strain’s genome and 1-6 genes per 505 

strain were present but truly unexpressed at the RNA level. These genes might be the most 506 

interesting candidates for downstream expression-based study. This set includes the putative 507 

RISC-associated gene W06G6.11 (WBGene00012313) discussed above. 508 

 509 

An alternative approach to handling reference bias is to side-step it by excluding transcripts 510 

associated with known (Lee et al., 2021) hyper-divergent haplotypes (Zhang et al., 2022). 511 

However, because 1) some genes in hyper-divergent regions had good DNA alignment with low 512 

SNP density and others outside the regions had no DNA coverage, and 2) our study focuses 513 

exclusively on genic regions, we chose a gene-level, strictly coverage-based approach for bias 514 

screening. Still, a limitation of our approach (and most others) is that it cannot identify bias 515 

associated with elevated RNA levels in diverged or duplicated haplotypes relative to the N2 516 

haplotype. Such bias could occur if reads in non-reference strains come from a gene poorly 517 

represented or missing in the reference, which are then spuriously assigned to an incorrect 518 

gene with a better match. This type of bias is difficult to define, quantify, and exclude. 519 

Additionally, as for any arbitrary threshold, our cutoff of < 25% median coverage likely produces 520 

a mix of false positives and negatives, i.e., genes with low DNA coverage but accurate RNA 521 

alignments and genes above the coverage cutoff that are nevertheless skewed by reference 522 

bias. While those interested in specific genes would therefore do well to interrogate them 523 
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further, the DNA coverage approach provides a useful quality control filter for initial analyses of 524 

differential expression. 525 

 526 

Complex genotype and target specificity in transcriptional response to RNAi 527 

Wild C. elegans strains vary in response to exogenous RNA interference. In particular, strains 528 

differ widely in competence for RNAi against germline targets delivered by feeding, as 529 

measured by phenotypic consequences following putative target knockdown (Elvin et al., 2011; 530 

Felix, 2008; Felix et al., 2011; Paaby et al., 2015; Tijsterman et al., 2002). To assess the 531 

transcriptional response to RNAi in worms with variable germline RNAi competencies, we fed 532 

worms dsRNA targeting the maternal-effect embryonic genes par-1 and pos-1 as well as the 533 

empty vector control. Both genes are expressed in the mature hermaphrodite germline and are 534 

essential for embryonic viability; in competent animals, RNAi by feeding results in dead embryos 535 

(Paaby et al., 2015; Sijen et al., 2001). Gene expression knockdown of the targets themselves 536 

confirmed the previously observed differences in RNAi competency (Chou et al., 2022; Paaby et 537 

al., 2015): under pos-1 RNAi, pos-1 expression levels dropped the most in JU1088, followed by 538 

N2 and then EG4348; strains CB4856 and QX1211 showed no drop in expression (Figure S4A, 539 

C). RNAi against par-1, which induces a less lethal response (Chou et al., 2022; Paaby et al., 540 

2015), resulted in a similar though less strong pattern of par-1 knockdown (Figure S4B,D). 541 

These results confirm that strains differ in RNAi response and that the response was target-542 

gene-specific; this target specificity was also evident transcriptome-wide.  543 

 544 

To assess how strains vary in overall transcriptional response to RNAi, we identified changes in 545 

gene expression across treatments (par-1 RNAi, pos-1 RNAi, and the negative control) that 546 

differed across the five strains. Specifically, for each gene in the dataset, we asked whether a 547 

model with or without a strain x treatment interaction term better explained the pattern of 548 

expression (see Methods). Genome-wide, 842 genes (5% of those assayed) varied in RNAi 549 

response across strains (i.e., had significant strain:treatment interaction via likelihood-ratio test, 550 

genome-wide adjusted p < 0.1) (File S8). We also identified, within each strain, differences in 551 

expression following par-1 and pos-1 RNAi relative to the control. The number of genes 552 

differentially expressed under RNAi treatment (genome-wide adjusted p < 0.1, fold change > 553 

1.5) varied substantially across strains and as well as between the two treatments (Figure 3A, 554 

