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Alzheimer’s disease (AD) is one of the most prevalent age-related neurodegenerative diseases and accounts for the majority of
dementia cases worldwide. Tremendous ongoing efforts of basic and clinical research have expanded our knowledge on AD and its
complex multifactorial pathogenesis. For sporadic AD, it is widely assumed that silent and early symptomatic stages initiate decades
before the irreversible decline in cognitive abilities that ultimately lead to debilitating conditions. In addition to amyloid plaques
and tau-containing neurofibrillary tangles as the most prominent hallmarks of AD lesions within the affected brain areas, we now
possess a broader collection of pathological signatures that are associated with AD development and progression. In this regard,
there is a substantial body of evidence suggesting that hypometabolism occurs in the brains of individuals at the prodromal stage
before dementia is diagnosed, which may reflect an early role of metabolic dysfunction in AD. This perspective surveys the vast
literature and critically assesses the current evidence demonstrating a mitochondrial contribution to AD. Additionally, we discuss
our interpretations of the reported mitochondrial signatures and consider how altered mitochondrial bioenergetics may be an
additional risk factor for AD pathogenesis.
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INTRODUCTION
Alzheimer’s disease (AD) is an idiopathic, non-communicable
neurodegenerative disease with progressive behavioral changes
and cognitive impairment, including severe memory decline as
the most prominent deficit. As for other neurodegenerative
conditions, one of the main features of AD is the long preclinical
disease stage in which pathological changes occur in patients,
although affected individuals initially do not exhibit striking
cognitive symptoms and other clinical manifestations [1, 2].
Compared to other forms of dementia and neurological syn-
dromes, AD is pathologically defined on the basis of neuropatho-
logical lesions within affected areas of the brain. Specifically, it is
widely reported that neuronal degeneration and death are
associated with extracellular amyloid β (Aβ) plaques, intraneuronal
tau-containing neurofibrillary tangles and dystrophic neurites
highly enriched of hyperphosphorylated tau protein [3–5]. While
advancements of new diagnostic approaches have facilitated
more robust and accurate classification of AD cases, only a limited
number of therapeutic approaches have shown encouraging
results in recent trials. Despite some promising developments
[6, 7], cognitive improvement of patients remains a matter of
intense debate and additional disease-modifying interventions are
urgently needed to solve health and social challenges associated
with AD [1].
AD is a complex multifactorial neurological disorder of old age,

with a prevalence that dramatically increases in people age 65
years or older [1, 8]. As the life expectancy continues to rise
worldwide, it is expected that AD will be one of the primary causes

of disability and death of elderly people [9], which would lead to
serious social and economic consequences for our society [8, 10].
By far, familial early-onset cases of AD (manifesting before 60–65
years) are very rare [11, 12]. These uncommon forms of AD are
inherited in an autosomal dominant fashion and are caused by
genetic mutations in the presenilin-1, -2 (PSEN1 and PSEN2,
respectively) or amyloid-precursor protein (APP) genes. Postmor-
tem studies have reported that individuals affected by familial AD
feature an abnormal accumulation of Aβ plaques, as well as other
neuropathological lesions (e.g., tau-positive neuropil threads and
dystrophic neurites) commonly observed in idiopathic AD patients
[13–15]. These findings have been pivotal in shaping the amyloid
cascade hypothesis, which emphasizes the importance of aberrant
Aβ processing as an early upstream event in AD pathogenesis
[16, 17]. Moreover, genome-wide association studies have
pinpointed several genetic risk factors for sporadic AD, consis-
tently highlighting the robust association between AD and certain
variants of apolipoprotein E (APOE) and triggering receptor
expressed on myeloid cells 2 (TREM2) among others [18–21].
Another characteristic feature of AD is the progressive decline

of glucose metabolic rate in certain areas of the brain. In patients
with early signs of mild cognitive impairment, multiple long-
itudinal studies indicate that brain hypometabolism may correlate
with the development of tau deposition and atrophy of the
temporal and parietal lobes [22–24]. Despite the adult brain
accounts for ~2% of the total body mass, it consumes a large
portion of glucose and other carbon substrates that circulate in
the blood and are metabolized via glycolysis and mitochondrial
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oxidative phosphorylation (OXPHOS) at different rates by neurons,
glia and other resident cells within the central nervous system
[25–27]. Based on these considerations and experimental data in
model organisms [28, 29], there is compelling evidence that
aberrant metabolism and defective mitochondrial bioenergetics
may be relevant for AD onset and progression.
With this perspective, we aim to assess the most convincing

findings suggesting a mitochondrial involvement in AD
pathogenesis.

