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Graphical Abstract

1. Single-cell transcriptional profiles in gliomas and lung-to-brain metastases.
2. TAMs (macrophage and microglia) exhibited phenotypic and functional

diversity.
3. Endothelial cells communicated with neutrophils or fibroblasts to support

angiogenesis.
4. Metastatic epithelial cells exhibited higher chromosomal instability and

enriched a subpopulation with stem cell-like phenotype.
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Background:Brainmalignancies encompass gliomas and brainmetastases orig-
inating from extracranial tumours including lung cancer. Approximately 50%
of patients with lung adenocarcinoma (LUAD) will eventually develop brain
metastases. However, the specific characteristics of gliomas and lung-to-brain
metastases (LC) are largely unknown.
Methods: We applied single-cell RNA sequencing to profile immune and
nonimmune cells in 4 glioma and 10 LC samples.
Results: Our analysis revealed that tumour microenvironment (TME) cells are
present in heterogeneous subpopulations. LC reprogramed cells into immune
suppressed state, includingmicroglia, macrophages, endothelial cells, and CD8+

T cells, with unique cell proportions and gene signatures. Particularly, we iden-
tified that a subset of macrophages was associated with poor prognosis. ROS
(reactive oxygen species)-producing neutrophils was found to participant in
angiogenesis. Furthermore, endothelial cells participated in active communica-
tion with fibroblasts. Metastatic epithelial cells exhibited high heterogeneity in
chromosomal instability (CIN) and cell population.
Conclusions: Our findings provide a comprehensive understanding of the het-
erogenicity of the tumor microenvironment and tumour cells and it will be
crucial for successful immunotherapy development for brain metastasis of lung
cancer.
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brain metastasis, glioma, lung adenocarcinoma, programmed cell death 1 ligand 1 (PDL1),
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1 INTRODUCTION

Brain malignancies include the primary tumours, such
as glioma, and brain metastases which originated from
extracranial primary tumours, including lung cancers.1
Lung adenocarcinoma (LUAD) is the most common type
of non-small-cell lung cancer (NSCLC). Approximately
50% of patients with LUAD will eventually develop brain
metastases. Patients diagnosed with brain metastases
usually have a short survival time.1 Given the current
limited treatment strategies for these patients, it is piv-
otal to have a deep comprehensive understanding of
metastatic lung cancer and its associated microenviron-
ments. Particularly, an in-depth understanding of the
microenvironment heterogeneity between lung cancer
brain metastases and primary brain tumours will aid the
development of precise treatments for different brain
tumours.
Immune checkpoint blockade (ICB) agents, such as

programmed cell death 1 (PD1) or PDL1 inhibitors, have
been recommended as the first-line treatment in many
patients with advanced LUAD.2,3 However, extensive
challenges exist, such as primary and acquired resis-
tance, the lack of predictive and prognostic biomarkers,
and treatment-related adverse effects,4 the particular-
ity and “immune privilege” feature of brain TME.5
Further understanding of the immune-suppressive
components of the brain tumour microenvironment
(TME) can be exploited for novel immunotherapy
strategies.
Epidermal growth factor receptor (EGFR) mutation

results in aberrant activation of kinase signalling and
occurs in approximately 15% of NSCLC cases.6 Patients
diagnosed with EGFR mutations have a good initial
clinical response to EGFR tyrosine kinase inhibitors;
however, the disease will eventually progress due to
acquired drug resistance.7–9 Further understanding
the diversity of tumour cells with different EGFR
statuses may promote the improvement of clinical treat-
ment of lung metastasis patients with tyrosine kinase
inhibitors.
To provide more detailed insight into the traits of

the TME of LUAD metastases and glioma (GM), we
performed single-cell RNA sequencing (scRNA-seq) on
fresh brain resection samples of GM and lung-to-brain
metastases (LC). Our study revealed the difference in
immune cell composition and evaluated the function and
genetic heterogeneity of the TME in GM and LC groups.
We also analysed the heterogeneity of tumour cells in
the LC group and found a group of stem cell-like cells
with specific molecular markers, suggesting possible drug
targets.

2 MATERIALS ANDMETHODS

2.1 Human specimens and ethical
approval

The brain tumour samples were collected from patients
at Shanghai Cancer Center. Sample detailed information
were listed in Tables S1 and S2. This study was approved
by the Ethics Committee of Fudan University Shanghai
Cancer Center (FUSCC), and each participant signed an
informed consent document.

2.2 Single-cell dissociation

The brain tumour tissues were resected and kept in MACS
tissue storage solution (Miltenyi Biotec). Tissue samples
were washed with PBS (phosphate-buffered saline), cut
into small pieces on ice and digested with tumour disso-
ciation kit (Miltenyi Biotec). Then, samples were passed
through a 70 μm cell strainer and centrifuged for 5 min
at 300 g. Red blood cell lysis buffer (Miltenyi Biotec) was
used to lyse red blood cells in the pelleted cells. Cell pellets
were washed with and re-suspended in 0.04% BSA in PBS
and passed through a 35 μm cell strainer. Single cells were
then stained with Calcein-AM (Thermo Fisher Scientific)
and Draq7 (BD Biosciences) to evaluate cell viability.

2.3 Single-cell RNA sequencing

The transcriptomic information of the single cells (14
samples) was obtained by performing the BD Rhapsody
system. Single-cell capture was achieved by a random dis-
tribution of a single-cell suspension across >2 00 000
microwells. Beads with oligonucleotide barcodes were sat-
urated to make sure per bead binds with per cell. The cells
were lysed and the mRNA molecules were hybridised to
barcoded capture oligos on the beads. Beads were then col-
lected with separate tube to reverse transcription and ExoI
digestion. After cDNA synthesis, each cDNAmolecule was
labelled with a cell barcode and a unique molecular iden-
tifier (UMI) on the 5′ end. The transcriptome libraries
were prepared using the BD Rhapsody single-cell whole-
transcriptome amplification workflow. The libraries were
quantified and sequenced (Illumina, San Diego, CA).

2.4 Single-cell RNA statistical analysis

scRNA-seq data analysis was performed by NovelBio Bio-
Pharm Technology Co., Ltd. The clean data was obtained
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by applying fastp with the default parameter to filter the
adaptor sequence and deleted the low-quality reads. The
UMI-based clean data weremapped to the human genome
(Ensembl version 91)10 utilising STAR mapping with cus-
tomised parameters. Seurat package (version: 3.1.4, https://
satijalab.org/seurat/)11 was used for cell normalisation and
regression. Mutual nearest neighbour (MNN) was applied
to eliminate the potential batch effect. Subsequently, the
top 10 principals were used for UniformManifold Approx-
imation and Projection (UMAP) or t-distributed Stochastic
Neighbor Embedding (tSNE) construction.
Utilising graph-based cluster method (resolution= 0.8),

we got the unsupervised cell cluster results based on the
top 10 principals and the marker genes by FindAllMark-
ers function with Wilcoxon rank sum test algorithm with
lnFC > 0.25, min.pct > 0.1and p value <.05.

2.5 Pseudo-time analysis

Single-Cell Trajectories analysis was performed withMon-
ocle2 (http://cole-trapnell-lab.github.io/monocle-release)
using default parameter and DDR-Tree. Branch fate-
determined gene analysis was performed by branch
expression analysis modelling.