Figure S5, Files S9a-j).  555 

 556 
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 557 
Figure 3. The transcriptional response to dsRNA is highly strain- and target-specific. A) The 558 
number of genes up- and down-regulated in each strain upon par-1 and pos-1 dsRNA 559 
ingestion/RNAi induction. Genes were called differentially expressed if their shrunken absolute 560 
fold change was > 1.5 and genome-wide adjusted p-value/FDR < 0.1. B) Gene set enrichment 561 
analysis results for genes upregulated on par-1 dsRNA in each strain. Gene ontology (GO) 562 
categories that were significantly enriched (false discovery rate Q < 0.1) in any strain are 563 
included. GO terms are ranked and colored by median significance across strains. 564 
Related Supplementary Material: 565 
Figure S5 shows volcano plots for RNAi treatments for each strain 566 
Figure S6 contains Venn diagrams of overlap among strains in specific DE genes 567 
Figure S7 shows results from the same gene set enrichment analysis of genes downregulated 568 
under par-1 RNAi and up- and down-regulated under pos-1 RNAi 569 
Table S1 gives number of up and downregulated genes in each strain and included in each 570 
analysis 571 
File S8 contains the genes differentially expressed based on strain-treatment interaction 572 
Files S9a-j contain the genes differentially expressed in each strain in each RNAi treatment vs. 573 
control 574 
File S10 gives all enriched GO categories. 575 
 576 
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On both par-1 and pos-1 RNAi, the highly germline-RNAi competent strain JU1088 exhibited the 577 

most differentially expressed genes relative to the control, suggesting that this strain is the most 578 

transcriptionally responsive to RNAi (Figure 3A, Figure S5). However, on par-1 RNAi, the 579 

moderately competent strain EG4348 and the largely incompetent strains CB4856 and QX1211 580 

showed substantially more differentially expressed genes than the competent laboratory strain 581 

N2. These results indicate that the number of genes transcriptionally responsive to exogenous 582 

RNAi is not predictive of RNAi phenotypic penetrance, and that ‘competence’ defined by end-583 

point phenotypes and/or artificial triggers may obscure intermediary RNAi activity, or activity in 584 

alternative RNAi pathways (Chou et al., 2022).  585 

 586 

Relative to par-1, pos-1 RNAi induced substantially fewer differentially expressed genes in all 587 

strains but JU1088, indicating that RNAi transcriptional response is highly target-specific. 588 

Furthermore, differential expression following par-1 RNAi was strongly skewed towards an 589 

overabundance of upregulated genes compared to downregulated genes (Figure 3A, Figure 590 

S5). Of course, a transcriptional response may reflect developmental consequences of losing 591 

par-1 or pos-1 gene expression, at least in competent strains (Chou et al., 2022; Paaby et al., 592 

2015); here, we cannot easily distinguish these effects from those arising from induction of the 593 

RNAi process itself. However, several lines of evidence suggest that RNAi process effects 594 

dominate. First, RNAi is a systemic phenomenon with a repertoire of many genes (Billi et al., 595 

2014) while par-1 and pos-1 expression is largely restricted to the germline with consequential 596 

effects predominantly in the early embryo (Harris et al., 2020); our samples were prepared from 597 

whole worms. Second, the incompetent strains exhibited transcriptional responses genome-598 

wide, but not at the targeted genes. Finally, as described below, the transcriptional response at 599 

a gene-by-gene level was strain-specific, consistent with our growing understanding of natural 600 

variation in RNAi. 601 

 602 

To identify transcriptional responses to RNAi that may be universal within C. elegans, we first 603 

checked for differentially expressed genes that were shared across strains. However, overlap 604 

among strains was sparse (Figure S6): no genes with differential expression to both par-1 and 605 

pos-1 RNAi were shared across all five strains, and the only gene responsive to both treatments 606 

in the competent strains (JU1088, N2, and EG4348) was asp-14, a predicted aspartyl protease 607 

involved in innate immunity (Harris et al., 2020). Such strain-specific patterns fit with our 608 

observations of RNAi variability: not only does C. elegans exhibit substantial natural variation in 609 

germline RNAi competence (Elvin et al., 2011; Felix, 2008; Felix et al., 2011; Paaby et al., 2015; 610 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2023. ; https://doi.org/10.1101/2023.03.24.533964doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.24.533964
http://creativecommons.org/licenses/by-nd/4.0/


 20 

Tijsterman et al., 2002), but the genetic basis for RNAi failure appears strain-specific as well 611 

(Chou et al., 2022). We posit that even among competent strains, C. elegans varies in details of 612 

the RNAi biological response mechanism, including which genes are affected, the magnitude or 613 

functionality of their activity, and their timing. These differences are apparent in the 614 

transcriptional responses of N2 and JU1088 (Figure 3, Figure S6, Figure S7), including the 615 

activity of W06G6.11 described above. As the RNAi response is also highly target-specific, 616 

these results portray RNAi as a phenomenon of exquisite specificity and context dependence. 617 