Mitochondria and AD: shareholders or mere bystanders?
Mitochondria are intracellular double membrane organelles provid-
ing energy in the form of ATP as well as a variety of metabolic
intermediates that are exported to the cytosol or transferred to
other intracellular organelles [30]. The conversion of carbon
substrates into ATP relies on a series of evolutionarily conserved
redox reactions, in which electrons are transferred from reduced
donor molecules (e.g., from glucose to NADH) to oxygen as terminal
acceptor. In the vast majority of eukaryotic cells [31], the electron
transport chain (ETC) comprises four respiratory complexes and two
electron carriers that sustain the proton pumping across the inner
mitochondrial membrane. By building up the mitochondrial
membrane potential, the ETC promotes the activity of the ATP
synthase (Complex V) and therefore the OXPHOS pathway that
synthesizes ATP from ADP and inorganic phosphate. Additionally,
mitochondria host several enzymes involved in the conversion of
complex molecules into metabolic precursors (e.g., intermediates of
the citric acid cycle or amine from the urea cycle) [30, 32–34]. As
highly dynamic organelles, mitochondria can regulate ion home-
ostasis (e.g., calcium), cell death and intracellular signaling (e.g.,
reactive oxygen species, calcium, cAMP) by modulating their
metabolic behaviors and molecular features [33, 35–37].
Consistent with these pleiotropic functions, aberrant mitochon-

drial activities have been linked to several human disorders,
including metabolic syndromes and neurodegenerative diseases.
However, while the genetic link between mitochondria, inherited
neuropathies and metabolic disorders is well-described and
widely observed in clinical practice and experimental biology
[38–42], a conclusive causal connection between mitochondria
and AD is less well defined, especially if compared to other
neurodegenerative diseases, such as Parkinson’s disease (PD) and
amyotrophic lateral sclerosis (ALS) [43–47]. Recent clinical findings
have reported that missense mutations in the gene encoding
pitrilysin metallopeptidase 1 (PITRM1, also known as presequence
protease) may cause the accumulation of Aβ-positive deposits
[48–50]. A study of a single Norwegian family revealed that
patients carrying pathogenic PITRM1 mutations develop progres-
sive spinocerebellar ataxia and functional changes of mitochon-
drial bioenergetics in muscle biopsy. In transgenic mice, yeast and
cultured cells, PITRM1 deficiency seems to negatively affect the
ability of cells to degrade Aβ peptide [48, 51]. As PITRM1 is a
mitochondrial matrix enzyme involved in the cleavage of
targeting sequences after protein translocation, one hypothesis
is that PITRM1 can directly participate in the digestion and
clearance of Aβ species that are eventually imported in
mitochondria [48, 52]. Although the contribution of mitochondria
in Aβ degradation remains a matter of intense investigation and
debate [53–56], in-depth clinical assessments of patients carrying
pathogenic PITRM1 mutations confirmed low levels of Aβ1–42 in
the cerebrospinal fluid (CSF) that are comparable to those in AD
patients [48]. Future studies will determine whether PITRM1-
dependent Aβ lesions are detectable in the human brain and form
deposits in distinct regions of the nervous system or spread
uniformly in all brain area.
Over the past years, many genome-wide association studies

(GWAS) have reported single nucleotide variants associated with a
higher risk of late-onset AD. Some of these genetic variants are
located near genes contributing to mitochondrial bioenergetics,

such as ECHDC3, COX7C and NDUFAF6 genes encoding enoyl-CoA
hydratase domain-containing protein 3, cytochrome c oxidase
subunit 7C and NADH:ubiquinone oxidoreductase complex
assembly factor 6, respectively [20, 57, 58]. Despite the lack of
compelling causative genetic evidence for a link between
mitochondria and AD, an increasing number of studies have
reported changes in brain glucose and oxygen metabolism as well
as mitochondrial respiratory defects and/or morphological
abnormalities in tissues exhibiting typical AD-related neuropatho-
logical changes [26, 28, 44].
Using positron emission tomography (PET), longitudinal assess-