2.6 CytoTRACE analysis

Cellular Trajectory Reconstruction Analysis using gene
Counts and Expression (CytoTRACE) is used to predict
the relative differentiation state of cells (https://cytotrace.
stanford.edu/).

2.7 Cell communication analysis

Cell communication analysis was based on the Cell-
PhoneDB which is a public repository of the interactions
of receptors and ligands. The normalised cell matrix was
achieved by Seurat Normalization. Cell Communication
significance (p value < .05) and significant mean was
calculated based on the interaction.

2.8 SCENIC analysis

Single-cell regulatory network inference and clustering
(pySCENIC, v0.9.5)12 workflow was applied to investigate
the regulation strength of transcription factors. The 20-
thousand motifs database was used for RcisTarget and
GRNboost.

2.9 QuSAGE analysis (gene enrichment
analysis)

The R package Quantitative Set Analysis for Gene Expres-
sion (QuSAGE) (2.16.1) analysis13 was used to analyse the
relative activation of a given gene set such as pathway acti-
vation, the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways and metabolism pathways.14

2.10 Differential gene expression
analysis

Function FindMarkers with Wilcoxon rank sum test
algorithm was used to determine differentially expressed
genes among samples. The criteria were: lnFC > 0.25,
p value < .05 and min.pct > 0.1.

2.11 Co-regulation gene analysis

Find_gene_modules function of monocle315 was per-
formed to discover the gene co-regulation network.

2.12 Copy number variation estimation

Endothelial cells were used as a reference to analyse
somatic copy number variations (CNVs) with the R pack-
age infercnv (v0.8.2). The extent of the CNV signal of each
cell was scored, defined as themean of squares of CNV val-
ues across the genome. Cells with a CNV signal above 0.05
and a CNV correlation above 0.5 were defined as putative
malignant cells.

2.13 Survival analysis

We applied the TCGAbiolinks package16 based on the
marker gene or marker gene set achieved from scRNA-
Seq together with the LUAD, low-grade glioma (LGG)
and glioblastomamultiform (GBM) expression profile and
clinical information in the TCGA database for survival
analysis. Furthermore, for gene set analysis, z-score nor-
malisation was applied based on the TCGAmatrix and the
average z-scorewas calculated according to the gene set list
for survival analysis.

2.14 Multiplexed
immunohistochemistry

Whole tissue sections from LC03 and LC07 (4-μm-
thick formalin-fixed, paraffin-embedded) were stained
with primary antibodies (EpCAM (#2929, CST, 1:500),

https://satijalab.org/seurat/
https://satijalab.org/seurat/
http://cole-trapnell-lab.github.io/monocle-release
https://cytotrace.stanford.edu/
https://cytotrace.stanford.edu/
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CD163(#93498, CST, 1:200), Topoisomerase IIα (#12286,
CST,1:400), TRIM29(17542-1-AP, Proteintech, 1:100),
DKK1(Abcam, ab109416, 1:800) sequentially and paired
with TSA 7-colour kit (abs50015-100T, Absinbio). The
order of antibodies/fluorescent dyes was showed as
following: anti- EpCAM/TSA 480, anti- CD163/TSA
780, anti-TOPIIα/TSA 620, anti-TRIM29/TSA 520, anti-
DKK1/TSA 570 and then by staining with DAPI (D1306;
Thermo Fisher). Pictures were scanned with Aperio Versa
8 tissue imaging system (Leica). Images were analysed
using Indica Halo software.

3 RESULTS

3.1 Identification of cell populations in
gliomas and lung-to-brain metastases

To explore the microenvironmental landscape and
immune status in GM and LC, we profiled the transcrip-
tomes of 61 867 individual cells obtained from 4 GM and
10 LC samples using scRNA-seq (Figure 1A). The informa-
tion on the data quality of scRNA-seq was shown in Table
S3. LC samples were further characterised into two groups
according to EGFR mutation status or PDL1 expression.
The detailed clinical information is summarised in Tables
S1 and S2. We identified 28 clusters, including epithelial
cells, endothelial cells, macrophages, microglial cells,
astrocytes, immune cells (myeloid, T and B cells), and
fibroblasts (Figure 1B).
The cell type proportions in GM and LC samples were

analysed, and the results showed an abundance of inva-
sion of immune cells, including T cells, mast cells and
macrophages, in the LC group. Epithelial cells were dis-
tributed in the LC group, whereas astrocytes, microglia,
and oligodendrocyte progenitor cells (OPCs) were found
significantly more frequently in the GM group (Figure 1C;
p < .05, Kruskal test). The cell type proportions in all
the samples are shown (Figure 1D). Considering that
malignant Oligodendrocyte/OPC and astrocyte were the
composition of GM, we also compared the nonmalignant
cell populations by CNV analysis between GM and LC
samples in Figure S1A and the results were consistent with
that in Figure 1C. The five specific marker genes of cell
clusters that we were interested in based on their gene
expression profiles are shown (Figure 1E). We also anal-
ysed the differentially expressed genes in the TMEbetween
GM and LC and found that 573 genes were downregu-
lated and 522 genes were upregulated in the GM group
(Figure 1F).
As PDL1 expression level and EGFR mutation sta-

tus determined the treatment efficiency of anti-immune
therapy and TKIs (tyrosine kinase inhibitor) targeted

therapy, we further evaluated the cell types distribution
according to the expression of PDL1 or the status of
EGFR. We grouped the LC samples into PDL1-high (PDL1
expression >1%) and PDL1-low (PDL1 expression ≤1%) or
EGFR-mutated and EGFR-wild-type (WT) samples. The
cell proportions in different groups are shown. Among all
the cell types, B cells, and plasma cells showed a signifi-
cant increase while neutrophils were reduced in PDL1-low
samples (Figure 1G, p < .05, Kruskal test), and monocytes
were notably increased in the EGFR-WT group (Figure 1H;
p < .05, Kruskal test).

3.2 A subset of proliferative
macrophages is associated with poor
prognosis

Tumour-associated macrophages (TAMs) originate
from tissue-invading monocyte-derived macrophages
(MDMs) or central nervous system (CNS)-resident
microglia-derived macrophages. To determine the
cell origin of the TAMs, we scored all the TAM
clusters according to the following gene signatures:
FCGR1A+/ITGAX+/ITGA4−/CX3CR1+/MERTK+
(CNS-resident microglia), CD14+/CCR2+/ITGAM+