 618 

However, statistical flux around significance cutoffs within strains may limit detection of gene-619 

specific responses, and we also wished to examine the biological significance of the 620 

transcriptional responses. Therefore, we investigated whether the same general classes of 621 

genes responded to RNAi across strains by applying WormBase gene set enrichment analyses 622 

(Angeles-Albores et al., 2016; Harris et al., 2020) to the sets of genes up- and down-regulated 623 

on the RNAi treatments (Files S9). Strains showed a clear pattern of enriched gene ontology 624 

(GO) categories, particularly in the largest gene set, those upregulated under par-1 RNAi 625 

(Figure 3B, File S10). Specifically, GO terms associated with canonical RNAi functions such as 626 

immune defense were well represented in all strains except in the germline incompetent strain 627 

QX1211, and genes in other categories were enriched in all strains except in N2. This pattern 628 

explains the paucity of differentially expressed genes in N2 relative to other strains following 629 

par-1 RNAi (Figure 3A), as those in N2 are restricted to immunity associated ontology. These 630 

results demonstrate that reference strain N2 may not be a good representative for RNAi 631 

transcriptional response in C. elegans generally. Some of these patterns were also evident at 632 

genes downregulated under par-1 RNAi, and up- and down-regulated under pos-1 RNAi, though 633 

these results were less clear (Figure S7); this difference from par-1 upregulated genes might 634 

reflect the more limited pool of differentially expressed genes in those categories. 635 

 636 

In sum, transcriptional responses to RNAi differed across strains, but these responses did not 637 

clearly discriminate between RNAi competent and incompetent strains in the context of N2-638 

derived GO categories: some competent strains upregulated non-defense categories while N2 639 

did not, and incompetent strain CB4856 upregulated defense categories while incompetent 640 

strain QX1211 did not. That said, some strain-specific aspects of RNAi responses at the 641 

phenotype level may shed light on the transcriptional response enrichments. EG4348 is partially 642 

sensitive to RNAi (Chou et al., 2022; Felix et al., 2011; Paaby et al., 2015), and its GO term 643 

profile is similar to highly sensitive strain JU1088. While largely incompetent for germline RNAi, 644 
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CB4856 does eventually exhibit strong RNAi phenotypes at late ages (Chou et al., 2022; Felix 645 

et al., 2011; Paaby et al., 2015; Tijsterman et al., 2002); its GO term profile similarity to JU1088 646 

could be explained by the fact that this delay arises from the perturbation of a single gene, ppw-647 

1 (Tijsterman et al., 2002). Alternatively, QX1211 exhibits an apparent on/off response pattern 648 

among individual animals (Chou et al., 2022), and this binary penetrance of may be insufficient 649 

to detect defense/immune gene upregulation in a bulk analysis. 650 

 651 

A public web resource for data exploration  652 

We have built a user-friendly, interactive website (https://wildworm.biosci.gatech.edu/rnai/) to 653 

enable straightforward public exploration of our gene expression data across the five wild C. 654 

elegans strains and three RNAi conditions. For any gene in our analysis, this website 1) 655 

visualizes the RNA quantification per sample split by treatment or strain, 2) allows the user to 656 

look up differential expression results between any two strain-treatment groups, 3) reports if 657 

expression differs by strain in the control condition and by RNAi treatment across strains, and 4) 658 

enables initial reference bias screening by displaying DNA sequencing coverage and whether 659 

the gene overlaps a hyperdivergent haplotype. This website may be useful for exploratory 660 

analyses of genes of interest for many types of studies in the C. elegans community. 661 

 662 

Conclusion 663 

The results of the investigations described here further expand our understanding of C. elegans 664 

processes beyond the reference strain N2. Our quantification of gene expression variation 665 

among wild strains demonstrates that mapping bias arising from the use of a reference genome, 666 

while a greater liability for inferences about individual genes, can be restricted to a relatively 667 

minor concern for genome-wide studies in this system. However, the strain-specific variation in 668 

RNAi transcriptomic response suggests that our understanding of RNAi processes, derived 669 

predominantly from studies in N2, incompletely represents RNAi biology in C. elegans as a 670 

whole. The type of dataset presented here, genome-wide expression in multiple natural genetic 671 

backgrounds over multiple conditions of interest, enables researchers to characterize how much 672 

variation exists in the experimental systems we study. Understanding the scope of natural 673 

variation informs evolutionary hypotheses about traits of interest and offers insight into 674 

otherwise inaccessible relationships among genes, their functions, and phenotypes.  675 
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Data availability 676 