ments of patients with early AD have recently revealed
progressive reduction of Complex I radioligand binding [59].
These data may suggest that aberrant OXPHOS system correlates
with early signs of cognitive decline in individuals with AD. While
these findings may depict mitochondrial impairment as a
consequence, rather than a cause of AD, other postmortem tissue
assessments support alternative views. In this regard, gene set
enrichment analyses suggest that AD patients exhibit aberrant
expression of mitochondrial OXPHOS subunits or molecular
factors contributing to mitochondrial proteostasis [54]. Consis-
tently, single-nuclei sequencing of human entorhinal cortex and
subsequent gene set enrichment analysis show a tendency toward
downregulation of genes encoding mitochondrial respiratory
complex subunits in certain subpopulations of neurons of AD
patients [60]. Similar transcriptional signatures are also observed
when transcriptomes of posterior cingulate astrocytes were
performed using brain tissues from AD patients and age-
matched healthy subjects [61]. These data suggest that not only
neurons, but also glia may experience metabolic stress as a
consequence of mitochondrial OXPHOS defects associated with
AD-related processes.
Using isobaric labeling for quantitative proteomics, it was shown

that significant changes in Complex I subunits as well as a few
additional components of other respiratory complexes can be
detected in postmortem brain tissues (medial frontal gyrus) of AD
patients compared to aged-matched non-demented women [62]. As
these defects in Complex I were observed in individuals aged 68
years, it is nevertheless difficult to conclude if these changes were
due to the loss of long-lived postmitotic neurons or to compensa-
tory processes that are linked to age-related hypometabolism or
other pathogenic events (e.g., neuroinflammation) associated with
AD. Consistent with the idea that mitochondria defects may be
considered early signatures and possibly used as biomarkers of AD
[63], widespread alterations of the mitochondrial proteome have
been detected by independent proteomic analyses. These changes
seem to be significant in the brain cortex, cerebrospinal fluid and
serum of patients with mild cognitive impairment (MCI). Conversely,
a very recent proteomic comparison has shown that substantial
changes of the mitochondrial proteome are detectable only in brain
tissues of advanced AD patients, while only a few mitochondria
proteins were upregulated in early-stage AD [64].
Taken together, these experimental data indicate a strong

association between aberrant mitochondrial bioenergetics and
AD, although its precise contribution to the development of the
disease requires further mechanistic evidence.

CONCLUSIONS AND PERSPECTIVES
This perspective aims to survey the currently available data
obtained from recent studies of subjects at risk of AD as well as
postmortem assessments of tissues from healthy and cognitively
impaired donors. We recognize the impressive advances in the
field, despite the substantial limitations in current detection
methods and the availability of properly collected postmortem
samples. We cover studies of the last decade and report the most
convincing data suggesting a correlation between the expression
changes of mitochondrial components and the progressive age-
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related development of AD. On purpose, we did not review the
abundant literature on transgenic mice and other in vivo and
in vitro experimental models, from which we learnt how
modulation of mitochondrial behaviors can influence several
aspects of Aβ and tau pathology. Despite the uncertainty about
the contribution of mitochondria in AD, we think that altered
glucose and oxygen metabolism may develop first and become a
prominent signature during the course of aging. Due to circulatory
and/or other risk factors, the diminished supply of substrates
would then undermine mitochondrial bioenergetics and lead to
energy production defects, ROS generation, aberrant intracellular
signaling and impaired mitochondrial biosynthetic activities. In
such a pathological scenario, defective mitochondria would
compromise even further the resilience mechanisms of neurons
and neural circuitry that, in aging, could become more susceptible
and vulnerable to injuries [27, 65–67]. Rather than an upstream
event in AD pathogenesis, aberrant mitochondrial bioenergetics
may occur as a result of age-related metabolic dysfunction, with
consequent defects in mitochondrial outputs that would reinforce
a vicious loop undermining neuronal survival (Fig. 1). We look
forward to future studies that are able to conclusively define the
temporal participation of mitochondria to AD pathogenesis as well
as the conditions by which modulation of mitochondrial
bioenergetics may be of benefit in AD.
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