(monocytes), and ITGA4+/MERTK+/CD163+/FCGR1A+

(MDMs).17 The results showed that C0, C2, C3 and C8
cells might originate from CNS-resident microglia, the
others may originate from MDMs. To further confirm
the existence of CNS-resident microglia, we also checked
the expression of canonical markers of microglia, such
as TMEM119 and P2RY11. We found that TMEM119 was
highly expressed in the CNS-resident microglia, while
P2RY11was scarcely expressed in all the TAMs (Figure 2A).
Then, we found that MDMs were present in high pro-
portions in LC tissues, while microglia were abundant in
GM tissues (Figure S1B). Our results indicated that the
sources of TAM in metastases and primary tumours are
different.
To explore the function of MDMs, we re-clustered

and stratified them into M1 macrophages (Ma_C2, C5,
C6, and C7; ATF3+/NAMPT+/PFKFB3+/CCL20+),
M2 macrophages (Ma_C0, C1, C8, C9, and C10;
CD163+/MAF+/LPAR6+/MRC1+), and myeloid-
derived suppressor cells (MDSCs) (Ma_C3 and C11;
OLR1+/VCAN+/FCN1+) (Table S4) based on unique
marker expression after separating proliferative
macrophages (Ma_C4 and C12; TOP2A+) (Figure 2B,C).
Then, we found that M1 macrophages were enriched in
immune-activating pathways. Proliferative cells showed
highly activated DNA replication and DNA repair path-
ways (Figure 2D). M2 macrophages showed activation
of lipid metabolism processes, such as sphingolipid
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F IGURE 1 Overview of the single-cell landscape for brain cancer. (A) Workflow showing sampling, sequencing and analysis process of
clinical samples. (B) UMAP view of total cells obtained from 4 GM and 10 LC samples, colour-coded by assigned cell type. (C) Cell type
proportions in GM and LC, the black and red represented GM and LC, respectively. (D) Cell composition distribution for each patient sample.
(E) Marker gene expression for each cell type, where dot size and colour represent the percentage of the marker gene. (F) The volcano plot of
variable expression genes of TME between GM and LC. Upregulated genes (FC > 2) were coloured in red while downregulated genes (FC less
than - 2) were coloured in blue. (G) Cell type proportions in the PDL1 high (PDL1 expression > 1%) and low group, the black and red
represented PDL1 low and PDL1 high, respectively. (H) Cell type proportions in EGFR mutation (mutation in Exon19, 20 or 21) and wild type
group, the black and red represented EGFR mutation and wild type, respectively.
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metabolism and steroid biosynthesis, while proliferative
macrophages showed enrichment of energy metabolism
processes, such as the citrate cycle (Figure 2E).
We determined the abundance of MDMs in GM and LC

groups and found that the percentage of M1 was higher in
GM (p = .008, Wilcoxon test), proliferative macrophages
was lower in GM (p = .028, Wilcoxon test), and M2
macrophages were relatively higher in LC, albeit the dif-
ference was not statistically significant (p= .076,Wilcoxon
test) (Figure 2F). In addition, M1 macrophages showed
more enrichment of immune-activating pathways such as
the tumor necrosis factor (TNF) signalling pathway, and
NF-κB signalling pathway in GM than in LC, while M2
macrophages showed downregulation of pathways related
to phagosomes, regulation of the actin cytoskeleton in GM
compared with LC. (Figure S1C,D)
We next analysed cytokine expression in MDMs

and found that proliferative clusters highly expressed
CCL2 (Figure 2G), which has been reported to promote
M2 macrophage polarisation.18 M2 and proliferative
macrophages had increased expression of the immune
checkpoint inhibitory ligand genes CD276, LGALS9,
and CD47 and reduced expression of CD86, which is a
checkpoint activating ligand gene (Figure 2H).
Most importantly, proliferative cells showed enrichment

of several transcription factors that function in cell pro-
liferation, such as MYBL2, EZH2, E2F1, E2F2, and E2F7
(Figure 2I and Figure S1E). It has been reported that
the E2F7-EZH2 axis regulates glioblastoma progression.19
The absence of E2F1 and E2F2 initiates the senescence
program in macrophages20; consistently, we found that
proliferativemacrophages had downregulated senescence-
associated processes (Figure 2J and Figure S1F–H). Finally,
we verified the cell populations by performing multi-
plex immunofluorescence staining for the marker genes
TOP2A and CD163 (Figure 2K).
Moreover, to investigate the prognostic value of these

clusters in LUAD, LGG or GBM, we analysed their gene
signatures in The Cancer Genome Atlas (TCGA). Interest-
ingly, the results showed that the proliferative group was
related to poor prognosis in both LUAD and LGG but had
no prognostic significance in GBM (Figure S1I,J and Table
S5).

3.3 Microglia exhibited multiple
polarisation phenotypes in the brain

We then sub-clustered CNS-resident microglia-derived
macrophages into nine clusters according to gene expres-
sion profiles (Figure 3A and Figure S2A). All the clusters
were found in both GM and LC (Figure S2B). In view of
the similar polarisation of microglia and macrophages, we
evaluated the polarisation phenotype of microglia accord-
ing to lists (Table S4) of genes used for macrophage
phenotyping (related to M1 and M2 polarisation). A dis-
tinctM1-type signature was observed inMi_C1 andMi_C5,
while anM2-type signaturewas enriched inMi_C2,Mi_C4
and Mi_C8 (Figure 3B). Of note, not all clusters could be
simply classified according to the M1 and M2 gene sig-
natures. To further understand the phenotype, we next
inferred the differentiation trajectory of these cells by
pseudo-time analysis. The results showed that Mi_C3
may include cells in the initial state and Mi_C0, C1 may
include cells in the intermediate state while Mi_C5/C6
and Mi_C2/C4/C6/C8 were towards two different direc-
tions in the terminal state (Figure 3C). Cytokine secretion
and MHCII expression were the main features of acti-
vatedmicroglia.21 We found that Mi_C0, C1, C3, C5 and C6
had increased expression of pro-inflammatory cytokines
such as IL1A, IL1B, TNF, CCL3, CCL4, CCL3L3, CCL4L2
and CXCL8. However, Mi_C2, C4, C7 and C8 scarcely
expressed these cytokines (Figure 3D). Mi_C2, C4, C7 and
C8 highly expressed MHCII genes such as HLA-DRB1 and
HLA-DPA1 (Figure 3E). Therefore, we clarified microglia
into cytokine-secreted MG1 (CX3CR1+/CCL3+/CCL4+,
Mi_C0, C1, C3, C5 and C6) and MHCII highly expressed
MG2 (CX3CR1+/HLA-DRB1+/HLA-DPA1+, Mi_C2, C4,
C7 and C8).
Next, we found that MG1 microglia highly expressed

immune checkpoint activated ligand gene CD86 and MG2
highly expressed immune checkpoint inhibited ligand
genes LGALS9 and VISR (Figure 3E). SCENIC analysed
results also confirmed MG1 microglia highly expressed
pro-immune related translational factors such as ATF3,22
BHLHE40,23 EGR2/EGR324 and NFKB125 (Figure 3F).
These results confirmed that microglia exhibited two
polarisation phenotypes.