Strains and feeding vectors are available from CeNDR or the CGC, and upon request. All 677 

supplementary data files are available via Zenodo at https://doi.org/10.5281/zenodo.7406794: 678 

File S1 contains the genes differentially expressed based on strain; File S2 contains the ‘off’ 679 

genes identified as potentially unexpressed in one strain but expressed in others; File S3 680 

contains raw per-gene DNA sequence coverage estimates; File S4 contains median-normalized 681 

per-gene DNA sequence coverage estimates; File S5 contains the list of genes flagged as low 682 

DNA coverage; Files S6-7 contain summaries of missing/zero coverage genes; File S8 contains 683 

the genes differentially expressed based on strain-treatment interaction; Files S9a-j contain the 684 

genes differentially expressed in each strain in each RNAi treatment vs. control; File S10 685 

contains the results of the gene set enrichment analyses. Per-gene differential testing results 686 

and related information are available via an interactive web app at 687 

https://wildworm.biosci.gatech.edu/rnai/. Gene expression data (raw and processed) are 688 

available at GEO with the accession number GSE19083. Code used for all analyses can be 689 

found at https://github.com/averydavisbell/wormstrainrnaiexpr. 690 
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Supplementary Figures 705 

 706 

 707 
 708 
Figure S1. ‘Off’ genes, which are expressed in at least one strain but show no expression in 709 
one or more others. A) All ‘off’ genes per strain, either unique or shared across strains (n = 411 710 
total; genes may be present for multiple strains). B) The subset of ‘off’ genes that exhibit 711 
differential expression on RNAi to par-1 or pos-1 in other strains, which are potential candidates 712 
for RNAi functional divergence (n = 47 total; genes may be present for multiple strains). 713 
File S2 contains identity and details for each of these ‘off’ genes. 714 
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 715 
 716 
Figure S2. DNA sequence coverage across 18,589 genes included in expression analyses. 717 
Aligned DNA sequence data was obtained from CeNDR (release 20210121) (Cook et al., 2017). 718 
A) Mean coverage (mean number of reads covering each base) over merged non-overlapping 719 
exonic regions of genes in the five strains in this study. CeNDR assessed DNA coverage in 720 
EG4349, the genetically identical isotype to EG4348. The x-axis is truncated at 150x coverage 721 
for visual clarity, excluding 179 genes across all strains combined. B) Median-normalized 722 
coverage for the same genes as in (A). Genes with less than 25% median coverage are 723 
considered low DNA coverage in this study; this boundary is demarcated with the blue dashed 724 
line and the number and proportion of genes this set comprises is noted on the plots. The x-axis 725 
is truncated at 3x median coverage for visual clarity, excluding 227 genes across all strains 726 
combined. 727 
Files S3 and S4 contain the source data. File S5 provides the list of genes identified as low 728 
coverage. 729 

N
2

JU
1088

EG
4349

C
B4856

Q
X1211

0 50 100 150

0
500

1000
1500
2000

0
500

1000
1500
2000

0
500

1000
1500
2000

0
500

1000
1500
2000

0
500

1000
1500
2000

Mean coverage (x)

N
um

be
r o

f g
en

es
A 62 genes

(0.3%)

289 genes
(1.6%)

217 genes
(1.2%)

358 genes
(1.9%)

418 genes
(2.2%)

N
2

JU
1088

EG
4349

C
B4856

Q
X1211

0 1 2 3

0
500

1000
1500

0
500

1000
1500

0
500

1000
1500

0
500

1000
1500

0
500

1000
1500

Median−normalized coverage

N
um

be
r o

f g
en

es

B

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 25, 2023. ; https://doi.org/10.1101/2023.03.24.533964doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.24.533964
http://creativecommons.org/licenses/by-nd/4.0/