F IGURE 2 A subset of proliferative MDMs is associated with poor prognosis. (A) The bubble plot showed the gene expressions of the
TAMs that originated from tissue-invading monocyte-derived macrophages (MDMs) or CNS-resident microglia-derived macrophages
(microglia). (B) The UMAP view of macrophage. (C) Marker gene expression profiles of macrophage cell type. (D) KEGG pathway enriched in
macrophage. Red colour represents upregulation and blue colour means downregulation. (E) Metabolism pathway enriched in macrophage.
Red colour represents upregulation and blue colour means downregulation. (F) The relative proportion of M1 and M2 in GM and LC. (G)
Expression of CCL2 in different types of macrophages showed with violin plot. (H) Gene bubble plot of immune checkpoint inhibition ligand
genes. (I) Expression of genes was shown in the tSNE view. (J) Scoring all the macrophages by the senescence gene list. (K) Multiplex
immunofluorescence staining of LC tissue.
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F IGURE 3 Microglia exhibited multiple polarisation phenotypes in the brain. (A) The UMAP view of microglia with the expression of
CX3CR1 and P2RY12. (B) Scoring all the microglia by the macrophage phenotyping and polarisation gene list. (C) Differentiation trajectory of
microglia, with each colour coded for clusters (left) and pseudo-time (right). (D) Bubble plot of the cytokine expression in microglia, colour
and dot size represented the average and percent expression, respectively (The left panel). The violin plots of the cytokine expression in
microglia (The right panel) (E) Bubble plot of immune checkpoint inhibition ligand gene. (F) The expression of indicated transcriptional
factors showed with heatmap (The left panel) and UMAP views (The right panel). (G) The relative proportion of MG1 and MG2 in GM and
LC. (H) The survival curve of cluster 0 gene signature in LGG in TCGA. (I) The survival curve of MG1 gene signature in LGG in TCGA.
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We then found that MG1 microglia were obviously
abundant in GM, while MG2 microglia accounted for a
much higher percentage in LC (p < .05, Wilcoxon test)
(Figure 3G). Besides, GO analysis showed that MG1 in
GM was enrichment with protein folding while MG2 in
LC was antigen processing and presentation and immune
response (Figure S2D,E). In particular, Mi_C1 and Mi_C2
presented higher proportions in LC and GM, respectively
(p < .05, respectively, Wilcoxon test) (Figure S2C). Mi_C1
and C2 had enrichment of the opposite metabolic and
KEGG pathways (Figure S2F).
We investigated the association of gene signatures of

microglia with the prognosis of LGG and GBM in TCGA.
Only Mi_C0 and MG1 gene signatures were associated
with a poor prognosis in LGG (p < .0001, p = .013,
respectively, Cox regression) (Figure 3H,I) and no clusters
indicated a significant association of prognosis in GBM
(Table S6).

3.4 ROS-producing neutrophils may
participate in tumour angiogenesis in brain
malignancies

The 11clusters of neutrophils were identified as PMN-
MDSCs (polymorphonuclear myeloid-derived suppressor
cells) (N_C6; AGE1+CSTA+), mature neutrophils (N_C1,
C2, C3, C8 and C10; CXCR2+MXD1+), activated neu-
trophils (N_C0 and C9; ITGB2+ITGAM+), ROS-producing
neutrophils (N_C5; LDHA+VEGFR+) and degranu-
lated neutrophils (N_C4 and C7) by QuSAGE analysis
(Figure 4A,B). Activated neutrophils were enriched
with NF-κB and Toll-like receptor signalling pathways
(NFKBIA and TNFAIP3). Degranulated neutrophils
showed activation of antigen processing and presen-
tation (HSP90AA1, HSPA8 and HSPA1A). In addition,
module 34 showed that N_C4 was enriched in the FOXO
signalling pathway, which regulates neutrophil survival
and degranulation as an unfolded protein response,
confirming that N_C4 cells were degranulated (Figure
S3A). ROS-producing neutrophils showed upregulation
of the HIF-1 signalling pathway with an expression of
HIF1A, LDHA, and VEGF-A. LDHA has been reported

to mediate ROS production.26 HIF1A functions in angio-
genesis, cell survival, glucose metabolism and invasion.27
Metabolic analysis also showed that ROS-producing
neutrophil-activated glycolysis and fructose and mannose
metabolism (TPI1, LDHA, PGK1, ENO1, HK2, and PKM)
(Figure 4C–E).
Chemokines are known to regulate the migration,

tumour infiltration and function of neutrophils.28 There-
fore, we further analysed the expression of chemokines
in neutrophils and found that activated neutrophils
showed high expression of CCL3L3, CCL4L2 and degran-
ulated neutrophils showed increased expression of IL-4R,
which may suppress neutrophil recruitment, chemotaxis,
and effector functions29 and regulate the expression of
SYK30 (Figure 4F). ROS production neutrophils showed
increased expression of CXCL8 and VEGFA, which was
consistentwith our results that theymay play an important
role in angiogenesis (Figure 4F,G).
Our results indicated that neutrophils may participate

in angiogenesis, hence we wonder whether neutrophils
can communicate with ECs. Cell communication anal-
ysis showed that CD74 (in activated, degranulated and
ROS productive neutrophils) and the ligand APP in ECs,
while SELL (in mature, degranulated neutrophils and
PMN-MDSCs) and the ligands CD34/PODXL in ECs may
form unique interaction pairs (Figure 4H). ROS produc-
tive neutrophils secreted VEGFA, which was consistent
with our results that they may play an important role in
angiogenesis (Figure 4G). In addition, SELL, which was
reported to regulate human neutrophil transendothelial
migration,31 was highly expressed in mature, degranu-
lated neutrophils and PMN-MDSCs (Figure 4I). We also
performed the CSOmap algorithm32 to investigate the
three-dimensional pseudo-space based on cell expression
profiles of neutrophils and ECs cluster (Figure S3B). The
results confirmed neutrophils and ECs formed tight pri-
mary linked structures (Figure S3C,D) and were close to
each other in pseudo-space (Figure S3E).
Since the regulation of neutrophil death ways played

a crucial role in homeostasis and inflammatory states,33
we further explored the inflammatory cell death pathways
of neutrophils. The results showed that ROS productive
neutrophils had enrichment of ferroptosis and elevated

F IGURE 4 ROS-productive neutrophils may participate in tumour angiogenesis in brain malignancies. (A) The tSNE view of
neutrophils. (B) Violin plots of the expression of marker gene of neutrophil subtypes. (C) Bubble plot of gene expression in neutrophils. (D)
KEGG pathway enriched in neutrophils. Red colour represents upregulation and blue colour means downregulation. (E) Metabolism pathway
enriched in neutrophils. Red colour represents upregulation and blue colour means downregulation. (F) The bubble plot showed the
expression of cytokines in neutrophils. (G) The bubble plot showed the expression of growth factors in neutrophils. (H) The bubble plot
showed the interaction between neutrophils with ECs. Blue represents the ligand in ECs, red represents the receptor in neutrophils. (I)
Expression of SELL in neutrophils was shown in the tSNE view (the up panel) and violin plot (the down panel). (J) The inflammatory cell
death pathways of neutrophils. (K) The bubble plot showed the expression of ferroptosis-related genes in neutrophils. (L) The relative
proportion of the different types of neutrophils in GM and LC.
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expression of genes that suppressed ferroptosis, such
as SLC3A2,34 BRD4,35 JUN, and SQSTM1.36 Neutrophil-
induced ferroptosis has been reported to promote tumour
necrosis37 (Figure 4J,K). Degranulated neutrophil C7 and
mature neutrophil C10 showed the expression of necropto-
sis related gene TLR4, CFLAR, andMLKL, while activated
neutrophil C9 showed the expression of pyroptosis-related
gene IL1B (Figure S3F,G).
To evaluate the different cell types in LC and GM, we

determined the percentage of neutrophil types and found
that degranulated neutrophils had a higher proportion in
LC than in GM (p = .002, Wilcoxon) (Figure 4L). Next, we
found that degranulated neutrophils had upregulation of
the VEGF signalling pathway and chemokine signalling
pathway but downregulation of HIF-1 signalling and gly-
colysis pathway in GM than LC (Figure S3H). We further
investigated the characteristics of N_C4 andN_C7, and the
results showed that the expression of genes such as FOXO3,
NOTCH and DTX4, which are involved in the NOTCH
signalling pathway, were highly increased in LC (Figure
S3I).

3.5 Endothelial cells have tissue
specificity and communicate with
tumour-associated fibroblasts

We identified four cell clusters of endothelial cells (ECs)
after removing low-quality cells (Figure 5A). The expres-
sion of KDR (VEGFR1) and lack of PDPN expression
indicated that the ECs were derived from vascular rather
than lymphatic vessels (Figure S4A). Then we found that
EC_C1 was abundant in GM, while EC_C0 and C2 were
increased in LC (p < .05, Wilcoxon test) (Figure 5B).
ECs showed activation of cell junction-related pathways
such as extracellular matrix (ECM)–receptor interactions,
regulation of the actin cytoskeleton, focal adhesion and
leukocyte transendothelialmigration in LC comparedwith
GM, while ECs in GM-enriched immune-related pathways
such as protein processing in the endoplasmic reticulum,
antigen processing and presentation andMAPK signalling
pathway (Figure S4B). Our results indicated that different
subgroups of ECs may have tissue specificity.
Then, we found that LC-enriched EC_C0 and C2

showed increased expression of genes that promoted
angiogenesis (PLVAP, and CD93) and activated cell
junction-related pathways and downregulated immune-
related pathways, such as the B cell receptor signalling
pathway and antigen processing and presentation. They
also showed high expression of MCAM, which might be
involved in the recruitment of activated T cells to inflam-
mation sites.38 GM-enriched EC_C1 expressed immune
response associated genes (ZFP36, NFKBIZ, BTG2) and

showed enrichment of immune-related pathways, such as
the TNF signalling pathway, which functioned in endothe-
lial barrier disruption39 (Figure 5C,D). Module 45 showed
that EC_C1 was enriched FOXO signalling which plays
essential roles in suppressing EC growth and tubemorpho-
genesis (Figure S4C)40 and limiting vascular expansion.41
The metabolism analysis showed that EC_C0 and C2 were
enriched in energy metabolic pathways such as glycoly-
sis/gluconeogenesis, the pentose phosphate pathway and
oxidative phosphorylation, while EC_C1 showed high acti-
vation of steroid biosynthesis and thiamine metabolism
(Figure S4D).
To further investigate whether ECs had a different

distribution of chemokines and growth factors which
can regulate the function of ECs, we analysed their
expression profiles in different cell clusters. As expected,
EC_C0/C2 and C1 had different cytokine expression lev-
els. For instance, EC_C0/C2 showed elevated expression
of CXCL12, NRP1, and NRP2, whereas EC_C1 showed
increased expression of CXCL8, CXCL4, NAMPT and
HBEGF (Figure 5E,F). Hypoxia remodels the endothelial
phenotype and alters the expression of EGR1 and HIF,
which coordinate separate activation of distinct genes.42
In our study, we found that EC_C1 had increased expres-
sion of EGR1 and HIF3A, while EC_C0/C2 had elevated
expression of HIF1A (Figure 5G). Furthermore, EC_C0/C2
expressed VWF and PECAM-1, which is an essential pro-
tein in transendothelial migration.43 EC_C1 had increased
expression of CLDN5, which participates in the regulation
of the endothelial barrier44 (Figure 5H).
Moreover, we investigated cell-cell interactions with

CellPhoneDB.45 In particular, ECs had higher num-
bers of inferred interactions with fibroblasts, ECs and
macrophages (Figure 5I). In addition, EC_C0, C1 and
C2 represented a large portion of cells interacting with
fibroblasts (Figure S4E). We also performed the CSOmap
algorithm to investigate the three-dimensional pseudo-
space based on cell expression profiles of fibroblasts and
ECs cluster and the results confirmed fibroblasts and EC
cells formed tight primary linked structures and were
closed to each other in pseudo-space (Figure 5J–M).
Fibroblasts were divided into cancer-associated fibroblasts
(CAFs); (Fi_C7 and C8) andmyofibroblasts (Fi_C1-C6 and
Fi_C9) (Figure S4F). We found that EC_C0 had stronger
gene interactions with all fibroblasts and the interac-
tion between EC_C0 and fibroblasts showed stronger
pairs of COL4A2 and COL4A1 on ECs and the recep-
tor a1b1 complex on myofibroblasts and JAG2 and DLL4
on ECs and their receptor NOTCH3 on myofibroblasts
(Figure 5N). Myofibroblasts have been reported to pro-
mote tissue remodelling, tumour stroma remodelling46
and angiogenesis.47 We also performed H&E staining to
evaluate the spatial proximity of fibroblasts and ECs and
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F IGURE 5 Endothelial cells communicate with tumour-associated fibroblast cells. (A) The UMAP view of ECs. (B) The relative
proportion of ECs in GM and LC. (C) Marker gene expression profiles of ECs showed with bubble plots. (D) KEGG pathway enriched in ECs.
Red colour represents upregulation and blue colour means downregulation. (E) The bubble plot showed the expression of cytokines in ECs.
(F) The bubble plot showed the expression of growth factors in ECs. (G) The expression of EGR1, HIF3A and HIF1A in ECs. (H) Bubble plots
showed the expression of endothelial function-associated genes. (I) Numbers of inferred interactions between ECs with other cell types. (J)
Spatial organisation (angle = 165) of fibroblast and ECs in the pseudo-space inferred by CSOmap based on the scRNA-seq data. Each dot
represents a cell, and its colour represents the corresponding cell state. (K) The cross-section of z = 0 of the pseudo-space. The colour of the
dots represents cell density. (L) Location of fibroblast and ECs in the cross-section of pseudo-space z = 0. (M) The difference in cell density
between cell clusters of fibroblast and ECs. (N) The bubble plot showed the interaction between C0 in ECs with fibroblast clusters. Blue
represents the ligand in ECs, red represents the receptor in fibroblast.
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F IGURE 6 The heterogeneity for T cells and the association with the expression of PDL1. (A) The UMAP view of different types of T
cells. (B) The relative proportion of the different types of T cells in LC and GM. (C) The relative proportion of the different types of T cells in
each patient of LC and GM. (D) Violin plots showed the expression of PD1 in CD4+ and CD8+ subtypes. (E) The relative proportion of subtype
of CD8+ T cells in PDL1 high and low expression group. (F) Bubble plots showed the expression of the immune checkpoint activation receptor
gene of the subtype of CD8+ T cells in the PDL1 high and low expression group. (G) Bubble plots showed the expression of the immune
checkpoint inhibition receptor gene of the subtype of CD8+ T cells in the PDL1 high and low expression group. (H) Bubble plots showed the
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the results showed that fibroblasts were tightly around
the EC cell in the blood vessel inside the tumour but we
did not see this in the blood vessel around the tumour
(Figure S4G). In conclusion, cellular interactions between
ECs and fibroblasts help to promote angiogenesis in LUAD
and brain metastases.48