 25 

 730 
Figure S3. ‘Off’ genes that were unexpressed in one or more strains but differentially expressed 731 
with respect to par-1 or pos-1 RNAi in another strain, potential candidates for RNAi functional 732 
divergence. DNA sequence coverage information is denoted with color and shading. Missing 733 
genes were those with zero DNA sequence coverage; low DNA sequence coverage genes had 734 
greater than zero but less than 25% median gene’s coverage; genes classified as truly turned 735 
off had greater than 25% median gene’s DNA sequence coverage. (DNA coverage was 736 
assessed in strain EG4349, isotype to EG4348). 737 
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 738 
 739 
Figure S4. RNA-seq estimates suggest RNAi targets are knocked down commensurate with 740 
each strain’s RNAi capacity. (A and B) Quantification estimates from pseudoalignment to strain-741 
specific transcriptomes, normalized to library size and gene length, as used for all analyses in 742 
this study. A) Quantification estimates for pos-1 in control and exposure to pos-1 dsRNA; 743 
response is significantly different across strains (the strain:treatment interaction is significant, 744 
genome-wide adjusted p = 4 x 10-254). B) Quantification estimates for par-1 in control and 745 
exposure to par-1 dsRNA (the strain:treatment interaction is not significant, genome-wide 746 
adjusted p = 0.92). (C and D) Detection of target knockdown is not dependent on RNAi 747 
strategy: panels show pos-1 and par-1 quantification estimates as in (A and B), respectively, 748 
but with alternative expression estimates derived from RNA sequence data uniquely mapping to 749 
one genomic location when containing the reference or non-reference allele (see methods).  750 
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 751 
 752 
 753 
Figure S5. Volcano plots show genome-wide effects of RNAi treatments (against par-1, top, 754 
and pos-1, bottom) in each of the five strains. All genes with differential expression estimates 755 
are plotted; blue points denote genes with significant differential expression (genome-wide 756 
adjusted p < 0.1 and corrected [see methods] absolute value(fold change) > 1.5; these 757 
thresholds are annotated on the plot with gray dashed lines). For visual clarity, the y-axis is 758 
truncated at p = 10-20 and the x-axis is truncated at absolute log2 fold change = 3.5; genes with 759 
values exceeding these thresholds are included on the plots and are represented by unique 760 
point shapes as noted in the plot legend. 761 
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 762 
 763 
Figure S6. Limited overlap of genes called as differentially expressed in RNAi conditions vs. 764 
control across strains; shading scales with number of genes separately within each panel (see 765 
color bar legends). (A-C) Under par-1 RNAi, genes differentially expressed in either direction 766 
(A), upregulated (B), or downregulated (C). (D-F) Under pos-1 RNAi, genes differentially 767 
expressed in either direction (D), upregulated (E), or downregulated (F). Genes were called 768 
differentially expressed and included if their shrunken absolute fold change was > 1.5 and 769 
genome-wide adjusted p-value/FDR < 0.1 between RNAi and control within-strain. 770 
Files S9a-j contain gene IDs and details. Figure 3A and Table S1 show the overall number of 771 
up- and down-regulated genes in each strain. 772 
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 773 
 774 
Figure S7. Gene set enrichment analysis results for genes (A) downregulated on par-1 dsRNA 775 
in each strain, (B) upregulated on pos-1 dsRNA, and (C) downregulated on par-1 dsRNA. Only 776 
gene ontology (GO) categories significantly enriched (FDR Q < 0.1) in upregulated genes in any 777 
strain are included. GO terms are ranked and colored by median significance across strains. 778 
Table S1 provides the number of genes included for each analysis. File S10 gives all enriched 779 
GO categories. Main Fig 3B displays the same analysis of genes upregulated under par-1 RNAi.  780 
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Supplementary Tables 781 
 782 
Table S1. The number of genes differentially expressed in each RNAi treatment in each strain, 783 
relative to the control condition, as well as the number included in the gene set enrichment 784 
analysis (GSEA). 785 

RNAi 
Treatment Strain 

Up- or down-
regulated vs. 
control-treated 
samples 

N genes 
significantly up- 
or 
downregulated* 

N genes 
included in 
GSEA testing 

N genes 
excluded from 
GSEA testing** 

par-1 

CB4856 
Down 55 35 20 
Up 400 282 118 

EG4348 
Down 34 22 12 
Up 351 222 129 

JU1088 
Down 49 29 20 
Up 909 569 340 

N2 
Down 44 31 13 
Up 104 62 42 

QX1211 
Down 60 46 14 
Up 517 380 137 

pos-1 

CB4856 
Down 20 17 3 
Up 11 5 6 

EG4348 
Down 8 7 1 
Up 8 6 2 

JU1088 
Down 415 315 100 
Up 665 394 271 

N2 
Down 20 16 4 
Up 18 7 11 

QX1211 
Down 17 15 2 
Up 3 2 1 

  786 
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