3.6 Heterogeneity of T cells and the
association with PDL1 expression

T cells identified in this study were classified into CD8+
T (effector memory T (TEM), central memory T (TCM),
and terminally differentiated effector T (Temra)), CD4+
T (naive, TCM, and regulatory), natural killer T (NKT),
and proliferative T cells (Figure 6A). Then, we found
less abundant CD4 TCM and CD8+ Temra cells and
more NKT and CD8+ TEM cells in LC tumour tissue
compared to GM samples. CD8+ exhausted T (TEX) and
CD4+ TEM cells were mainly seen in LC, though the
difference had no significance (Figure 6B,C). In general,
the difference in cellular proportions and gene signatures
indicates that metastatic tumour tissue has reprogrammed
T cells.
PD1 was expressed in several immune cells such as

T cells. The interaction of PD1 with its ligand PDL1 is
involved in suppressing anti-tumour immunity response.
Therefore, we wondered whether some subtypes of CD4+
or CD8+ T cells may alter the anti-tumour efficacy with
anti-PD1 or PDL1 treatment. We first subtyped CD8+ and
CD4+ T cells based on the expression of marker genes
(Figure S5A,B). Then, the expression of PD1 in these cells
was analysed and the results showed that CD8+ TEX cells
and proliferative CD8+ T cells were PD1 high expression
(Figure 6D). We further investigated whether CD8+ T cell
proportions or functions were altered with PDL1 expres-
sion in tumour cells and found that the abundance of
proliferative CD8+ cells was increased in the PDL1-high
expression group, but the percentages of other CD8+ T
cell subtypes were not significantly different (Figure 6E).
Interestingly, in proliferative CD8+ cells, we also observed
higher expression of the immune checkpoint inhibition
receptor genes LAG3, AHR3, and TIGIT and the immune
checkpoint activation receptor gene CD226 and lower
expression of CD44 in the PDL1-low group than in the

PDL1-high group (Figure 6F,G). In addition, we evaluated
the expression of immune checkpoints in other CD8+ T
cells subtypes and found that CD8+ TEX cells had high
expression of the inhibitory receptor genes PDCD1, LAG3,
andTIGIT (Figure 6H,I). Our results indicated that tumour
immune therapy with an anti-PD1/PDL1 inhibitor com-
binedwith other ICB agentsmay increase the effectiveness
of treatments for cancer.
To investigate whether CD8+ T cells identified in our

study can predict tumour immune evasion and immune
therapy resistance in NSCLC, we evaluated the expression
of their main marker genes of CD8+ cytolytic T lympho-
cytes (CTLs) in the patients who received anti-CTLA4 or
anti-PD1 therapy in scTIME Portal.49 The results showed
that the expression of GZMB (CD8_TEX), GZMH and
PRF1 (CD8_Temra)was positively related to the proportion
of CTLs. In addition, the higher expression of these genes
indicated the poor prognosis of higher infiltration of CTLs
and indicated that these genes may involve in the dysfunc-
tion of CTLs (Figure 6J and Figure S5C–E). We also used
some single-cell sequencing data in the public database
with metastatic LUAD (including brain metastasis) to ver-
ify the effect of expression of GZMB, GZMH and PRF1 in
the infiltration of PD1+CD8+ T cells and the results showed
that the high expression of these genes was positively asso-
ciated with the infiltration of PD1+CD8+ T cells (Figure 6K
and Figure S5F–J). These results indicated that CD8_TEX
andCD8_Temramay express genes that impaired the func-
tion of CTLs and increase the infiltration of PD1+CD8+ T
cells to suppress the anti-cancer immune response.

3.7 One subpopulation of cancer
stem-like cells was enriched in epithelial
cells

We detected 7321 epithelial cells by the expression of
EPCAM, KRT18 and KRT19 (Figure S6A). Next, by per-
forming copy number alteration (CNA) analysis, malig-
nant cells were defined as those with CNV signals above
0.05 and CNV correlations above 0.5. We identified 5533
malignant cells and categorised them into 10 sub-clusters
(Figure S6B). The inferred CNAs were canonical LC
genome alterations,50 including gains of chromosomes 1
and 7 and losses of chromosomes 10 and 11 (Figure S6C).

expression of immune checkpoint activation receptor genes of a subtype of CD8+ T cells. (I) Bubble plots showed the expression of immune
checkpoint inhibition receptor genes of a subtype of CD8+ T cells. (J) Correlation between the gene expression of GZMB and the infiltration
of CTLs was shown on the left and the Kaplan–Meier plots of overall survival (OS) for LUAD patients with CTLs with the top and bottom
TIDE prediction scores based on gene expression of GZMB (on the right). The p value was calculated by testing the association between TIDE
prediction scores and overall survival with the two-sided Wald test in a Cox-PH regression. (K) Correlation of expression of GZMB in CD8+

PD1+ T cells with the fraction of CD8+ PD1+ T cells in metastatic LUAD.
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F IGURE 7 Epithelial cells harbour a subset of cancer stem cells and show heterogeneity of DNA copy number variations. (A)
Differentiation status of malignant cells analysed by CytoTRACE. (B) RNA velocity of malignant cells. (C) Differentiation trajectory of
malignant cells, with each colour coded for clusters (left) and pseudo-time (right). (D) Expression of FOSL1 in malignant cells was shown in
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Cancer stem cells (CSCs) are a subpopulation of cells
that contribute to cancer metastasis and resistance to
chemotherapy or radiotherapy.51,52 Therefore, we deter-
mined whether there were stem-like clusters in malignant
epithelial cells. CytoTRACE and RNA velocity analy-
ses showed that Mep_C3 and C8 were less differenti-
ated, while Mep_C6, C5, and C7 were highly differen-
tiated (Figure 7A,B). Pseudo-time analysis results also
showed that Mep_C3 and C8 represented initiation points
then branched in two directions (Figure 7C). Moreover,
Mep_C3 and C8 were relatively quiescent and had lower
metabolism (Figure S6D). These findings indicated that
Mep_C3 and C8 contained CSCs. In addition, SCENIC
analysis results showed that some stemness-related tran-
scription factors, such as FOSL1,53,54 were obviously
enriched inMep_C3 and C8 (Figure 7D). we also evaluated
the expression of some canonical CSC marker genes such
as CD133,55 SOX2, NONOG, LGR556 and found that they
rarely expressed in the epithelial cell, but other genes that
have been reported to regulate CSCs were also enriched
in Mep_C3 and C8, such as HMGA157 and PEG1058
(Figure S6E). To confirm Mep_C3 and _C8 presented in
the LC tissue, we detected the main marker expression
(EPCAM/DKK1/TRIM29) by applyingmultiplex immuno-
histochemistry and found that DKK1 and TRIM29 were
specifically enriched in these cells (Figure 7E,F).
We calculated the number of potential targets of each

subgroup with all the marker genes and determined can-
didate drugs and found that Mep_C9 had 31 potential
drug targets; in contrast, only AREG and F3 were iden-
tified in Mep_C3, and G6PD was identified in Mep_C8
(Table S7). AREG, functioning as a promoter in epithe-
lial malignancies,59,60 is present in the TME and con-
tributes to therapeutic resistance.61 F3 has been reported
to play an important role in tumour growth, angio-
genesis and metastasis.62,63 G6PD activity is elevated in
several types of cancer, including LC, and it promotes
cancer growth and development by maintaining intracel-
lular redox homeostasis.64 Because AREG, F3, and G6PD
play a crucial role in tumour growth, angiogenesis and
metastasis, the interruption of AREG by cetuximab, pani-
tumumab, irinotecan, or capecitabine and of F3 by simvas-
tatin or G6PD by trimethoprim might represent strategies

to specifically kill CSCs and overcome chemoresistance in
this cancer (Figure 7G).
In addition, we found that higher Mep_C3- and C8-

related gene signatures were associated with poorer sur-
vival in LUAD (Figure S6F). Specifically, high expression
of FOSL1, DKK1 and TRIM29 was correlated with shorter
survival (Figure S6G).

3.8 Epithelial cells are associated with
chromosomal instability

IHC is the gold standard to distinguish tumour cells.
Therefore, we performed IHC, and all the epithelial cells
in the CNS were identified as tumour cells (Figure S7A).
However, by adopting DNA CNV analysis, we identified
1788 epithelial cells with lower CNV (Figure S7B). As
we know, chromosomal instability (CIN) consists of CNA
in tumour cell chromosomes and plays multiple roles in
cancer and its microenvironment.65,66 To further under-
stand the CIN-associated feature of the cells between
epithelial cells with higher- and lower-CNV, we anal-
ysed the differential expressed genes and found a total
of 60 downregulated genes and 118 upregulated genes
were identified in the epithelial cells with higher CNV
higher (Figure S7C). The results showed that higher-CNV
cells expressed genes correlated with higher CIN such
as TMEM173,67 TP53/MDM2,68 EGFR,69 MACC1,70 FOS,70
UBAC271 (Figure 7H). These results indicated that epithe-
lial cells with higher- and lower-CNV exhibited higher and
lower CIN.
We further found that the cells with lower CIN had

enrichment of ECM interaction and focal adhesion genes
(Figure 7I). These results indicate that the lower CIN
cells may play a role in cell seeding and colonisation
and assist cells with higher CIN in metastasising into
brain tissues; however, it needs to be further studied. The
cells also showed activation of fructose and the mannose
metabolism-related genes However, the cells with higher
CIN showed enrichment of genes that function in protein
processing in the Endoplasmic Reticulum (ER) (Figure 7I).
ER stress has been reported to endow malignant cells
with greater tumourigenic, metastatic, drug-resistant and

the tSNE view. (E) The expression of EPCAM, TRIM29 and DKK1 was shown with violin plots. (F) Multiplex immunofluorescence staining of
LC tissue. (G) Candidate drugs that target AREG and F3 in C3 or G6PD in C8 of malignant cells. (H) Bubble plots showed the expression of
genes related to CIN was shown. (I) Expression of genes in CIN cells. (J) KEGG pathway of total epithelial cells enriched between PDL1 high
compared with PDL1 low expression group. Circle means downregulated pathways and triangle means upregulated pathways. The dot
represents the enriched gene number. (K) Expression of GATA6 was shown with violin plots and tSNE view. (L) Kaplan–Meier plots of overall
survival (OS) for NSCLC patients with CTLs with the top and bottom TIDE prediction scores. The P value was calculated by testing the
association between TIDE prediction scores and overall survival with the two-sided Wald test in a Cox-PH regression. (M) Expression of genes
was shown with violin plots and tSNE view.
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immunosuppressive capacities.72 Our results indicate that
cells with higher CIN had a stronger capability to adapt to
ER stress.

3.9 Status of PDL1- or EGFR-modified
gene signatures of epithelial cells

As anti-PD1/PDL1 and anti-EGFR were the main effec-
tive anti-immune therapy and TKIs targeted therapy, we
further explored the gene expression alterations between
PDL1 high and low expression, and EGFR mutation and
wide type in all epithelial cells. The results showed that
PDL1 higher epithelial cells were increased ECM–receptor
interactions and the PI3K-AKT signalling pathway while
decreased antigen processing and presentation and protein
processing in the ER than PDL1 lower cells (Figure 7J).
SCENIC analysis showed that GATA6 was elevated in
samples with higher PDL1 (Figure 7K). GATA6 has been
reported to upregulate PDL1 expression in immortalised
human sebocytes.73 We also found that the expression of
GATA6 in the tumour cells elevated the infiltration of
immune cells (Figure S7D) and the higher expression of
GATA6 indicated the poor prognosis of higher infiltra-
tion of CTLs and indicated that these genes may involve
in the dysfunction of CTLs (Figure 7L). Targeting GATA6
combined with an anti-PDL1 antibody might provide an
effective strategy for cancer therapy.
We next wondered whether EGFR mutation could

determine the epithelial cell subpopulation and found
that there was no significant difference in EGFR muta-
tion status between cell clusters (Figure S7E). Next,
we found that EGFR-mutated cells showed activation
of processes related to ribosomes, spliceosomes and
oxidative phosphorylation pathways (Figure S7F). In
addition, EGFR-mutated cells showed downregulation
of the transcription factors EST1 and FOSL1 and upreg-
ulation of EGR1 and HOXB9 (Figure 7M). Accumulating
evidence has demonstrated that EGFR tyrosine kinase
inhibitors (TKIs) evoke innate drug resistance by inacti-
vating EST1 function.74,75 EGFR mutation promotes the
expression of EGR1,76,77 and high early growth response 1
(EGR1) expression correlates with resistance to anti-EGFR
treatment.78 A higher level of DNAmethylation of HOXB9
was found to be correlated with intrinsic EGFR-TKI
resistance and poor TKI response.79 Expression of mutant
EGFR (EGFRvIII) resulted in upregulation of a small
group of genes, including FOSL1,80 and EGFR-PKM2
signalling induced the expression of FOSL1 to promote
nasopharyngeal carcinoma cell invasion and metastasis.81
Our results will help to improve the response to EGFR-TKI
treatment.

4 DISCUSSION

Recent studies have found that TME significantly influ-
enced therapeutic response and clinical outcome of
cancer.82 Therefore, it will be beneficial to gain a deeper
understanding of the TME composition. The unique TME
in the brain, such as intracranial cell composition (includ-
ing microglia, astrocytes and neurons), the blood–brain
barrier (BBB), and the immunosuppression state, make
it more complex than that in the extracranial tumours.
Some recent reports showed the features of TME in LC
without comparing with GM48,83 or included TME com-
parison in brain metastasis and GM, but not at single cell
level.17,84 In our study, we applied single-cell RNA-seq to
interrogate the TME landscape in GM and LC. We found
that GM highly enriched immune-activated mononuclear
phagocyte populationsmacrophageM1 andmicrogliaMG1
while LC increased the abundance of macrophages M2
and microglia MG2. Besides, GM showed enrichment
endothelial cell cluster EC_C1 that increased immune-
related pathways, such as the TNF signalling pathway
while LC-enriched EC_C0 and C2 that activated angiogen-
esis and downregulated immune-related pathways, such
as the B cell receptor signalling pathway. Our analyses
revealed major changes in TME cell populations, which
were dependent on the tissue type of brain tumour.
The polarisation of TAMs in brain metastases is more

complex than the classical M1/M2 model.48,85 In our
results, we clarified microglia into cytokine-secreted MG1
(CX3CR1+/CCL3+/CCL4+) and MHCII highly expressed
MG2 (CX3CR1+/HLA-DRB1+/HLA-DPA18). The polari-
sation process may dependent on metabolic pathways
and pro-inflammatory M1 TAM was reported to be sup-
ported by glycolysis, whereas anti-inflammatory M2 TAM
utilises fatty acid oxidation (FAO).86,87 According to our
results, M2 macrophages and MG2 microglia showed
high activation of lipid metabolism processes. We also
analysed TAM function according to the two functional
states of macrophages (S100A8+/S100A9+/FCN1+/IL1B+
or APOE+/TREM2+/HLA-DRAhigh) recently found by
Gonzalez H in brain metastases88 and found that not all
the TAM can be identified into these two function states.
These further indicated the complex status of TAM. In
our study, we also identified a subpopulation of prolifer-
ative macrophages whose gene signature was associated
with a poor prognosis in LUAD. We also compared our
results with the previous study that SPP1+ macrophages
identified by Leaders89 in NSCLC primary foci and found
that proliferative macrophages expressed SPP1. (Figure
S8G) Targeting the proliferative TAM or inducing them to
directly differentiate into cells with a tumour-suppressive
phenotype might be helpful for tumour immune therapy.
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Due to the lack of expression of CD66B and LY6E,
we could not sub-classify neutrophils into canonical N1
and N2, but pseudo-time analysis showed that clus-
ters are two separate branches of the trajectory, sug-
gesting that there may be two states of differentiation.
Alternatively, we found a subset of ROS-producing neu-
trophils that may be related to angiogenesis.90 We also
validated the presence of ROS-producing neutrophils
in the public database URECA with the expression
of S100A8+CSF3R+VEGFA+HIF1A+CXCL8+ in the lung
brain metastasis tissue (Figure S8A–F). We also found
that ROS-producing neutrophils in bevacizumab (inhibitor
of VEGF) treatment LC10 downregulated some path-
ways involved in adhesion and transendothelial migration
which indicated that anti-VEGF treatment such as beva-
cizumab may inhibit the angiogenesis and disrupt the
communication of ECs and neutrophils (Figure S8I). Tar-
geting ROS-producing neutrophils with ROS inhibitors or
ROS scavengers combined with VEGF inhibitors such as
Bevacizumab may help to suppress tumour angiogenesis.
As the constituent part of blood–tumour interface (BTI),

ECs played roles in angiogenesis and ECM remodelling or
participant in immune-related processes. Gonzalez et al.88
have revealed three endothelial clusters (EC-1, EC-2 and
EC-3) in brain metastases. Interestingly, EC_C0 in our
results shared marker genes APLNR and ESM1 with their
EC-1, as well as biological processes such as angiogene-
sis and ECM remodelling; while C1 was partial of their
venous-like (EC-2) which enriched more immune-related
processes, such as TNF signalling, antigen processing
and presentation etc. Additionally, drug resistance-related
genes, including ABCB1 and ABCG2, were ubiquitously
expressed in all ECs (Figure S8H). We also identified EC-
expressed genes that were associated with activation of
ECM–receptor interactions and comprised a large portion
of the cells interacting with fibroblasts; similar findings
were reported in another previous study.48 Thus, ECs seem
to be involved in a continuous process from immune cell
infiltration to immune response and drug resistance in
brain metastases BTI.
Considering the different outcomes of PD1 or PDL1

inhibitor clinical trials in GM and LC metastasis,91 we
askedwhether abundant immune cells in the tumour envi-
ronment could alter therapeutic efficacy. In our study,
we found that T cells were abundant in LC tissue than
GM. CD8+ T Cell proportion directly determined the
immune effect on tumour cells and the expression of PD1
inhibited the cytotoxic. In this study, CD8_TEX and pro-
liferative CD8 T expressed PD1. To validate our result in
other research, we sub-cluster all the CD8+ cells into
four metaclusters with the main marker identified by
Sudmeier et al.92 The results showed that CD8_TEX and
proliferative CD8 T cells expressed genes encoding co-

inhibitory molecules such as CTLA4, ENTPD1, HAVCR2,
and LAG3; therefore, they can be defined by metacluster
A and D (exhausted). CD8_Tem expressed TCF7 and IL7R
while CD8_Temra expressed TCF7, IL7R and CD69 were
included in metacluster B and C (memory-like) (Figure
S8J). These results demonstrated that CD8_TEXand prolif-
erative CD8 T cells with distinct immune suppressive phe-
notypic in the TME. Consistently, our results showed that
the abundance of proliferative CD8+ cells was elevated
in the high PDL1 expression group and was associated
with the downregulation immune checkpoint inhibition
receptor genes LAG3, AHR3 and TIGIT. A combination of
tumour immune therapy with an anti-PD1/PDL1 inhibitor
with other ICB inhibitors may improve the effectiveness of
treatments for a brain tumour.
EGFR tyrosine kinase inhibitors treatmentwas themain

strategy for patients diagnosed with lung cancer harbour-
ing EGFR mutations, however, acquired drug resistance
limited the treatment efficiency.7–9 Further understanding
of the diversity of tumour cells with EGFR statuses may
improve the clinical treatment. Our results showed that
EGFR-mutated cells regulated several transcription factors
such as EST1 and FOSL1, EGR1 and HOXB9 which may
be associated with the targeting effect of TKIs.93 Hypoxia
in the tumour was reported to overcome TKIs drug resis-
tance. Hypoxia can induce the expression of EGFR. On the
other hand, EGFR might increase the expression of HIF-
1α to elevate the cellular response to hypoxia.94,95 In our
study, the expression of HIF-1α and EGFR in epithelial
cells was a positive correlation which was consistent with
the previous study. The combination of the TKIs with an
inhibitor of hypoxia-inducible factor inhibitor acriflavine96
or hypoxia-induced pathways such as FGFR1 inhibitors
or MEK inhibitors97 was a promising strategy for patients
with EGFR-Mutant.
Since some studies showed that the EGFR activation

pathway can increase the expression of PDL1,98 we won-
dered whether a combination TKIs with anti-PD1/PDL1
drugs can improve the therapy efficiency. Therefore, we
first compared the proportion of immune cells between
the EGFR wild type and mutation group. It was very
pitiful that we did not find any valuable cluster. Some
studies reported that the combination therapy showed
more beneficial efficacy than ICBs alone but increased
treatment-related adverse events except for patients with
KRASmutation.99 It was important to consider both safety
and therapy efficacy when ICBs and TKIs are combined.

4.1 Limitations of this study

Due to the limitation of sample collection, we had not
obtained gliomas in homogeneous tumour type or tumour
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driver genes. Though all of them were diagnosed with
high-grade glioma (WHO grade III–IV), the small sam-
ple number and heterogeneity of cancer subtype and
driver mutations and the location in the brain may affect
the results of different cell clusters between glioma and
metastases. In addition, the history of treatment such as
radiation or chemotherapy in lung brain metastasis may
also affect the phenotypes and infiltrating of immune cells.
More importantly, this study had several methodological
limitations and was lack of functional experiments. More
functional studies need to be further studied.
Overall, we show that the immune cell compartment

of the brain TME is mainly shaped by LC metastases.
Our results provide particular insights into the character-
istics of microglia, macrophages, neutrophils, ECs and T
cells. We also identified a subset of stem cell-like cancer
cells. Our studywill deepen the understanding of the brain
TME, thereby leading to improved patient management in
precision medicine.
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